1
|
Khalid H, Ahmad I, Sarfraz A, Iqbal A, Nishan U, Dib H, Ullah R, Sheheryar S, Shah M. Screening Asian Medicinal Plants for SARS-CoV-2 Inhibitors: A Computational Approach. Chem Biodivers 2025; 22:e202402548. [PMID: 39670960 DOI: 10.1002/cbdv.202402548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/14/2024]
Abstract
This work aimed to evaluate the antiviral potential of compounds from Asian medicinal plants against SARS-CoV-2's main protease and spike glycoprotein, identifying dual inhibitors from these plants that target both proteins through advanced virtual screening, molecular dynamics simulations, and pharmacophore analysis. An in-house library of 335 antiviral natural products was prepared from the selected medicinal plants. Following the virtual screening of this library against the main protease and spike glycoprotein, top compounds were subjected to downstream analysis for evaluating druggability potential and toxicity analysis. Molecular dynamic simulations were performed to confirm the stability of interactions between the ligands and target proteins. Our analysis demonstrated 67 compounds as dual inhibitors. The six top dual inhibitors, namely trans-delta-viniferin, trans-E-viniferin, 3,4-DHPEA-EDA, oleuropein aglycone, lactucopicrin, and 11β,13-dihydrolactucopicrin, exhibited superior docking scores and met drug-likeness criteria, including Lipinski's rule, bioavailability, and favorable ADME and toxicity profiles. Trans-delta-viniferin and trans-E-viniferin, featuring a stilbene scaffold, emerged as the most promising candidates due to their stable interactions, minimal fluctuations, and consistent hydrogen bonding across SARS-CoV-2's Mpro and S-protein in MD simulations, while 3,4-DHPEA-EDA displayed comparatively less stability. All compounds demonstrated key pharmacophoric features and lacked mutagenicity or PAINS alerts, although lactucopicrin and 11β,13-dihydrolactucopicrin showed risks for hepatotoxicity. Overall, the critical bonding and drug-like features, biological activity spectra, and favorable medicinal characteristics predict their biological behavior in laboratory testing. Although additional experimental validations are necessary, our findings indicate that the three lead compounds-namely, trans-delta-viniferin, trans-E-viniferin, and 3,4-DHPEA-EDA, isolated from traditional medicinal plants-are promising novel dual inhibitors of two critical SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Hira Khalid
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Anwar Iqbal
- Department of Chemical Sciences, University of Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Umar Nishan
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Pakistan
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
2
|
Kattula B, Reddi B, Jangam A, Naik L, Adimoolam BM, Vavilapalli S, Are S, Thota JR, Jadav SS, Arifuddin M, Addlagatta A. Development of 2-chloroquinoline based heterocyclic frameworks as dual inhibitors of SARS-CoV-2 M Pro and PL Pro. Int J Biol Macromol 2023; 242:124772. [PMID: 37172706 PMCID: PMC10171901 DOI: 10.1016/j.ijbiomac.2023.124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Evolution of new variants of SARS-CoV-2 warrant the need for the continued efforts in identifying target-oriented new drugs. Dual targeting agents against MPro and PLPro not only overcome the incomplete efficacy but also the drug resistance, which is common problem. Since both these are cysteine proteases, we designed 2-chloroquinoline based molecules with additional imine moiety in the middle as possible nucleophilic warheads. In the first round of design and synthesis, three molecules (C3, C4 and C5) inhibited (Ki < 2 μM) only MPro by binding covalently to C145 and one molecule (C10) inhibited both the proteases non-covalently (Ki < 2 μM) with negligible cytotoxicity. Further conversion of the imine in C10 to azetidinone (C11) improved the potency against both the enzymes in the nanomolar range (820 nM against MPro and 350 nM against PLPro) with no cytotoxicity. Conversion of imine to thiazolidinone (C12), reduced the inhibition by 3-5 folds against both the enzymes. Biochemical and computational studies suggest that C10-C12 bind in the substrate binding pocket of MPro and in the BL2 loop of the PLPro. Since these dual inhibitors have least cytotoxicity, they could be further explored as therapeutics against the SARS-CoV-2 and other analogous viruses.
Collapse
Affiliation(s)
- Bhavita Kattula
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Bharati Reddi
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Aruna Jangam
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Lekhika Naik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Bala Manikanta Adimoolam
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Suresh Vavilapalli
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Sayanna Are
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Jagadeshwar Reddy Thota
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Surender Singh Jadav
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India.
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Anthony Addlagatta
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
3
|
Saeed A, Ashraf S, Aziz M, Channar PA, Ejaz SA, Fayyaz A, Abbas Q, Alasmary FA, Karami AM, Tehzeeb A, Mumtaz A, El-Seedi HR. Design, synthesis, biochemical and in silico characterization of novel naphthalene-thiourea conjugates as potential and selective inhibitors of alkaline phosphatase. Med Chem Res 2023; 32:1077-1086. [PMID: 37305207 PMCID: PMC10088808 DOI: 10.1007/s00044-023-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/14/2023] [Indexed: 06/13/2023]
Abstract
Naphthalene ring is present in a number of FDA-approved, commercially available medications, including naphyrone, terbinafine, propranolol, naproxen, duloxetine, lasofoxetine, and bedaquiline. By reacting newly obtained 1-naphthoyl isothiocyanate with properly modified anilines, a library of ten novel naphthalene-thiourea conjugates (5a-5j) were produced with good to exceptional yields and high purity. The newly synthesized compounds were observed for their potential to inhibit alkaline phosphatase (ALP) and scavenge free radicals. All of the investigated compounds displayed a more powerful inhibitory profile than the reference agent, KH2PO4 particularly compound 5h and 5a exhibited strong inhibitory potential against ALP with IC50 value of 0.365 ± 0.011 and 0.436 ± 0.057 µM respectively. In addition, Lineweaver-Burk plots revealed the non-competitive inhibition mode of the most powerful derivative i.e., 5h (ki value 0.5 µM). To investigate the putative binding mode of selective inhibitor interactions, molecular docking was performed. It is recommended that future research will focus on developing selective alkaline phosphatase inhibitors by modifying the structure of the 5h derivative.
Collapse
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Saba Ashraf
- Department of Chemistry, Rawalpindi Women University 6th Road, Satellite Town, Rawalpindi, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Pervaiz Ali Channar
- Department of Basic sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology, Karachi, 74800 Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| | - Fatmah Ali Alasmary
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | | | - Arfa Tehzeeb
- Department of Pharmacy, Quaid-I-Azam University, 45320 Islamabad, Pakistan
| | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060 Pakistan
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013 China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512 Egypt
- Division of Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 574, 751 23 Uppsala, Sweden
| |
Collapse
|
4
|
Chaube U, Patel BD, Bhatt HG. A hypothesis on designing strategy of effective RdRp inhibitors for the treatment of SARS-CoV-2. 3 Biotech 2023; 13:12. [PMID: 36532857 PMCID: PMC9755803 DOI: 10.1007/s13205-022-03430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Vaccines are used as one of the major weapons for the eradication of pandemic. However, the rise of different variants of the SARS-CoV-2 virus is creating doubts regarding the end of the pandemic. Hence, there is an urgent need to develop more drug candidates which can be useful for the treatment of COVID-19. In the present research for the scientific hypothesis, emphasis was given on the direct antiviral therapy available for the treatment of COVID-19. In lieu of this, the available molecular targets which include Severe Acute Respiratory Syndrome Chymotrypsin-like Protease (SARS-3CLpro), Papain-Like Cysteine Protease (PLpro), and RNA-Dependent RNA Polymerase (RdRp) were explored. As per the current scientific reports and literature, among all the available molecular targets, RNA-Dependent RNA Polymerase (RdRp) was found to be a crucial molecular target for the treatment of COVID-19. Most of the inhibitors which are reported against this target consisted of the free amine group and carbonyl group which might be playing an important role in the binding interaction with the RdRp protein. Among all the reported RdRp inhibitors, remdesivir, favipiravir, and molnupiravir were found to be the most promising drugs against COVID-19. Overall, the structural features of this RNA-Dependent RNA Polymerase (RdRp) inhibitors proved the importance of pyrrolo-triazine and pyrimidine scaffolds. Previous computational models of these drug molecules indicated that substitution with the polar functional group, hydrogen bond donor, and electronegative atoms on these scaffolds may increase the activity against the RdRp protein. Hence, in line with the proposed hypothesis, in the present research work for the evaluation of the hypothesis, new molecules were designed from the pyrrolo-triazine and pyrimidine scaffolds. Further, molecular docking and MD simulation studies were performed with these designed molecules. All these designed molecules (DM-1, DM-2, and DM-3) showed the results as per the proposed hypothesis. Among all the designed molecules, DM-1 showed promising results against the RdRp protein of SARS-CoV-2. In the future, these structural features can be used for the development of new RdRp inhibitors with improved activity. Also, in the future lead compound DM-1 can be explored against the RdRp protein for the treatment of COVID-19.
Collapse
Affiliation(s)
- Udit Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Bhumika D. Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Hardik G. Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
5
|
Focus on Marine Animal Safety and Marine Bioresources in Response to the SARS-CoV-2 Crisis. Int J Mol Sci 2022; 23:ijms232315136. [PMID: 36499463 PMCID: PMC9737530 DOI: 10.3390/ijms232315136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
SARS-CoV-2 as a zoonotic virus has significantly affected daily life and social behavior since its outbreak in late 2019. The concerns over its transmission through different media directly or indirectly have evoked great attention about the survival of SARS-CoV-2 virions in the environment and its potential infection of other animals. To evaluate the risk of infection by SARS-CoV-2 and to counteract the COVID-19 disease, extensive studies have been performed to understand SARS-CoV-2 biogenesis and its pathogenesis. This review mainly focuses on the molecular architecture of SARS-CoV-2, its potential for infecting marine animals, and the prospect of drug discovery using marine natural products to combat SARS-CoV-2. The main purposes of this review are to piece together progress in SARS-CoV-2 functional genomic studies and antiviral drug development, and to raise our awareness of marine animal safety on exposure to SARS-CoV-2.
Collapse
|
6
|
Portilla-Martínez A, Ortiz-Flores M, Hidalgo I, Gonzalez-Ruiz C, Meaney E, Ceballos G, Nájera N. In silico evaluation of flavonoids as potential inhibitors of SARS-CoV-2 main nonstructural proteins (Nsps)—amentoflavone as a multitarget candidate. J Mol Model 2022; 28:404. [PMCID: PMC9707096 DOI: 10.1007/s00894-022-05391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Andrés Portilla-Martínez
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Miguel Ortiz-Flores
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Isabel Hidalgo
- Laboratorio de Investigación en Inmunología Y Salud Pública, Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria Universidad Nacional Autónoma de México, Estado de México, Mexico City, Mexico
| | - Cristian Gonzalez-Ruiz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Meaney
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Guillermo Ceballos
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Nayelli Nájera
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| |
Collapse
|
7
|
Rieder AS, Deniz BF, Netto CA, Wyse ATS. A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease. Neurotox Res 2022; 40:1553-1569. [PMID: 35917086 PMCID: PMC9343570 DOI: 10.1007/s12640-022-00542-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 01/18/2023]
Abstract
Since the appearance of SARS-CoV-2 and the COVID-19 pandemic, the search for new approaches to treat this disease took place in the scientific community. The in silico approach has gained importance at this moment, once the methodologies used in this kind of study allow for the identification of specific protein-ligand interactions, which may serve as a filter step for molecules that can act as specific inhibitors. In addition, it is a low-cost and high-speed technology. Molecular docking has been widely used to find potential viral protein inhibitors for structural and non-structural proteins of the SARS-CoV-2, aiming to block the infection and the virus multiplication. The papain-like protease (PLpro) participates in the proteolytic processing of SARS-CoV-2 and composes one of the main targets studied for pharmacological intervention by in silico methodologies. Based on that, we performed a systematic review about PLpro inhibitors from the perspective of in silico research, including possible therapeutic molecules in relation to this viral protein. The neurological problems triggered by COVID-19 were also briefly discussed, especially relative to the similarities of neuroinflammation present in Alzheimer's disease. In this context, we focused on two molecules, curcumin and glycyrrhizinic acid, given their PLpro inhibitory actions and neuroprotective properties and potential therapeutic effects on COVID-19.
Collapse
Affiliation(s)
- Alessandra S Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Bruna F Deniz
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos Alexandre Netto
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
8
|
Mahmoudi S, Dehkordi MM, Asgarshamsi MH. The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophys Chem 2022; 288:106824. [PMID: 35728510 PMCID: PMC9095071 DOI: 10.1016/j.bpc.2022.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023]
Abstract
The novel coronavirus that caused COVID-19 pandemic is SARS-CoV-2. Although various vaccines are currently being used to prevent the disease's severe consequences, there is still a need for medications for those who become infected. The SARS-CoV-2 has a variety of proteins that have been studied extensively since the virus's advent. In this review article, we looked at chemical to molecular aspects of the various structures studied that have pharmaceutical activity and attempted to find a link between drug activity and compound structure. For example, designing of the compounds which bind to the allosteric site and modify hydrogen bonds or the salt bridges can disrupt SARS-CoV2 RBD–ACE2 complex. It seems that quaternary ammonium moiety and quinolin-1-ium structure could act as a negative allosteric modulator to reduce the tendency between spike-ACE2. Pharmaceutical structures with amino heads and hydrophobic tails can block envelope protein to prevent making mature SARS-CoV-2. Also, structures based on naphthalene pharmacophores or isosteres can form a strong bond with the PLpro and form a π-π and the Mpro's active site can be occupied by octapeptide compounds or linear compounds with a similar fitting ability to octapeptide compounds. And for protein RdRp, it is critical to consider pH and pKa so that pKa regulation of compounds to comply with patients is very effective, thus, the presence of tetrazole, phenylpyrazole groups, and analogs of pyrophosphate in the designed drugs increase the likelihood of the RdRp active site inhibition. Finally, it can be deduced that designing hybrid drug molecules along with considering the aforementioned characteristics would be a suitable approach for developing medicines in order to accurate targeting and complete inhibition this virus.
Collapse
Affiliation(s)
- Samira Mahmoudi
- Department of Microbial Biotechnology, School of Biological Sciences, Islamic Azad University Tehran North Branch, Tehran, Iran.
| | - Mehrdad Mohammadpour Dehkordi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Hossein Asgarshamsi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Design of SARS-CoV-2 Mpro, PLpro dual-target inhibitors based on deep reinforcement learning and virtual screening. Future Med Chem 2022; 14:393-405. [PMID: 35220726 PMCID: PMC8920029 DOI: 10.4155/fmc-2021-0269] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Since December 2019, SARS-CoV-2 has continued to spread rapidly around the world. The effective drugs may provide a long-term strategy to combat this virus. The main protease (Mpro) and papain-like protease (PLpro) are two important targets for the inhibition of SARS-CoV-2 virus replication and proliferation. Materials & methods: In this study, deep reinforcement learning, covalent docking and molecular dynamics simulations were used to identify novel compounds that have the potential to inhibit both Mpro and PLpro. Results and conclusion: Three compounds were identified that can effectively occupy the Mpro protein cavity with the PLpro protein cavity and form high frequency contacts with key amino acid residues (Mpro: His41, Cys145, Glu166, PLpro: Cys111). These three compounds can be further investigated as potential lead compounds for SARS-CoV-2 inhibitors.
Collapse
|
10
|
Wang J, Zhang Y, Nie W, Luo Y, Deng L. Computational anti-COVID-19 drug design: progress and challenges. Brief Bioinform 2022; 23:bbab484. [PMID: 34850817 PMCID: PMC8690229 DOI: 10.1093/bib/bbab484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Vaccines have made gratifying progress in preventing the 2019 coronavirus disease (COVID-19) pandemic. However, the emergence of variants, especially the latest delta variant, has brought considerable challenges to human health. Hence, the development of robust therapeutic approaches, such as anti-COVID-19 drug design, could aid in managing the pandemic more efficiently. Some drug design strategies have been successfully applied during the COVID-19 pandemic to create and validate related lead drugs. The computational drug design methods used for COVID-19 can be roughly divided into (i) structure-based approaches and (ii) artificial intelligence (AI)-based approaches. Structure-based approaches investigate different molecular fragments and functional groups through lead drugs and apply relevant tools to produce antiviral drugs. AI-based approaches usually use end-to-end learning to explore a larger biochemical space to design antiviral drugs. This review provides an overview of the two design strategies of anti-COVID-19 drugs, the advantages and disadvantages of these strategies and discussions of future developments.
Collapse
Affiliation(s)
- Jinxian Wang
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, 150001, Harbin, China
| | - Wenjuan Nie
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Yi Luo
- School of Science, The University of Auckland,Auckland 1010, Auckland, New Zealand
| | - Lei Deng
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| |
Collapse
|
11
|
An outlook on potential protein targets of COVID-19 as a druggable site. Mol Biol Rep 2022; 49:10729-10748. [PMID: 35790657 PMCID: PMC9256362 DOI: 10.1007/s11033-022-07724-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND SARS-CoV-2 which causes COVID-19 disease has started a pandemic episode all over the world infecting millions of people and has created medical and economic crisis. From December 2019, cases originated from Wuhan city and started spreading at an alarming rate and has claimed millions of lives till now. Scientific studies suggested that this virus showed genomic similarity of about 90% with SARS-CoV and is found to be more contagious as compared to SARS-CoV and MERS-CoV. Since the pandemic, virus has undergone constant mutation and few strains have raised public concern like Delta and Omicron variants of SARS-CoV-2. OBJECTIVE This review focuses on the structural features of SARS-CoV-2 proteins and host proteins as well as their mechanism of action. We have also elucidated the repurposed drugs that have shown potency to inhibit these protein targets in combating COVID-19. Moreover, the article discusses the vaccines approved so far and those under clinical trials for their efficacy against COVID-19. CONCLUSION Using cryo-electron microscopy or X-ray diffraction, hundreds of crystallographic data of SARS-CoV-2 proteins have been published including structural and non-structural proteins. These proteins have a significant role at different aspects in the viral machinery and presented themselves as potential target for drug designing and therapeutic interventions. Also, there are few host cell proteins which helps in SARS-CoV-2 entry and proteolytic cleavage required for viral infection.
Collapse
|
12
|
Yan F, Gao F. An overview of potential inhibitors targeting non-structural proteins 3 (PL pro and Mac1) and 5 (3CL pro/M pro) of SARS-CoV-2. Comput Struct Biotechnol J 2021; 19:4868-4883. [PMID: 34457214 PMCID: PMC8382591 DOI: 10.1016/j.csbj.2021.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to develop effective treatments for coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid spread of SARS-CoV-2 has resulted in a global pandemic that has not only affected the daily lives of individuals but also had a significant impact on the global economy and public health. Although extensive research has been conducted to identify inhibitors targeting SARS-CoV-2, there are still no effective treatment strategies to combat COVID-19. SARS-CoV-2 comprises two important proteolytic enzymes, namely, the papain-like proteinase, located within non-structural protein 3 (nsp3), and nsp5, both of which cleave large replicase polypeptides into multiple fragments that are required for viral replication. Moreover, a domain within nsp3, known as the macrodomain (Mac1), also plays an important role in viral replication. Inhibition of their functions should be able to significantly interfere with the replication cycle of the virus, and therefore these key proteins may serve as potential therapeutic targets. The functions of the above viral targets and their corresponding inhibitors have been summarized in the current review. This review provides comprehensive updates of nsp3 and nsp5 inhibitor development and would help advance the discovery of novel anti-viral therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
13
|
Bhati S, Kaushik V, Singh J. Rational design of flavonoid based potential inhibitors targeting SARS-CoV 3CL protease for the treatment of COVID-19. J Mol Struct 2021; 1237:130380. [PMID: 33840835 PMCID: PMC8024110 DOI: 10.1016/j.molstruc.2021.130380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/04/2022]
Abstract
The current outbreak of Coronavirus Disease 2019 (COVID-19) pandemic has reported thousands of deaths worldwide due to the rapid transmission rate and the lack of antiviral drugs and vaccinations. There is an urgent need to develop potential antiviral drug candidates for the prevention of COVID-19 infection. In the present study, a series of potential inhibitors targeting SARS-CoV 3CL protease were rationally designed by incorporating gamma lactam ring, and various fluoro substituted heterocyclic ring systems to the flavonoid scaffold. The prediction of drug-likeness, oral bioavailability, toxicity, synthetic accessibility, and ADMET properties was made by computational means. Quercetin was used as standard. The binding affinity of the ligands towards the 3CL protease target was examined using docking simulations. The designed ligands possess favourable pharmacokinetic and pharmacodynamic properties. Ligand L4, L8, and L14 appeared to be the lead compounds in the series and can be considered for further in-vivo and in-vitro validation.
Collapse
Affiliation(s)
- Shipra Bhati
- Department of Chemistry, The Oxford College of Engineering, Bommanhalli, Bangalore-560068, Karnataka, India
| | - Vikas Kaushik
- Department of Biotechnology, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara-144411, Punjab, India
| |
Collapse
|
14
|
Muhseen ZT, Hameed AR, Al-Hasani HMH, Ahmad S, Li G. Computational Determination of Potential Multiprotein Targeting Natural Compounds for Rational Drug Design Against SARS-COV-2. Molecules 2021; 26:674. [PMID: 33525411 PMCID: PMC7865386 DOI: 10.3390/molecules26030674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 caused the current COVID-19 pandemic and there is an urgent need to explore effective therapeutics that can inhibit enzymes that are imperative in virus reproduction. To this end, we computationally investigated the MPD3 phytochemical database along with the pool of reported natural antiviral compounds with potential to be used as anti-SARS-CoV-2. The docking results demonstrated glycyrrhizin followed by azadirachtanin, mycophenolic acid, kushenol-w and 6-azauridine, as potential candidates. Glycyrrhizin depicted very stable binding mode to the active pocket of the Mpro (binding energy, -8.7 kcal/mol), PLpro (binding energy, -7.9 kcal/mol), and Nucleocapsid (binding energy, -7.9 kcal/mol) enzymes. This compound showed binding with several key residues that are critical to natural substrate binding and functionality to all the receptors. To test docking prediction, the compound with each receptor was subjected to molecular dynamics simulation to characterize the molecule stability and decipher its possible mechanism of binding. Each complex concludes that the receptor dynamics are stable (Mpro (mean RMSD, 0.93 Å), PLpro (mean RMSD, 0.96 Å), and Nucleocapsid (mean RMSD, 3.48 Å)). Moreover, binding free energy analyses such as MMGB/PBSA and WaterSwap were run over selected trajectory snapshots to affirm intermolecular affinity in the complexes. Glycyrrhizin was rescored to form strong affinity complexes with the virus enzymes: Mpro (MMGBSA, -24.42 kcal/mol and MMPBSA, -10.80 kcal/mol), PLpro (MMGBSA, -48.69 kcal/mol and MMPBSA, -38.17 kcal/mol) and Nucleocapsid (MMGBSA, -30.05 kcal/mol and MMPBSA, -25.95 kcal/mol), were dominated mainly by vigorous van der Waals energy. Further affirmation was achieved by WaterSwap absolute binding free energy that concluded all the complexes in good equilibrium and stability (Mpro (mean, -22.44 kcal/mol), PLpro (mean, -25.46 kcal/mol), and Nucleocapsid (mean, -23.30 kcal/mol)). These promising findings substantially advance our understanding of how natural compounds could be shaped to counter SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ziyad Tariq Muhseen
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an 710062, China;
- School of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Alaa R. Hameed
- Department of Medical Laboratory Techniques, School of Life Sciences, Dijlah University College, Baghdad 00964, Iraq;
| | - Halah M. H. Al-Hasani
- Department of Biotechnology, College of Science, University of Diyala, Baqubah 32001, Iraq;
| | - Sajjad Ahmad
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an 710062, China;
- School of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
15
|
Mousavi SH, Mohammadizadeh MR, Poorsadeghi S, Arimitsu S, Mohammadsaleh F, Kojya G, Gima S. One-pot synthesis of new alkyl 1-naphthoates bearing quinoline, pyranone and cyclohexenone moieties via metal-free sequential addition/oxidation reactions. RSC Adv 2021; 11:36748-36752. [PMID: 35494386 PMCID: PMC9043593 DOI: 10.1039/d1ra07092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
A mild and one-pot synthetic pathway was successfully developed for the synthesis of new naphthoate-based scaffolds containing quinoline, pyranone and cyclohexenone moieties via a multistep reaction between acenaphthoquinone and various 1,3-diketones in the presence of different primary aliphatic and benzylic alcohols. This reaction proceeds via a sequential addition/oxidation mechanistic process including a metal-free addition step of acenaphthoquinone and 1,3-diketones followed by the H5IO6-mediated C–C oxidative cleavage of the corresponding vicinal diols at room temperature. The alcohols play a dual role, as the reaction solvent as well as the nucleophile, to conduct the reaction process toward naphthoate formation. All alkyl naphthoate derivatives prepared in this work are new compounds and were definitively characterized using 1H-NMR, 13C-NMR and HRMS analysis, while X-ray crystallography was carried out for one of the products. The synthesis of a naphthalene-based nucleus attached to heterocyclic moieties is noteworthy to follow in the near future for diverse applications in biology, medicine, metal complex design, and semiconductor and optical materials. Various new alkyl 1-naphthoates bearing quinoline, pyranone and cyclohexenone moieties were successfully synthesized by a one-pot sequential addition/oxidation process.![]()
Collapse
Affiliation(s)
- Seyedeh Hekmat Mousavi
- Department of Chemistry, Faculty of Nano and Bioscience and Technology, Persian Gulf University, Bushehr 75169, Islamic Republic of Iran
| | - Mohammad Reza Mohammadizadeh
- Department of Chemistry, Faculty of Nano and Bioscience and Technology, Persian Gulf University, Bushehr 75169, Islamic Republic of Iran
| | - Samira Poorsadeghi
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1-Senbaru, Nakagami, Nishihara, Okinawa, 903-0213, Japan
| | - Satoru Arimitsu
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1-Senbaru, Nakagami, Nishihara, Okinawa, 903-0213, Japan
| | - Fatemeh Mohammadsaleh
- Department of Chemistry, Faculty of Nano and Bioscience and Technology, Persian Gulf University, Bushehr 75169, Islamic Republic of Iran
| | - Genta Kojya
- Center for Research Advancement and Collaboration, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Shinichi Gima
- Center for Research Advancement and Collaboration, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|