1
|
Noppawan P, Jakmunee J, Hunt AJ, Supanchaiyamat N, Sangon S, Lerdsri J, Kruatian T, Upan J. Sustainable uric acid sensor based on a lab-fabricated electrode modified with rice straw-derived carbon materials. Sci Rep 2025; 15:18380. [PMID: 40419700 PMCID: PMC12106630 DOI: 10.1038/s41598-025-03405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025] Open
Abstract
A novel and facile electrochemical sensor for the quantification of uric acid has been fabricated through the strategic modification of a screen-printed carbon electrode (SPCE) using mesoporous carbon-zinc oxide (MC-ZnO) synthesized from rice straw waste. The MC-ZnO materials, generated via a controlled pyrolysis process, exhibit homogeneous dispersion and a substantial electroactive surface area of 0.1286 cm2. The electrochemical oxidation of uric acid exhibits a distinct peak at 0.18 V in differential pulse voltammetry (DPV), indicative of efficient charge transfer kinetics. A linear range spanning 20 to 225 µM was obtained with a limit of detection (LOD) of 3.76 µM, signifying exceptional analytical sensitivity. Furthermore, the sensor demonstrates robust selectivity toward uric acid in the presence of typical interferents, underscoring its applicability for precise uric acid determination in complex biological matrices. The sensor's analytical performance was validated by quantifying uric acid in spiked urine samples, yielding recovery rates between 97.9% and 114.8% and relative standard deviations (RSD) below 4.92%, affirming its accuracy and precision. This platform heralds a promising avenue for clinical diagnostics, leveraging sustainable materials for uric acid detection.
Collapse
Affiliation(s)
- Pakin Noppawan
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Jaroon Jakmunee
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nontipa Supanchaiyamat
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suwiwat Sangon
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jamras Lerdsri
- Department of Livestock Development, Veterinary Research and Development Center (Upper Northern Region), Lampang, 52190, Thailand
| | - Thidarat Kruatian
- Institute of Community Science Technology, Department of Science Service, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| | - Jantima Upan
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
2
|
Kanthappa B, Manjunatha JG, Aldossari SA, Raril C. Electrochemical determination of uric acid in the presence of dopamine and riboflavin using a poly(resorcinol)-modified carbon nanotube sensor. Sci Rep 2025; 15:5822. [PMID: 39962184 PMCID: PMC11832758 DOI: 10.1038/s41598-025-90235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
In this study, an electrochemical sensor based on a poly(resorcinol) modified carbon nanotube paste electrode (P(RS)/MCNTPE) was successfully developed for the sensitive and selective detection of uric acid (UA) in the presence of dopamine (DA) and riboflavin (RFN). The sensor shows excellent performance in a 0.2 M phosphate buffer solution (PBS) at pH 7.0 with a scan rate 0.1 V/s. Various electrochemical methods were studied including cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Morphological analysis using scanning electron microscopy (SEM) conformed the enhanced surface properties of the bare carbon nanotubes paste electrode (BCNTPE) and the P(RS)/MCNTPE. The effect of pH, scan rate changes 0.025 to 0.25 V/s, revealed that the oxidation of UA follows an adsorption-controlled process. For UA concentration changes from 20 µM and 380 µM, sensor exhibited a limit of detection (LOD) of 0.18 µM and a limit of quantification (LOQ) of 0.61 µM. Optimal UA response was observed at pH 7.0. The sensor shows good stability, repeatability, and reproducibility. Its analytical applicability was successfully validated in real sample analysis.
Collapse
Affiliation(s)
- B Kanthappa
- Department of Chemistry FMKMC College, Constituent College of Mangalore University, Madikeri, 571201, Karnataka, India
| | - J G Manjunatha
- Department of Chemistry FMKMC College, Constituent College of Mangalore University, Madikeri, 571201, Karnataka, India.
| | - Samar A Aldossari
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - C Raril
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Moutcine A, Laghlimi C, Ziat Y, El Bahraoui S, Belkhanchi H, Jouaiti A. Advanced design of chemically modified electrodes for the electrochemical analysis of uric acid and xanthine. J Pharm Biomed Anal 2025; 253:116536. [PMID: 39476436 DOI: 10.1016/j.jpba.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 12/31/2024]
Abstract
This study reviews advances in chemical detection methods applied to the metabolic products known as uric acid (UA) and xanthine (XA), which are residues of purine metabolism, with XA being an important intermediate preceding UA. UA and XA play crucial roles in maintaining physiological homeostasis in organisms. Chemical modification of electrodes is a widely used method to address the issues of poor sensitivity and selectivity encountered with bare electrodes. This article reviews various materials commonly used to modify electrode surfaces for the detection of uric acid and xanthine, focusing on properties that enhance electrocatalytic activity. We highlight recent trends in detecting these compounds using electrochemical methods with microfabricated devices and explore cutting-edge modification techniques involving novel nanomaterials, carbon derivatives, metallic nanoparticles, and polymers. The review includes a comparative analysis of these materials, addressing their strengths, limitations, and recent advancements, such as in carbon-based materials and metal-organic frameworks (MOFs). Finally, we critically examine the challenges and future prospects of electrochemical detection of UA and XA in real samples, offering strategies to address these issues. The challenges associated with determination of UA and XA in real samples are also discussed.
Collapse
Affiliation(s)
- Abdelaziz Moutcine
- Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
| | - Charaf Laghlimi
- ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Younes Ziat
- Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Soumia El Bahraoui
- Université du Québec à Chicoutimi, Canada; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Hamza Belkhanchi
- Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Ahmed Jouaiti
- Laboratory of Sustainable Development, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
4
|
Metto M, Tesfaye A, Atlabachew M, Abebe A, Fentahun T, Munshea A. A Novel Poly(cytosine)-Based Electrochemical Biosensor for Sensitive and Selective Determination of Guanine in Biological Samples. ACS OMEGA 2024; 9:26222-26234. [PMID: 38911807 PMCID: PMC11191103 DOI: 10.1021/acsomega.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
The novel poly(cytosine)-modified glassy carbon electrode-based electrochemical sensor was fabricated potentiodynamically for the detection of Guanine (G) in clinical and biological samples. The surface of the electrode was successfully activated by electropolymerization, and about a 7.5-fold current improvement due to modification was achieved. From the analysis of the dependence of peak current and peak potential on a scan rate, a higher R 2 for the peak current on the square root of scan rate (R 2 = 0.999) than the dependence of peak current on scan rate (R 2 = 0.982) indicated that the oxidation of G at poly(cytosine)/GCE was predominantly diffusion controlled. The oxidative peak response of the electrode revealed a high linear range of G concentration (0.1-200 μM) under optimized conditions. The detection limit and limit of quantification were 6.10 and 20.13 nM, respectively, associated with the %RSD of under 1%. The validation of the developed electrochemical sensor for the determination of G was investigated by analyzing human urine DNA and serum samples with spike recovery results in the range of 98.20-103.70% with the interferent recovery percentage in the range of 97.86-103.10% containing 50-300% of potential interferents. The newly designed sensor demonstrated the highest level of performance for the G detection in real samples.
Collapse
Affiliation(s)
- Melaku Metto
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
- Department
of Chemistry, College of Natural and Computational Sciences, Injibara University, Injibara 6400, Ethiopia
| | - Alemu Tesfaye
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| | - Minaleshewa Atlabachew
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| | - Atakilt Abebe
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| | - Tihunie Fentahun
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| | - Abaineh Munshea
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| |
Collapse
|
5
|
Teradale AB, Unki SN, Ganesh PS, Das KK, Das SN. Development of a Diethylcarbamazine Citrate‐Based Electrochemical Sensor for Quick and Affordable Detection of Sulfadiazine and Uric Acid in Environmental Monitoring. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
AbstractThe widespread use of antibiotics like sulfadiazine (SDZ) in various industries has raised environmental and health concerns due to their potential for bioaccumulation and the subsequent effects on human health and the environment. Diethylcarbamazine citrate (DCZ), a well‐established antifilarial drug, has yet to be explored as a sensing agent despite its extensive use. This study proposes a cost‐effective and efficient method for detecting SDZ and Uric acid (UA) using a DCZ‐modified carbon paste electrode (poly‐DCZ/MCPE). The poly‐DCZ film is synthesized via cyclic voltammetry (CV) on the carbon paste electrode surface, demonstrating excellent electrocatalytic activity for SDZ and UA detection at pH 7.4. The diffusion‐controlled electrode process is observed with a lower limit of detection (LOD) and limit of quantification (LOQ) for SDZ as 3.8×10−9 M and 12.94×10−9 M respectively. For UA, LOD and LOQ were found to be 6.291×10−9 M and 20.97×10−9 M respectively at the poly‐DCZ/MCPE. Notably, the sensor exhibits simultaneous detection capabilities for SDZ and UA by CV and differential pulse voltammetry (DPV) methods, addressing the need to monitor antibiotic residues in aquatic ecosystems and animal‐derived products.
Collapse
Affiliation(s)
- Amit B. Teradale
- PG Department of Chemistry BLDEA's S.B. Arts and K.C.P. Science College Vijayapur Karnataka 586103 India
| | - Shrishila N. Unki
- PG Department of Chemistry BLDEA's S.B. Arts and K.C.P. Science College Vijayapur Karnataka 586103 India
| | - Pattan S. Ganesh
- Interaction Laboratory Future Convergence Engineering Advanced Technology Research Center Korea University of Technology and Education Cheonan-si Chungcheongnam-do 31253, Republic of Korea
| | - Kusal K. Das
- Laboratory of Vascular Physiology & Medicine Department of Physiology Shri B.M.Patil Medical College Hospital & Research Centre Director - Center for Advanced Medical Research BLDE (Deemed to be University) Vijayapura 586103 Karnataka India
| | - Swastika N. Das
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology Vijayapur 586103 Karnataka India
| |
Collapse
|
6
|
Penagos-Llanos J, Segura R, de la Vega AP, Pichun B, Liendo F, Riesco F, Nagles E. Electrochemical Determination of Uric Acid Using a Nanocomposite Electrode with Molybdenum Disulfide/Multiwalled Carbon Nanotubes (MoS 2@MWCNT). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:958. [PMID: 38869583 PMCID: PMC11173421 DOI: 10.3390/nano14110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
This paper presents an application for a molybdenum disulfide nanomaterial with multiwalled carbon nanotubes (MoS2@MWCNT/E) in a modified electrode substrate for the detection of uric acid (UA). The modified electrode generates a substantial three-fold increase in the anodic peak current for UA compared to the unmodified MWCNT electrode (MWCNT/E). The MoS2@MWCNT/E surface was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and electrochemical impedance spectroscopy (EIS). The achieved detection limit stood at 0.04 µmol/L, with a relative standard deviation (RSD) of 2.0% (n = 10). The method's accuracy, assessed through relative error and percent recovery, was validated using a urine standard solution spiked with known quantities of UA.
Collapse
Affiliation(s)
- Johisner Penagos-Llanos
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile; (J.P.-L.); (A.P.d.l.V.); (B.P.); (F.L.)
| | - Rodrigo Segura
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile; (J.P.-L.); (A.P.d.l.V.); (B.P.); (F.L.)
| | - Amaya Paz de la Vega
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile; (J.P.-L.); (A.P.d.l.V.); (B.P.); (F.L.)
| | - Bryan Pichun
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile; (J.P.-L.); (A.P.d.l.V.); (B.P.); (F.L.)
| | - Fabiana Liendo
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile; (J.P.-L.); (A.P.d.l.V.); (B.P.); (F.L.)
| | - Fernando Riesco
- Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Edgar Nagles
- Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| |
Collapse
|
7
|
Liv L, Portakal M, Çukur MS, Topaçlı B, Uzun B. Electrocatalytic Determination of Uric Acid with the Poly(Tartrazine)-Modified Pencil Graphite Electrode in Human Serum and Artificial Urine. ACS OMEGA 2023; 8:34420-34430. [PMID: 37780010 PMCID: PMC10535258 DOI: 10.1021/acsomega.3c02561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
A novel electrocatalytic sensing strategy was built for uric acid (UA) determination with an exceptionally developed poly(tartrazine)-modified activated pencil graphite electrode (pTRT/aPGE) in human serum and artificial urine. The oxidation signal of UA at 275 mV in pH 7.5 phosphate buffer solution served as the analytical response. Cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the sensing platform, which was able to detect 0.10 μM of UA in the ranges of 0.34-60 and 70-140 μM. The samples of human serum and artificial urine were analyzed by both the pTRT/aPGE and the uricase-modified screen-printed electrode. The results were statistically evaluated and compared with each other within the confidence level of 95%, and no significant difference between the results was found.
Collapse
Affiliation(s)
- Lokman Liv
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
| | - Merve Portakal
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- Faculty
of Technology, Department of Biomedical Engineering, Pamukkale University, 20160 Denizli, Turkey
| | - Meryem Sıla Çukur
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- Faculty
of Technology, Department of Biomedical Engineering, Kocaeli University, İzmit, 41380 Kocaeli, Turkey
| | - Beyza Topaçlı
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- School
of Engineering, Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey
| | - Berkay Uzun
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- Faculty
of Technology, Department of Biomedical Engineering, Kocaeli University, İzmit, 41380 Kocaeli, Turkey
| |
Collapse
|
8
|
Yang S, Yang R, He J, Zhang Y, Yuan Y, Yue T, Sheng Q. Au Nanoparticles Functionalized Covalent-Organic-Framework-Based Electrochemical Sensor for Sensitive Detection of Ractopamine. Foods 2023; 12:foods12040842. [PMID: 36832917 PMCID: PMC9956286 DOI: 10.3390/foods12040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Ractopamine, as a feed additive, has attracted much attention due to its excessive use, leading to the damage of the human nervous system and physiological function. Therefore, it is of great practical significance to establish a rapid and effective method for the detection of ractopamine in food. Electrochemical sensors served as a promising technique for efficiently sensing food contaminants due to their low cost, sensitive response and simple operation. In this study, an electrochemical sensor for ractopamine detection based on Au nanoparticles functionalized covalent organic frameworks (AuNPs@COFs) was constructed. The AuNPs@COF nanocomposite was synthesized by in situ reduction and was characterized by FTIR spectroscopy, transmission electron microscope and electrochemical methods. The electrochemical sensing performance of AuNPs@COF-modified glassy carbon electrode for ractopamine was investigated using the electrochemical method. The proposed sensor exhibited excellent sensing abilities towards ractopamine and was used for the detection of ractopamine in meat samples. The results showed that this method has high sensitivity and good reliability for the detection of ractopamine. The linear range was 1.2-1600 μmol/L, and the limit of detection (LOD) was 0.12 μmol/L. It is expected that the proposed AuNPs@COF nanocomposites hold great promise for food safety sensing and should be extended for application in other related fields.
Collapse
|
9
|
Moallem QA, Beitollahi H. Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|