1
|
Arzamendi MJ, Habibyan YB, Defaye M, Shute A, Baggio CH, Chan R, Ohland C, Bihan DG, Lewis IA, Sharkey KA, McCoy KD, Altier C, Geuking MB, Nasser Y. Sex-specific post-inflammatory dysbiosis mediates chronic visceral pain in colitis. Gut Microbes 2024; 16:2409207. [PMID: 39360560 PMCID: PMC11451282 DOI: 10.1080/19490976.2024.2409207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Despite achieving endoscopic remission, over 20% of inflammatory bowel disease (IBD) patients experience chronic abdominal pain. Visceral pain and the microbiome exhibit sex-dependent interactions, while visceral pain in IBD shows a sex bias. Our aim was to evaluate whether post-inflammatory microbial perturbations contribute to visceral hypersensitivity in a sex-dependent manner. METHODS Males, cycling females, ovariectomized, and sham-operated females were given dextran sodium sulfate to induce colitis and allowed to recover. Germ-free recipients received sex-appropriate and cross-sex fecal microbial transplants (FMT) from post-inflammatory donor mice. Visceral sensitivity was assessed by recording visceromotor responses to colorectal distention. The composition of the microbiota was evaluated via 16S rRNA gene V4 amplicon sequencing, while the metabolome was assessed using targeted (short chain fatty acids - SCFA) and semi-targeted mass spectrometry. RESULTS Post-inflammatory cycling females developed visceral hyperalgesia when compared to males. This effect was reversed by ovariectomy. Both post-inflammatory males and females exhibited increased SCFA-producing species, but only males had elevated fecal SCFA content. FMT from post-inflammatory females transferred visceral hyperalgesia to both males and females, while FMT from post-inflammatory males could only transfer visceral hyperalgesia to males. CONCLUSIONS Female sex, hormonal status as well as the gut microbiota play a role in pain modulation. Our data highlight the importance of considering biological sex in the evaluation of visceral pain.
Collapse
Affiliation(s)
- Maria J. Arzamendi
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasaman B. Habibyan
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam Shute
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cristiane H. Baggio
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronald Chan
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Ohland
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominique G. Bihan
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian A. Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D. McCoy
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christophe Altier
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Markus B. Geuking
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasmin Nasser
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Caetano MAF, Magalhães HIR, Duarte JRL, Conceição LB, Castelucci P. Butyrate Protects Myenteric Neurons Loss in Mice Following Experimental Ulcerative Colitis. Cells 2023; 12:1672. [PMID: 37443707 PMCID: PMC10340616 DOI: 10.3390/cells12131672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The enteric nervous system is affected by inflammatory bowel diseases (IBD). Gut microbiota ferments dietary fibers and produces short-chain fatty acids, such as Butyrate, which bind to G protein-coupled receptors, such as GPR41, and contribute to maintaining intestinal health. This work aimed to study the GPR41 in myenteric neurons and analyze the effect of Butyrate in mice submitted to experimental ulcerative colitis. The 2, 4, 6 trinitrobenzene sulfonic acid (TNBS) was injected intrarectally in C57BL/6 mice (Colitis). Sham group received ethanol (vehicle). One group was treated with 100 mg/kg of Sodium Butyrate (Butyrate), and the other groups received saline. Animals were euthanized 7 days after colitis induction. Analyzes demonstrated colocalization of GPR41 with neurons immunoreactive (-ir) to nNOS and ChAT-ir and absence of colocalization of the GPR41 with GFAP-ir glia. Quantitative results demonstrated losses of nNOS-ir, ChAT-ir, and GPR41-ir neurons in the Colitis group and Butyrate treatment attenuated neuronal loss. The number of GFAP-ir glia increased in the Colitis group, whereas Butyrate reduced the number of these cells. In addition, morphological alterations observed in the Colitis group were attenuated in the Butyrate group. The presence of GPR41 in myenteric neurons was identified, and the treatment with Butyrate attenuated the damage caused by experimental ulcerative colitis.
Collapse
Affiliation(s)
- Marcos A. F. Caetano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Henrique I. R. Magalhães
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, Brazil;
| | - Jheniffer R. L. Duarte
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Laura B. Conceição
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| |
Collapse
|
4
|
Zhang Z, Zhang H, Chen T, Shi L, Wang D, Tang D. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Commun Signal 2022; 20:64. [PMID: 35546404 PMCID: PMC9097439 DOI: 10.1186/s12964-022-00869-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) comprises a group of chronic inflammatory disorders of the gastrointestinal tract. Accumulating evidence shows that the development of IBD is always accompanied by the dysbiosis of the gut microbiota (GM), causing a decrease in prebiotic levels and an increase in harmful metabolite levels. This leads to persistent immune response and inflammation in the intestine, greatly impairing the physiological function of the gastrointestinal tract. Short-chain fatty acids (SCFAs) are produced by probiotic gut bacteria from a fiber-rich diet that cannot be digested directly. SCFAs with significant anti-inflammatory functions regulate immune function and prevent an excessive immune response, thereby delaying the clinical progression of IBD. In this review, we summarize the generation of SCFAs and their potential therapeutic effects on IBD. Furthermore, we suggest that SCFAs may modulate innate immune recognition and cytokine production to intervene in the progression of IBD. Additional randomized controlled trials and prospective cohort studies should also investigate the clinical impact of SCFA. Video Abstract.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province People’s Republic of China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province People’s Republic of China
| | - Tian Chen
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province People’s Republic of China
| | - Lin Shi
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province People’s Republic of China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 People’s Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 People’s Republic of China
| |
Collapse
|
5
|
Kadowaki M, Yamamoto T, Hayashi S. Neuro-immune crosstalk and food allergy: Focus on enteric neurons and mucosal mast cells. Allergol Int 2022; 71:278-287. [PMID: 35410807 DOI: 10.1016/j.alit.2022.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
The nervous system and the immune system individually play important roles in regulating the processes necessary to maintain physiological homeostasis, respond to acute stress and protect against external threats. These two regulating systems for maintaining the living body had often been assumed to function independently. Allergies develop as a result of an overreaction of the immune system to substances that are relatively harmless to the body, such as food, pollen and dust mites. Therefore, it has been generally supposed that the development and pathogenesis of allergies can be explained through an immunological interpretation. Recently, however, neuro-immune crosstalk has attracted increasing attention. Consequently, it is becoming clear that there is close morphological proximity and physiological and pathophysiological interactions between neurons and immune cells in various peripheral tissues. Thus, researchers are now beginning to appreciate that neuro-immune interactions may play a role in tissue homeostasis and the pathophysiology of immune-mediated disease, but very little information is available on the molecular basis of these interactions. Mast cells are a part of the innate immune system implicated in allergic reactions and the regulation of host-pathogen interactions. Mast cells are ubiquitous in the body, and these cells are often found in close proximity to nerve fibers in various tissues, including the lamina propria of the intestine. Mast cells and neurons are thought to communicate bidirectionally to modulate neurophysiological effects and mast cell functions, which suggests that neuro-immune interactions may be involved in the pathology of allergic diseases.
Collapse
|
6
|
Short-chain free-fatty acid G protein-coupled receptors in colon cancer. Biochem Pharmacol 2021; 186:114483. [PMID: 33631190 DOI: 10.1016/j.bcp.2021.114483] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/31/2022]
Abstract
The dietary role of macronutrients and their metabolites in cancer has been evident for many decades. Dietary ingestion of fat, carbohydrates, protein, and fiber, as well as probiotics that influence gut microbiota, have all been linked to gastrointestinal (GI) tract health and disease, particularly in the colon, where it has long been known that fat and fiber can regulate inflammation and carcinogenesis. Short-chained fatty acids (SCFA), including acetate, propionate, and butyrate, which are biosynthesized by microbiota-mediated metabolism of dietary fiber, have previously been shown to play important roles in colorectal health, including decreasing inflammation and oxidative stress. Since the 1980s, a growing number of studies have also demonstrated a link between SCFA and colon epithelial cell carcinogenesis and prevention of colorectal cancers (CRC). While the effects of SCFA have historically been associated with their intracellular metabolism and function, the discovery of a family of G protein-coupled free-fatty acid receptors in the early 2000s suggests that many effects of SCFA are cell-surface receptor mediated. Indeed, the SCFA GPCRs FFA2 (previously termed GPR43), FFA3 (previously termed GPR41), and GPR109A are now well established to be expressed within the GI tract, where they modulate a variety of functions in response to luminal SCFA. While the role of SCFA in cancers, including CRC, has been reviewed in detail elsewhere, the goal of this report is to provide a review on the current body of evidence in regard to the effects of SCFA on FFA2, FFA3, and GPR109A in colon cancers.
Collapse
|