1
|
Moghassemi S, Nikanfar S, Dadashzadeh A, Sousa MJ, Wan Y, Sun F, Colson A, De Windt S, Kwaspen L, Kanbar M, Sobhani K, Yang J, Vlieghe H, Li Y, Debiève F, Wyns C, Amorim CA. The revolutionary role of placental derivatives in biomedical research. Bioact Mater 2025; 49:456-485. [PMID: 40177109 PMCID: PMC11964572 DOI: 10.1016/j.bioactmat.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
The human placenta is a transient yet crucial organ that plays a key role in sustaining the relationship between the maternal and fetal organisms. Despite its historical classification as "biowaste," placental tissues have garnered increasing attention since the early 1900s for their significant medical potential, particularly in wound repair and surgical application. As ethical considerations regarding human placental derivatives have largely been assuaged in many countries, they have gained significant attention due to their versatile applications in various biomedical fields, such as biomedical engineering, regenerative medicine, and pharmacology. Moreover, there is a substantial trend toward various animal product substitutions in laboratory research with human placental derivatives, reflecting a broader commitment to advancing ethical and sustainable research methodologies. This review provides a comprehensive examination of the current applications of human placental derivatives, explores the mechanisms behind their therapeutic effects, and outlines the future potential and directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yuting Wan
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fengxuan Sun
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sven De Windt
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lena Kwaspen
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Keyvan Sobhani
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yongqian Li
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Goushki MA, Kharat Z, Kehtari M, Sohi AN, Ahvaz HH, Rad I, HosseinZadeh S, Kouhkan F, Kabiri M. Applications of extraembryonic tissue-derived cells in vascular tissue regeneration. Stem Cell Res Ther 2024; 15:205. [PMID: 38982541 PMCID: PMC11234723 DOI: 10.1186/s13287-024-03784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Vascular tissue engineering is a promising approach for regenerating damaged blood vessels and developing new therapeutic approaches for heart disease treatment. To date, different sources of cells have been recognized that offer assistance within the recovery of heart supply routes and veins with distinctive capacities and are compelling for heart regeneration. However, some challenges still remain that need to be overcome to establish the full potential application of these cells. In this paper, we review the different cell sources used for vascular tissue engineering, focusing on extraembryonic tissue-derived cells (ESCs), and elucidate their roles in cardiovascular disease. In addition, we highlight the intricate interplay between mechanical and biochemical factors in regulating mesenchymal stem cell (MSC) differentiation, offering insights into optimizing their application in vascular tissues.
Collapse
Affiliation(s)
- Mehdi Amiri Goushki
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 14395-1561, Iran
| | - Zahra Kharat
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 14395-1561, Iran
| | - Mousa Kehtari
- School of Biology, College of Sciences, University of Tehran, Tehran, 1417614411, Iran
| | - Alireza Naderi Sohi
- National Institute of Genetic Engineering and Biotechnology, Tehran, 1497716316, Iran
| | | | - Iman Rad
- Stem Cell Technology Research Center, Tehran, 15856-36473, Iran
| | - Simzar HosseinZadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, Tehran, 15856-36473, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
3
|
Wang D, Li H, Zeng T, Chen Q, Huang W, Huang Y, Liao Y, Jiang Q. Exosome-transmitted ANGPTL1 suppresses angiogenesis in glioblastoma by inhibiting the VEGFA/VEGFR2/Akt/eNOS pathway. J Neuroimmunol 2024; 387:578266. [PMID: 38150891 DOI: 10.1016/j.jneuroim.2023.578266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Glioblastoma (GBM) is a highly vascularized malignancy that relies on new vessel generation, and thus targeting angiogenesis has been a promising anti-GBM approach. ANGPTL1 is well-known for its anti-angiogenic property; nevertheless, its role in GBM is yet to be explored. Recently, the crucial role of exosomes (Exos) as intercellular communication mediators has gained prominence in GBM therapy. This work aimed to explore the role of exosomal ANGPTL1 in GBM angiogenesis and its mechanisms. METHODS Bioinformatic analysis was performed to evaluate ANGPTL expression in GBM. Human GBM cell lines (U87 and U251) and a xenograft mouse model were employed. Exos were isolated from oe-NC- and oe-ANGPTL-transfected bone mesenchymal stem cells and identified. Cell proliferation, migration, and apoptosis were detected. Immunofluorescence, qRT-PCR, western blotting, co-immunoprecipitation, and immunohistochemistry were used to determine the molecular mechanisms underlying exosomal ANGPTL1 against GBM angiogenesis. Besides, tube generation and transmission electron microscope assays were conducted to assess GBM angiogenesis. RESULTS Low ANGPTL1 expression was observed in GBM tumor tissues and cells. Functionally, e-ANGPTL-Exos inhibited GBM malignant progression and angiogenesis in vitro and in vivo. Mechanically, e-ANGPTL-Exos reduced VEGFA expression and blocked the VEGFR2/Akt/eNOS pathway in GBM cells and tumor tissues. Co-immunoprecipitation revealed a link between ANGPTL1 and VEGFA in GBM cells. Notably, oe-VEGFA abolished the suppressive functions of e-ANGPTL-Exos in GBM progression and angiogenesis and the VEGFR2/Akt/eNOS axis. The VEGFR2 inhibitor, vandetanib, eliminated the promotive effects of oe-VEGFA on GBM angiogenesis with suppressed VEGFR2/Akt/eNOS pathway. CONCLUSIONS Exosomal ANGPTL1 suppressed GBM angiogenesis by inhibiting the VEGFA/VEGFR2/Akt/eNOS axis.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| | - Huichen Li
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Tianxiang Zeng
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Qiang Chen
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weilong Huang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Yujing Huang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Yuqing Liao
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Qiuhua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
4
|
Patient-specific and gene-corrected induced pluripotent stem cell-derived endothelial cells elucidate single-cell phenotype of pulmonary veno-occlusive disease. Stem Cell Reports 2022; 17:2674-2689. [PMID: 36400028 PMCID: PMC9768576 DOI: 10.1016/j.stemcr.2022.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension characterized by the preferential remodeling of the pulmonary venules. Hereditary PVOD is caused by biallelic variants of the EIF2AK4 gene. Three PVOD patients who carried the compound heterozygous variants of EIF2AK4 and two healthy controls were recruited and induced pluripotent stem cells (iPSCs) were generated from human peripheral blood mononuclear cells (PBMCs). The EIF2AK4 c.2965C>T variant (PVOD#1), c.3460A>T variant (PVOD#2), and c.4832_4833insAAAG variant (PVOD#3) were corrected by CRISPR-Cas9 in PVOD-iPSCs to generate isogenic controls and gene-corrected-iPSCs (GC-iPSCs). PVOD-iPSC-endothelial cells (ECs) exhibited a decrease in GCN2 protein and mRNA expression when compared with control and GC-ECs. PVOD-ECs exhibited an abnormal EC phenotype featured by excessive proliferation and angiogenesis. The abnormal phenotype of PVOD-ECs was normalized by protein kinase B inhibitors AZD5363 and MK2206. These findings help elucidate the underlying molecular mechanism of PVOD in humans and to identify promising therapeutic drugs for treating the disease.
Collapse
|