1
|
Ahsan R, Khan MM, Mishra A, Noor G, Ahmad U. Plumbagin as a potential therapeutic agent for scopolamine-induced Alzheimer's disease: Mechanistic insights into GSK-3β inhibition. Brain Res 2025; 1859:149650. [PMID: 40250748 DOI: 10.1016/j.brainres.2025.149650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND The study aimed to evaluate Plumbagin's neuroprotective potential against scopolamine-induced Alzheimer's disease, proposing that its effects may involve GSK-3β inhibition, a key factor in tau hyperphosphorylation, to promote neuroprotection in Wistar rats. METHODS Alzheimer's was induced in male Wistar rats. After acclimatization, the rats were subjected to daily intraperitoneal treatment with scopolamine (0.7 mg/kg) and oral administration of Plumbagin (10 mg/kg) for 13 days. The cognitive function of treated rats was evaluated using the Morris water maze test, along with assessments of locomotor activity, acetylcholinesterase activity (AChE), protein levels, antioxidant parameters, cytokines and Brain-Derived Neurotrophic Factor (BDNF) and brain histopathology (hippocampus). RESULTS The Plumbagin (10 mg/kg, oral) as given orally significantly improved neurobehavioral alterations compared to Alzheimer's induced group. Scopolamine impaired cognitive function and increased locomotor activity (#P < 0.05). Treatments improved Morris water maze performance, reducing Escape latency time and increasing Time spent in the target quadrant (*P < 0.05). Biochemically, treatments significantly improved BDNF (*P < 0.05), decreased AChE activity, oxidative stress, reduced Interleukin-6 and Tumor Necrosis Factor Alpha (*P < 0.05) and reversed Scopolamine induced hippocampal neuronal loss (##P < 0.01). Plumbagin showed significant (*P < 0.05) neuroprotective effects, improving cognitive function, reducing AChE activity, Malondialdehyde, oxidative stress, and neuroinflammatory markers exceeding individual treatments in the scopolamine-induced Alzheimer's disease model. These improvements suggest a possible mechanism through the inhibition of GSK-3β, which may contribute to the observed neuroprotective effects. CONCLUSION This study suggests that Plumbagin's neuroprotective effects in scopolamine-induced Alzheimer's disease may involve GSK-3β inhibition. Plumbagin shows significant therapeutic potential for Alzheimer's treatment, warranting further investigation of its mechanism.
Collapse
Affiliation(s)
- Rabiya Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India
| | - Mohd Muazzam Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India.
| | - Anuradha Mishra
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow Campus, AmityUniversity, Uttar Pradesh, Sector 125, Noida 201313, India
| | - Gazala Noor
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India
| | - Usama Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
2
|
Akhtar W, Muazzam Khan M, Kumar S, Ahmad U, Husen A, Avirmed S. Pathophysiology of cerebral ischemia-reperfusion injury: An overview of oxidative stress and plant-based therapeutic approaches. Brain Res 2025; 1847:149308. [PMID: 39491664 DOI: 10.1016/j.brainres.2024.149308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Stroke is a debilitating neurological disorder that causes substantial morbidity and mortality on a global scale. Ischemic stroke, the most common type, occurs when the brain's blood supply is interrupted. Oxidative stress is a key factor in stroke pathology, contributing to inflammation and neuronal cell death. As a result, there is increasing interest in the potential of plant extracts, which have been used in traditional medicine for centuries and are generally considered safe, to serve as alternative or complementary treatments for stroke. The plant extracts can target multiple pathological processes, including oxidative stress, offering neuroprotective effects. The development of highly efficient, low-toxicity, and cost-effective natural products is crucial for enhancing stroke treatment options. In this review, we examine 60 plant extracts that have been focused on the studies published from year 2000 to 2024 along with the studies' experimental models, dosages, and results. The plant extracts hold promise in modulating cerebral ischemia-reperfusion injury through counteraction of relevant pathophysiologic processes such as oxidative stress.
Collapse
Affiliation(s)
- Wasim Akhtar
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | - Mohd Muazzam Khan
- Faculty of Pharmacy, Integral University, Lucknow 226020, Uttar Pradesh, India.
| | - Sanjay Kumar
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow 226020, Uttar Pradesh, India
| | - Ali Husen
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Tian R, Miao L, Cheang WS. Effects of Pterostilbene on Cardiovascular Health and Disease. Curr Issues Mol Biol 2024; 46:9576-9587. [PMID: 39329921 PMCID: PMC11430207 DOI: 10.3390/cimb46090569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Pterostilbene is a phenolic compound commonly found in blueberries, peanuts, grapes, and other plants. It is a dimethoxy derivative of resveratrol. In recent years, it has gained significant attention due to its remarkable anti-inflammatory and antioxidant effects. In addition, its high bioavailability and low toxicity in many species has contributed to its promising research prospects. Cardiovascular disease is closely related to pathological processes such as inflammation and oxidative stress, which aligns well with the treatment applications of pterostilbene. As a result, numerous studies have investigated the effects of pterostilbene on cardiovascular health and disease. This paper summarizes the current research on pterostilbene, with a specific focus on its potential therapeutic role in treating cardiovascular disease.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Lingchao Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Wai-San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
4
|
Gurivelli P, Katta S. Unraveling Grewia bilamellata Gagnep. Role in cerebral ischemia: Comprehensive in vivo and in silico studies. In Silico Pharmacol 2024; 12:62. [PMID: 39035100 PMCID: PMC11254896 DOI: 10.1007/s40203-024-00237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The present study investigated the neuroprotective properties of whole plants of Grewia bilamellata Gagnep. extract (GBEE) against cerebral ischemia by harnessing both In vivo studies in a rat model and In silico studies focusing on nitric oxide synthase (NOS) inhibition. High-resolution liquid chromatography‒mass spectrometry (HR LC‒MS) analysis identified 32 phytochemicals in the GBEE, 15 of which adhered to Lipinski's rule of five. These compounds exhibited diverse physicochemical properties and high binding affinity to NOS, with cleomiscosin D showing the greatest potential. In vivo, GBEE had significant neuroprotective effects on bilateral common carotid artery occlusion/reperfusion (BCCAO/R) in rats, especially at doses of 200 mg/kg and 400 mg/kg body weight. GBEE treatment improved brain function, as evidenced by EEG normalization, substantial reductions in cerebral infarction size, mitigated neuronal loss, and the restoration of regular histological arrangement in the CA1 hippocampal area of the brain. Furthermore, GBEE enhanced antioxidant defenses by augmenting the activity of catalase (CAT) and superoxide dismutase (SOD), reducing malondialdehyde (MDA) levels, and restoring reduced glutathione (GSH) levels. These effects were accompanied by a decrease in nitric oxide (NO) levels, indicative of attenuated oxidative and nitrosative stress. Collectively, our findings suggest that GBEE is a promising natural therapeutic agent that may prevent or alleviate ischemic brain injury through a multifaceted mechanism involving NOS inhibition and attenuation of the oxidative stress response. This study highlights the therapeutic potential of GBEE and warrants further research into its mechanism of action and possible clinical applications.
Collapse
Affiliation(s)
- Poornima Gurivelli
- Pharmacognosy and Phytochemistry Division, Gitam School of Pharmacy, Gitam University, Visakhapatnam, 530 045 Andhra Pradesh India
| | - Sunitha Katta
- Pharmacognosy and Phytochemistry Division, Gitam School of Pharmacy, Gitam University, Visakhapatnam, 530 045 Andhra Pradesh India
| |
Collapse
|
5
|
Zhang L, Zhang J, Zang H, Yin Z, Guan P, Yu C, Shan A, Feng X. Dietary pterostilbene exerts potential protective effects by regulating lipid metabolism and enhancing antioxidant capacity on liver in broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:921-933. [PMID: 38372476 DOI: 10.1111/jpn.13941] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Intensive breeding of broilers met the increasing demands of human for broiler products, but it raised their increased susceptibility to various stressors resulting in the disorder of lipid metabolism. Pterostilbene, the methoxylated analogue of resveratrol, exhibits astonishing functions of antioxidant, anti-inflammatory and glycolipid regulatory. The study aimed to elucidate the protective effects of pterostilbene on broiler liver and to explore the potential mechanisms. A total of 480 one-day-old male Arbor Acres (AA) broilers were randomly divided into four groups: the control group (basal diet) and pterostilbene groups (PT200, PT400, and PT600 feeding with basal diet containing 200, 400 and 600 mg/kg pterostilbene, respectively). The results showed that the dietary pterostilbene supplementation significantly improved the ADG of broilers. Dietary pterostilbene supplementation regulated the expression levels of the genes Sirt1 and AMPK and the downstream genes related to lipid metabolism to protect liver function and reduce lipid accumulation in broilers. Dietary pterostilbene supplementation upregulated the expression levels of the Nrf2 gene and its downstream antioxidant genes (SOD, CAT, HO-1, NQO-1, GPX) and phase II detoxification enzyme-related genes (GST, GCLM, GCLC). Collectively, pterostilbene was confirmed the positive effects as a feed additive on lipid metabolism and antioxidant via regulating Sirt1/AMPK and Nrf2 signalling pathways in broilers.
Collapse
Affiliation(s)
- Licong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Jingyang Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Haoran Zang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Zesheng Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Peiyue Guan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Chunting Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Anshan Shan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Xingjun Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| |
Collapse
|
6
|
Yin S, Hou J, Li J, Zeng C, Chen S, Zhang H, Tian X. Polydopamine-modified black phosphorus nanosheet drug delivery system for the treatment of ischemic stroke. Regen Biomater 2024; 11:rbae046. [PMID: 38769994 PMCID: PMC11105953 DOI: 10.1093/rb/rbae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Black phosphorus (BP), as a representative metal-free semiconductor, has been extensively explored. It has a higher drug loading capacity in comparison to conventional materials and also possesses excellent biocompatibility and biodegradability. Furthermore, BP nanosheets can enhance the permeability of the blood-brain barrier (BBB) upon near-infrared (NIR) irradiation, owing to their photothermal effect. However, the inherent instability of BP poses a significant limitation, highlighting the importance of surface modification to enhance its stability. Ischemic stroke (IS) is caused by the occlusion of blood vessels, and its treatment is challenging due to the hindrance caused by the BBB. Therefore, there is an urgent need to identify improved methods for bypassing the BBB for more efficient IS treatment. This research devised a novel drug delivery approach based on pterostilbene (Pte) supported by BP nanosheets, modified with polydopamine (PDA) to form BP-Pte@PDA. This system shows robust stability and traverses the BBB using effective photothermal mechanisms. This enables the release of Pte upon pH and NIR stimuli, offering potential therapeutic advantages for treating IS. In a middle cerebral artery occlusion mouse model, the BP-Pte@PDA delivery system significantly reduced infarct size, and brain water content, improved neurological deficits, reduced the TLR4 inflammatory factor expression, and inhibited cell apoptosis. In summary, the drug delivery system fabricated in this study thus demonstrated good stability, therapeutic efficacy, and biocompatibility, rendering it suitable for clinical application.
Collapse
Affiliation(s)
- Shujiang Yin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jing Hou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jie Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Caiyun Zeng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Shuang Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| |
Collapse
|
7
|
Ban W, Jiang X, Lv L, Jiao Y, Huang J, Yang Z, You Y. Illustrate the distribution and metabolic regulatory effects of pterostilbene in cerebral ischemia-reperfusion rat brain by mass spectrometry imaging and spatial metabolomics. Talanta 2024; 266:125060. [PMID: 37598445 DOI: 10.1016/j.talanta.2023.125060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Pterostilbene is a promising molecule with superior pharmacological activities and pharmacokinetic characteristics compared to its structural analogue resveratrol, which could be used to treat ischemic stroke. However, its mechanism is still unclear. The cutting-edge air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) and spatial metabolomics analysis were applied to investigate the distribution of pterostilbene in ischemic rat brain and the changes of related small molecule metabolic pathways to further explore the potential mechanisms of pterostilbene against cerebral ischemia-reperfusion injury. This research found that pterostilbene could significantly restore cerebral microcirculation blood flow, reduce infarct volume, improve neurological function and ameliorate neuronal damage in ischemic rats. Moreover, pterostilbene was widely and abundantly distributed in ischemic brain tissue, laying a solid foundation for the rescue of ischemic penumbra. Further study revealed that pterostilbene played a therapeutic role in restoring energy supply, rebalancing neurotransmitters, reducing abnormal polyamine accumulation and phospholipid metabolism. These findings offer an opportunity to illustrate novel mechanisms of pterostilbene in the treatment of cerebral ischemia/reperfusion injury resulting from ischemic stroke.
Collapse
Affiliation(s)
- Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Xinyi Jiang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Lingjuan Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yue Jiao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jianpeng Huang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
8
|
Qu X, Zhang L, Wang L. Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14432-14457. [PMID: 37786984 DOI: 10.1021/acs.jafc.3c06238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurological disorders are diverse, have complex causes, and often result in disability; yet, effective treatments remain scarce. The resveratrol derivative pterostilbene possesses numerous physiological activities that hold promise as a novel therapy for the central nervous system (CNS) disorders. This review aimed to summarize the protective mechanisms of pterostilbene in in vitro and in vivo models of CNS disorders and the pharmacokinetics and safety to assess its possible effects on CNS disorders. Available evidence supports the protective effects of pterostilbene in CNS disorders involving mechanisms such as antioxidant and anti-inflammatory activity, regulation of lipid metabolism and vascular smooth muscle cell proliferation, improvement of synaptic function and neurogenesis, induction of glioma cell cycle arrest, and inhibition of glioma cell migration and invasion. Studies have identified possible molecular targets and pathways for the protective actions of pterostilbene in CNS disorders including the AMPK/STAT3, Akt, NF-κB, MAPK, and ERK signaling pathways. The possible pharmacological effects and molecular pathways of pterostilbene in CNS disorders are critically discussed in this review. Future studies should aim to increase our understanding of pterostilbene in animal models and humans to further evaluate its role in CNS disorders and the detailed mechanisms.
Collapse
Affiliation(s)
- Xin Qu
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, P.R. China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| |
Collapse
|