1
|
Mon SK, Manning BL, Wakschlag LS, Norton ES. Leveraging mixed-effects location scale models to assess the ERP mismatch negativity's psychometric properties and trial-by-trial neural variability in toddler-mother dyads. Dev Cogn Neurosci 2024; 70:101459. [PMID: 39433000 PMCID: PMC11533483 DOI: 10.1016/j.dcn.2024.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Trial-by-trial neural variability, a measure of neural response stability, has been examined in relation to behavioral indicators using summary measures, but these methods do not characterize meaningful processes underlying variability. Mixed-effects location scale models (MELSMs) overcome these limitations by accounting for predictors and covariates of variability but have been rarely used in developmental studies. Here, we applied MELSMs to the ERP auditory mismatch negativity (MMN), a neural measure often related to language and psychopathology. 84 toddlers and 76 mothers completed a speech-syllable MMN paradigm. We extracted early and late MMN mean amplitudes from trial-level waveforms. We first characterized our sample's psychometric properties using MELSMs and found a wide range of subject-level internal consistency. Next, we examined the relation between toddler MMNs with theoretically relevant child behavioral and maternal variables. MELSMs offered better model fit than analyses that assumed constant variability. We found significant individual differences in trial-by-trial variability but no significant associations between toddler variability and their language, irritability, or mother variability indices. Overall, we illustrate how MELSMs can characterize psychometric properties and answer questions about individual differences in variability. We provide recommendations and resources as well as example code for analyzing trial-by-trial neural variability in future studies.
Collapse
Affiliation(s)
- Serena K Mon
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Brittany L Manning
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Institute for Innovations in Developmental Sciences, Chicago, IL, USA
| | - Lauren S Wakschlag
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Institute for Innovations in Developmental Sciences, Chicago, IL, USA
| | - Elizabeth S Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA; Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Institute for Innovations in Developmental Sciences, Chicago, IL, USA.
| |
Collapse
|
2
|
Melillo R, Leisman G, Machado C, Machado-Ferrer Y, Chinchilla-Acosta M, Kamgang S, Melillo T, Carmeli E. Retained Primitive Reflexes and Potential for Intervention in Autistic Spectrum Disorders. Front Neurol 2022; 13:922322. [PMID: 35873782 PMCID: PMC9301367 DOI: 10.3389/fneur.2022.922322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
We provide evidence to support the contention that many aspects of Autistic Spectrum Disorder (ASD) are related to interregional brain functional disconnectivity associated with maturational delays in the development of brain networks. We think a delay in brain maturation in some networks may result in an increase in cortical maturation and development in other networks, leading to a developmental asynchrony and an unevenness of functional skills and symptoms. The paper supports the close relationship between retained primitive reflexes and cognitive and motor function in general and in ASD in particular provided to indicate that the inhibition of RPRs can effect positive change in ASD.
Collapse
Affiliation(s)
- Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
- Department of Neurology, University of the Medical Sciences of Havana, Havana, Cuba
| | - Calixto Machado
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | - Yanin Machado-Ferrer
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | | | - Shanine Kamgang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ty Melillo
- Northeast College of the Health Sciences, Seneca Falls, New York, NY, United States
| | - Eli Carmeli
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Virtala P, Putkinen V, Kailaheimo-Lönnqvist L, Thiede A, Partanen E, Kujala T. Infancy and early childhood maturation of neural auditory change detection and its associations to familial dyslexia risk. Clin Neurophysiol 2022; 137:159-176. [DOI: 10.1016/j.clinph.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
|
4
|
Norton ES, Beach SD, Eddy MD, McWeeny S, Ozernov-Palchik O, Gaab N, Gabrieli JDE. ERP Mismatch Negativity Amplitude and Asymmetry Reflect Phonological and Rapid Automatized Naming Skills in English-Speaking Kindergartners. Front Hum Neurosci 2021; 15:624617. [PMID: 34220468 PMCID: PMC8249724 DOI: 10.3389/fnhum.2021.624617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
The mismatch negativity (MMN), an electrophysiological response to an oddball auditory stimulus, is related to reading ability in many studies. There are conflicting findings regarding exactly how the MMN relates to risk or actual diagnosis of dyslexia/reading impairment, perhaps due to the heterogeneity of abilities in children with reading impairment. In this study, 166 English-speaking kindergarten children oversampled for dyslexia risk completed behavioral assessments and a speech-syllable MMN paradigm. We examined how early and late MMN mean amplitude and laterality were related to two established predictors of reading ability: phonological awareness (PA) and rapid automatized naming (RAN). In bootstrapped group analyses, late MMN amplitude was significantly greater in children with typical PA ability than low PA ability. In contrast, laterality of the early and late MMN was significantly different in children with low versus typical RAN ability. Continuous analyses controlling for child age, non-verbal IQ, and letter and word identification abilities showed the same associations between late MMN amplitude with PA and late MMN laterality with RAN. These findings suggest that amplitude of the MMN may relate to phonological representations and ability to manipulate them, whereas MMN laterality may reflect differences in brain processes that support automaticity needed for reading.
Collapse
Affiliation(s)
- Elizabeth S. Norton
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Medical Social Sciences, Feinberg School of Medicine, and Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States
| | - Sara D. Beach
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Marianna D. Eddy
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sean McWeeny
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Ola Ozernov-Palchik
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard Graduate School of Education, Cambridge, MA, United States
| | - Nadine Gaab
- Harvard Graduate School of Education, Cambridge, MA, United States
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children’s Hospital/Harvard Medical School, Boston, MA, United States
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|