1
|
Wais N, Agrawal DK. Systemic Lupus Erythematous: Gene Polymorphisms, Epigenetics, Environmental, Hormonal and Nutritional Factors in the Consideration of Personalized Therapy. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:331-340. [PMID: 39866364 PMCID: PMC11759484 DOI: 10.26502/aimr.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic illness that can affect many tissues through the production of autoantibodies. A definite etiology has not been conclusively established, but current research points to the influences which include genetic, hormonal and environmental factors. SLE is difficult to treat due to its multifactorial pathogenesis and heterogeneity in clinical manifestations. Current treatment mainly includes anti-malarial medications, glucocorticoids, and biologics, but many patients still struggle in achieving remission. Additionally, there is no definite cure for SLE as of now, which further emphasizes the need for personalized treatment approaches. We analyzed genetic polymorphisms, DNA methylation, and other environmental, hormonal and nutritional factors in the development of SLE. We considered how such factors affect the processes of the disease pathogenesis and may provide insight on targets for potential personalized therapy. In this article, we criticaly reviewed the literature for compelling evidence connecting SLE and specific genes and epigenetic changes. We also explored environmental triggers such as UV exposure, and hormonal influences on their connection to SLE, working toward understanding the disease's complex nature. A critical evaluation is presented on the use of already accredited biologics in SLE that are beneficial to patients, including anifrolumab and belimumab. The reports on many factors that may influence SLE pathophysiology, along with success with recent biologics/targeted therapies, suggest that precision medicine, tailored to individual genetic and environmental profiles, may hold promise for enhancing remission rates and quality of life for SLE patients. The findings contribute to the field by addressing the need for an integrative approach to SLE treatment and offer more evidence for the potential critical benefit of personalized management strategies that may provide long-term solutions in this challenging and complex disease.
Collapse
Affiliation(s)
- Nejma Wais
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
2
|
Ferreté-Bonastre AG, Martínez-Gallo M, Morante-Palacios O, Calvillo CL, Calafell-Segura J, Rodríguez-Ubreva J, Esteller M, Cortés-Hernández J, Ballestar E. Disease activity drives divergent epigenetic and transcriptomic reprogramming of monocyte subpopulations in systemic lupus erythematosus. Ann Rheum Dis 2024; 83:865-878. [PMID: 38413168 DOI: 10.1136/ard-2023-225433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is characterised by systemic inflammation involving various immune cell types. Monocytes, pivotal in promoting and regulating inflammation in SLE, differentiate from classic monocytes into intermediate and non-classic monocytes, assuming diverse roles and changing their proportions in inflammation. In this study, we investigated the epigenetic and transcriptomic profiles of these and novel monocyte subsets in SLE in relation to activity and progression. METHODS We obtained the DNA methylomes and transcriptomes of classic, intermediate, non-classic monocytes in patients with SLE (at first and follow-up visits) and healthy donors. We integrated these data with single-cell transcriptomics of SLE and healthy donors and interrogated their relationships with activity and progression. RESULTS In addition to shared DNA methylation and transcriptomic alterations associated with a strong interferon signature, we identified monocyte subset-specific alterations, especially in DNA methylation, which reflect an impact of SLE on monocyte differentiation. SLE classic monocytes exhibited a proinflammatory profile and were primed for macrophage differentiation. SLE non-classic monocytes displayed a T cell differentiation-related phenotype, with Th17-regulating features. Changes in monocyte proportions, DNA methylation and expression occurred in relation to disease activity and involved the STAT pathway. Integration of bulk with single-cell RNA sequencing datasets revealed disease activity-dependent expansion of SLE-specific monocyte subsets, further supported the interferon signature for classic monocytes, and associated intermediate and non-classic populations with exacerbated complement activation. CONCLUSIONS Disease activity in SLE drives a subversion of the epigenome and transcriptome programme in monocyte differentiation, impacting the function of different subsets and allowing to generate predictive methods for activity and progression.
Collapse
Affiliation(s)
| | - Mónica Martínez-Gallo
- Immunology Division, Vall d'Hebron University Hospital and Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Celia Lourdes Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Josefina Cortés-Hernández
- Rheumatology Department, Hospital Vall d'Hebron and Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China
| |
Collapse
|
3
|
Daza Zapata AM, Álvarez K, Vásquez Duque G, Palacio J, Rojas López M. Janus kinase inhibitors modify the fatty acid profile of extracellular vesicles and modulate the immune response. Heliyon 2024; 10:e24710. [PMID: 38314280 PMCID: PMC10837569 DOI: 10.1016/j.heliyon.2024.e24710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Background Janus kinase inhibitors (jakinibs) are immunomodulators used for treating malignancies, autoimmune diseases, and immunodeficiencies. However, they induce adverse effects such as thrombosis, lymphocytosis, and neutropenia that could be mediated by extracellular vesicles (EVs). These particles are cell membrane-derived structures that transport cellular and environmental molecules and participate in intercellular communication. Jakinibs can modify the content of EVs and enable them to modulate the activity of different components of the immune response. Objective to evaluate the interactions between immune system components of healthy individuals and EVs derived from monocytic and lymphoid lineage cells generated in the presence of baricitinib (BARI) and itacitinib (ITA) and their possible effects. Methods EVs were isolated from monocytes (M) and lymphocytes (L) of healthy individuals, as well as from U937 (U) and Jurkat (J) cells exposed to non-cytotoxic concentrations of BARI, ITA, and dimethyl sulfoxide (DMSO; vehicle control). The binding to and engulfment of EVs by peripheral blood leukocytes of healthy individuals were analyzed by flow cytometry using CFSE-stained EVs and anti-CD45-PeCy7 mAb-labeled whole blood. The effect of EVs on respiratory burst, T-cell activation and proliferation, cytokine synthesis, and platelet aggregation was evaluated. Respiratory burst was assessed in PMA-stimulated neutrophils by the dihydrorhodamine (DHR) test and flow cytometry. T-cell activation and proliferation and cytokine production were assessed in CFSE-stained PBMC cultures stimulated with PHA; expression of the T-cell activation markers CD25 and CD69 and T-cell proliferation were analyzed by flow cytometry, and the cytokine levels were quantified in culture supernatants by Luminex assays. Platelet aggregation was analyzed in platelet-rich plasma (PRP) samples by light transmission aggregometry. The EVs' fatty acid (FA) profile was analyzed using methyl ester derivatization followed by gas chromatography. Results ITA exposure during the generation of EVs modified the size of the EVs released; however, treatment with DMSO and BARI did not alter the size of EVs generated from U937 and Jurkat cells. Circulating neutrophils, lymphocytes, and monocytes showed a 2-fold greater tendency to internalize ITA-U-EVs than their respective DMSO control. The neutrophil respiratory burst was attenuated in greater extent by M-EVs than by L-EVs. Autologous ITA-M-EVs reduced T-cell proliferation by decreasing IL-2 levels and CD25 expression independently of CD69. A higher accumulation of pro-inflammatory cytokines was observed in PHA-stimulated PBMC cultures exposed to M-EVs than to L-EVs; this difference may be related to the higher myristate content of M-EVs. Platelet aggregation increased in the presence of ITA-L/M-EVs by a mechanism presumably dependent on the high arachidonic acid content of the vesicles. Conclusions Cellular origin and jakinib exposure modify the FA profile of EVs, enabling them, in turn, to modulate neutrophil respiratory burst, T-cell proliferation, and platelet aggregation. The increased T-cell proliferation induced by BARI-L/M-EVs could explain the lymphocytosis observed in patients treated with BARI. The higher proportion of arachidonic acid in the FA content of ITA-L/M-EVs could be related to the thrombosis described in patients treated with ITA. EVs also induced a decrease in the respiratory burst of neutrophils.
Collapse
Affiliation(s)
- Ana María Daza Zapata
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Gloria Vásquez Duque
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Juliana Palacio
- Grupo De Investigación Ciencia de Los Materiales, Instituto de Química, Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Colombia
- Universidad Nacional de Colombia,SedeMedellín, Escuela de Química- Carrera 65 A No 59A-110, Medellín, 4309000, Colombia
| | - Mauricio Rojas López
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| |
Collapse
|
4
|
Carmona A, Guerrero F, Muñoz-Castañeda JR, Jimenez MJ, Rodriguez M, Soriano S, Martin-Malo A. Uremic Toxins Induce THP-1 Monocyte Endothelial Adhesion and Migration through Specific miRNA Expression. Int J Mol Sci 2023; 24:12938. [PMID: 37629118 PMCID: PMC10455080 DOI: 10.3390/ijms241612938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis is initiated by the activation of endothelial cells that allows monocyte adhesion and transmigration through the vascular wall. The accumulation of uremic toxins such as indoxyl sulphate (IS) and p-cresol (PC) has been associated with atherosclerosis. Currently, miRNAs play a crucial role in the regulation of monocyte activation, adhesion, and trans-endothelial migration. The aim of the present study is to evaluate the effect of IS and PC on monocyte adhesion and migration processes in monocytes co-cultured with endothelial cells as well as to determine the underlying mechanisms. The incubation of HUVECs and THP-1 cells with both IS and PC toxins resulted in an increased migratory capacity of THP-1 cells. Furthermore, the exposure of THP-1 cells to both uremic toxins resulted in the upregulation of BMP-2 and miRNAs-126-3p, -146b-5p, and -223-3p, as well as the activation of nuclear factor kappa B (NF-κB) and a decrease in its inhibitor IĸB. Uremic toxins, such as IS and PC, enhance the migratory and adhesion capacity of THP-1 cells to the vascular endothelium. These toxins, particularly PC, contribute significantly to uremia-associated vascular disease by increasing in THP-1 cells the expression of BMP-2, NF-κB, and key miRNAs associated with the development of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Andres Carmona
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (A.C.); (M.J.J.); (M.R.); (S.S.); (A.M.-M.)
| | - Fatima Guerrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (A.C.); (M.J.J.); (M.R.); (S.S.); (A.M.-M.)
- Department of Medicine, University of Cordoba, 14004 Córdoba, Spain
| | - Juan R. Muñoz-Castañeda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (A.C.); (M.J.J.); (M.R.); (S.S.); (A.M.-M.)
- Nephrology Unit, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Jose Jimenez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (A.C.); (M.J.J.); (M.R.); (S.S.); (A.M.-M.)
| | - Mariano Rodriguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (A.C.); (M.J.J.); (M.R.); (S.S.); (A.M.-M.)
- Department of Medicine, University of Cordoba, 14004 Córdoba, Spain
- Nephrology Unit, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sagrario Soriano
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (A.C.); (M.J.J.); (M.R.); (S.S.); (A.M.-M.)
- Nephrology Unit, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alejandro Martin-Malo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (A.C.); (M.J.J.); (M.R.); (S.S.); (A.M.-M.)
- Department of Medicine, University of Cordoba, 14004 Córdoba, Spain
- Nephrology Unit, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Mussbacher M, Derler M, Basílio J, Schmid JA. NF-κB in monocytes and macrophages - an inflammatory master regulator in multitalented immune cells. Front Immunol 2023; 14:1134661. [PMID: 36911661 PMCID: PMC9995663 DOI: 10.3389/fimmu.2023.1134661] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear factor κB (NF-κB) is a dimeric transcription factor constituted by two of five protein family members. It plays an essential role in inflammation and immunity by regulating the expression of numerous chemokines, cytokines, transcription factors, and regulatory proteins. Since NF-κB is expressed in almost all human cells, it is important to understand its cell type-, tissue-, and stimulus-specific roles as well as its temporal dynamics and disease-specific context. Although NF-κB was discovered more than 35 years ago, many questions are still unanswered, and with the availability of novel technologies such as single-cell sequencing and cell fate-mapping, new fascinating questions arose. In this review, we will summarize current findings on the role of NF-κB in monocytes and macrophages. These innate immune cells show high plasticity and dynamically adjust their effector functions against invading pathogens and environmental cues. Their versatile functions can range from antimicrobial defense and antitumor immune responses to foam cell formation and wound healing. NF-κB is crucial for their activation and balances their phenotypes by finely coordinating transcriptional and epigenomic programs. Thereby, NF-κB is critically involved in inflammasome activation, cytokine release, and cell survival. Macrophage-specific NF-κB activation has far-reaching implications in the development and progression of numerous inflammatory diseases. Moreover, recent findings highlighted the temporal dynamics of myeloid NF-κB activation and underlined the complexity of this inflammatory master regulator. This review will provide an overview of the complex roles of NF-κB in macrophage signal transduction, polarization, inflammasome activation, and cell survival.
Collapse
Affiliation(s)
- Marion Mussbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Martina Derler
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - José Basílio
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- INESC ID–Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Modulation of B cell activation by extracellular vesicles and potential alteration of this pathway in patients with rheumatoid arthritis. Arthritis Res Ther 2022; 24:169. [PMID: 35842663 PMCID: PMC9287863 DOI: 10.1186/s13075-022-02837-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/10/2022] [Indexed: 01/17/2023] Open
Abstract
Background Extracellular vesicles are involved in the intercellular communication of the immune system. In rheumatoid arthritis (RA), these structures are considered a source of autoantigens that drive proinflammatory responses of innate immune cells. A high concentration of circulating medium/large size extracellular vesicles (m/lEVs) and m/lEVs forming immune complexes (m/lEV-ICs) have been associated with disease activity and systemic inflammation in patients with RA. B cells are central components of RA immunopathology because of their involvement in the production of autoantibodies, antigen presentation, and cytokine production. However, the effect of m/lEVs on B cell function in the context of RA and other autoimmune diseases remains unknown. Methods We evaluated the effect of m/lEVs obtained from healthy donors (HD) and patients with RA on B cell responses in vitro. In addition, we evaluated the effect of pre-exposition of monocyte-derived macrophages (MDM) to m/lEVs on activation of autologous B cells from HD and patients. Results The presence of m/lEVs reduced the frequency of CD69+ and CD86+ B cells from HD activated by an agonist of antigen receptor. This regulation of the B cell activation markers by m/lEVs was partially dependent on phosphatidylserine binging. These m/lEVs also reduced the proliferation, calcium mobilization, and global phosphorylation of tyrosine. Similar responses were observed in B cells from patients with RA. However, the presence of m/lEVs promoted high antibody levels in B cells cultured with T cell-dependent stimuli by 7 days. In addition, despite the direct inhibitory effect of m/lEVs on early B cell responses, when B cells were cocultured with autologous MDM previously exposed to m/lEVs or m/lEV-ICs, an increased frequency of CD69+ B cells from patients with RA was observed, albeit not with cells from HD. Conclusions These data together suggest that m/lEVs have a direct modulatory effect in early responses of B cells through B cell receptor that can potentially fail in patients with RA because of the impact of these vesicles over cells of the innate immune system. This phenomenon can potentially contribute to the loss of tolerance and disease activity in patients with RA. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02837-3.
Collapse
|
7
|
Carmona‐Pérez L, Rojas M, Muñoz‐Vahos C, Vanegas‐García A, Vásquez G. Plasma microparticles from patients with systemic lupus erythematosus modulate the content of miRNAs in U937 cells. Immunology 2021; 164:253-265. [PMID: 34003488 PMCID: PMC8442235 DOI: 10.1111/imm.13366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
In systemic lupus erythematosus (SLE), the clearance of apoptotic cells and microparticles (MPs) is reduced. Some MPs contain molecules that can modulate immune responses. This study aimed to evaluate the presence of miR-126 and miR-146a in plasma MPs of patients with SLE (SLE MPs) and analyse the ability of MPs to modulate some events in the promonocytic U937 cell line. Circulating MPs were isolated from plasma samples of healthy controls (HCs), patients with SLE and other autoimmune diseases (OAD). MPs were analysed for size and cell origin by flow cytometry and content of miR-126 and miR-146a by RT-qPCR. MPs were then added to U937 cell cultures to evaluate changes in cell phenotype, cytokine expression, content of miR-126 and miR-146a, and levels of IRF5. Patients with active SLE (aSLE) showed an increase in concentration of plasma MPs that positively correlated with the SLEDAI (SLE Disease Activity Index) score. CD14+ MPs were significantly more abundant in patients with SLE than HCs. SLE MPs contained decreased levels of miR-146a, but the miR-126 content in aSLE MPs was increased. The miR-126 content in SLE MPs correlated positively with the SLEDAI score. The treatment of U937 cells with MPs from HCs and patients induced reduced expression of HLA-DR, CD18 and CD119, increased frequency of IL-6+ and TNF-α+ cells, accumulation of IL-8 in culture supernatants, increased miR-126 levels and decreased miR-146a content, but no change in the expression of IRF5. These findings suggest that plasma MPs, especially SLE MPs, could modulate some biological events in U937 cells.
Collapse
Affiliation(s)
- Liseth Carmona‐Pérez
- Grupo de Inmunología Celular e Inmunogenética (GICIG)Facultad de MedicinaInstituto de Investigaciones MédicasUniversidad de Antioquia (UDEA)MedellínColombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG)Facultad de MedicinaInstituto de Investigaciones MédicasUniversidad de Antioquia (UDEA)MedellínColombia
- Unidad de Citometría de FlujoSede de Investigación UniversitariaUniversidad de Antioquia (UDEA)MedellínColombia
| | - Carlos Muñoz‐Vahos
- Sección de ReumatologíaHospital San Vicente FundaciónMedellínColombia
- Grupo de Reumatología de la Universidad de Antioquia (GRUA)MedellínColombia
| | - Adiana Vanegas‐García
- Sección de ReumatologíaHospital San Vicente FundaciónMedellínColombia
- Grupo de Reumatología de la Universidad de Antioquia (GRUA)MedellínColombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG)Facultad de MedicinaInstituto de Investigaciones MédicasUniversidad de Antioquia (UDEA)MedellínColombia
- Grupo de Reumatología de la Universidad de Antioquia (GRUA)MedellínColombia
| |
Collapse
|
8
|
Jiang JY, Liu DJ, Liu MX. The protective effect of NF-κB signaling pathway inhibitor PDTC on mice with chronic atrophic gastritis. Scand J Gastroenterol 2021; 56:1131-1139. [PMID: 34310252 DOI: 10.1080/00365521.2021.1953130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To understand the protective effect of NF-κB signaling pathway inhibitor pyrrolidinedithiocarbamate (PDTC) on mice with chronic atrophic gastritis (CAG). METHODS Helicobacter pylori (H. pylori) infection combined with high-salt diet was used to construct the CAG mouse model, and 100 or 200 mg/kg/day PDTC was intragastrically treated for 8 weeks. Then, hematoxylin and eosin (HE) and Alcian blue-periodic acid-Schiff (AB-PAS) staining were used to observe the pathology of gastric mucosa, while immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immuno sorbent assay (ELISA) and western blotting were determined to detect the expression of related molecules. RESULTS The nuclear content of NF-κB p65 in the gastric mucosa of the CAG mice was increased accompanying by the structural disorder of the gastric mucosal epithelium, inflammatory cell infiltration, intestinal metaplasia, and increased MUC2 expression, but the symptoms were alleviated after PDTC treatment. In addition, the expressions of TNF-α, IL-1β, IL-6 and COX2 in the gastric mucosa and serum of CAG mice were higher than those control mice, which were reduced in CAG mice treated with either 100 or 200 mg/kg PDTC. Furthermore, 100 mg/kg and 200 mg/kg PDTC treatments reduced the serum PGE2 in CAG mice with the decreased PCNA and Ki-67 expression in gastric mucosa. The therapeutic effect of 200 mg/kg PDTC was significantly better than that of 100 mg/kg PDTC. CONCLUSION PDTC inhibited inflammation and the excessive proliferation of gastric mucosal epithelial cells, thereby exerting a potential therapeutic effect on CAG.
Collapse
Affiliation(s)
- Jun-Yan Jiang
- Department of Gastroenterology, Nan'an District People's Hospital of Chongqing, Chongqing, China
| | - Dai-Jiang Liu
- Department of Gastroenterology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China
| | - Mao-Xia Liu
- Outpatient Department, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China
| |
Collapse
|