1
|
Costela-Ruiz VJ, González-Vigil E, Espinosa-Ibáñez O, Alcázar – Caballero RM, Melguizo-Rodríguez L, Fernández-López O, Arias-Santiago S. Application of allogeneic adult mesenchymal stem cells in the treatment of venous ulcers: A phase I/II randomized controlled trial protocol. PLoS One 2025; 20:e0323173. [PMID: 40373055 PMCID: PMC12080757 DOI: 10.1371/journal.pone.0323173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/26/2025] [Indexed: 05/17/2025] Open
Abstract
OBJECTIVE To evaluate the feasibility, safety and efficacy of the cutaneous application of Bioengineered Artificial Mesenchymal Sheet (BAMS) in venous leg ulcers (VLUs) versus conventional treatment. METHODS This protocol is based on the design of a Phase I/II, multicenter, randomized, controlled, open-label clinical trial investigating the application of a biological dressing supplemented with mesenchymal stem cells (NCT05962931). The clinical trial is being conducted in 2 primary care units within the Granada Metropolitan Health District. A total of 20 patients with VLUs are being randomized (1:1) into 2 intervention arms: a control group and a treatment group. The intervention in the treatment group consists of the local application of 4 doses of BAMS, administered once per week, while the control group receives conventional therapy. Feasibility will be assessed based on the ability to complete the administration of 4 doses in at least 80% of the patients in the treatment group. Safety will be evaluated by analyzing the incidence of adverse effects and serious adverse effects. Efficacy will be assessed in terms of the percentage of wound closure (measured by wound area reduction), macroscopic assessment of the lesion (visual macroscopic analysis and RESVECH 2.0 scale), analysis of growth factors and inflammatory cytokines (ELISA test), pain levels (VAS scale) and quality of life (CIVIQ 20). RESULTS If confirmed, BAMS-based therapy may provide an effective treatment for VLUs, potentially reducing wound closure time and associated complications. This therapy could significantly enhance patients' quality of life due to the regenerative and analgesic properties of the biological dressing. DISCUSSION Given the biological activity of mesenchymal stem cells, an accelerated healing effect is expected in the treatment group. This could lead to shorter healing times for chronic wounds, resulting in significant benefits for patients, healthcare professionals, and overall healthcare costs. TRIAL REGISTRATION NCT05962931.
Collapse
Affiliation(s)
- Víctor J. Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
- Instituto Investigación Biosanitaria, ibs. Granada, Spain
| | - Encarnación González-Vigil
- Andalusian Health Service, Granada Metropolitan Health District, Primary Care Unit of Atarfe (Granada), Granada, Spain
| | - Olga Espinosa-Ibáñez
- Tissue Engineering and Cell Production Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
- Instituto Investigación Biosanitaria, ibs. Granada, Spain
| | - Olga Fernández-López
- Andalusian Network for the Design and Translation of Advanced Therapies, Junta de Andalucía, Seville, Spain
| | - Salvador Arias-Santiago
- Instituto Investigación Biosanitaria, ibs. Granada, Spain
- Tissue Engineering and Cell Production Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Dermatology Department, Hospital Universitario Virgen de las Nieves, Granada. Spain
- Dermatology Department, School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Yang M, Deng B, Hao W, Jiang X, Chen Y, Wang M, Yuan Y, Chen M, Wu X, Du C, Armstrong DG, Guo L, Deng W, Wang H. Platelet concentrates in diabetic foot ulcers: A comparative review of PRP, PRF, and CGF with case insights. Regen Ther 2025; 28:625-632. [PMID: 40166040 PMCID: PMC11955794 DOI: 10.1016/j.reth.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetic foot ulcers (DFUs) are severe complications of diabetes, often leading to chronic wounds, amputations, and increased mortality risk. Platelet concentrates (PCs)-natural biomaterials utilized in regenerative medicine-have garnered attention for their capacity to enhance tissue repair and wound healing. This study reviews the preparation methods, biological mechanisms, and clinical efficacy of three generations of PCs: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factors (CGF). Comparative analysis reveals that PRP, the first generation, provides abundant growth factors but relies on anticoagulants, which may hinder fibrin formation and tissue adhesion. PRF, as the second generation, eliminates anticoagulants, forming a fibrin matrix that sustains growth factor release and enhances cell migration. CGF, the latest advancement, employs refined centrifugation to achieve higher growth factor concentrations and a denser fibrin matrix, accelerating tissue regeneration. Case series results demonstrated superior wound healing outcomes with CGF, including faster epithelialization and reduced healing time compared to PRP and PRF. These findings underscore CGF's potential as the most effective PC for managing DFUs, supporting its broader clinical adoption in advanced wound care.
Collapse
Affiliation(s)
- Mengling Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Bo Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Wei Hao
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Xiaoyan Jiang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Yan Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Min Wang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Yi Yuan
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Meirong Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Xiaohua Wu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Chenzhen Du
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Lian Guo
- Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
- Department of Population Health Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Hongyan Wang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| |
Collapse
|
3
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2025; 126:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
4
|
Khan MS, Jahan N, Khatoon R, Ansari FM, Ahmad S. An Update on Diabetic Foot Ulcer and Its Management Modalities. Indian J Microbiol 2024; 64:1401-1415. [PMID: 39678959 PMCID: PMC11645353 DOI: 10.1007/s12088-023-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2024] Open
Abstract
One of the most prominent challenges related to the management of diabetes is a diabetic foot ulcer (DFU). It has been noted that > 50% of ulcers become clinically infected in diabetic patients, and up to 15-25% of diabetic patients may acquire DFU in their lifetime. DFU treatment is complicated for immune-compromised individuals and has a low success rate. Therefore, diabetic foot care must begin as soon as possible to avoid negative outcomes such as significant social, psychological, and economic consequences, lower limb amputation, morbidity, and mortality. The information provided in this piece is crucial for assisting clinicians and patients regarding novel and cutting-edge treatments for DFU. Due to irrational recourse to antibiotics, etiological agents like bacteria and fungi are exhibiting multidrug resistance (MDR), making topical antibiotic treatments for wounds ineffective with the drugs we currently have. This review article aims to compile the various strategies presently in use for managing and treating DFUs. The piece covers topics like biofilm, diagnosis, drug resistance, multidisciplinary teamwork, debridement, dressings, offloading, negative pressure therapy, topical antibiotics, surgery, cell and gene therapy, and other cutting-edge therapies.
Collapse
Affiliation(s)
- Mohd Shahid Khan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Noor Jahan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Razia Khatoon
- Department of Microbiology, Hind Institute of Medical Sciences, Mau, Ataria, Sitapur, Uttar Pradesh 261303 India
| | - Faisal Moin Ansari
- Department of Surgery, Integral Institute of Medical Sciences and Research, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Siraj Ahmad
- Department of Community Medicine, Integral Institute of Medical Sciences and Research, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| |
Collapse
|
5
|
Smith J, Rai V. Platelet-Rich Plasma in Diabetic Foot Ulcer Healing: Contemplating the Facts. Int J Mol Sci 2024; 25:12864. [PMID: 39684575 PMCID: PMC11641766 DOI: 10.3390/ijms252312864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Diabetic foot ulcers (DFUs), debilitating complication of diabetes, often lead to amputation even in the presence of current advanced treatment for DFUs. Platelet-rich plasma (PRP) containing growth factors and other proteins has been suggested as a potent therapeutic in promoting DFU healing. PRP is safe and effective in improving the DFU healing rate, decreasing healing time, and making chronic wounds viable for treatment. Though PRP is safe and effective in promoting DFU healing, there are inconsistencies in clinical outcomes. These varying results may be due to various concentrations of PRP being used. Most studies report dosage and timing, but none have reported the concentration of various factors. This is important, as the concentration of factors in PRP can vary significantly with each preparation and may directly impact the healing outcome. This critical review discusses the limiting factors and issues related to PRP therapy and future directives. A systematic search of PubMed and Google Scholar was performed with keywords including diabetic foot ulcer, ulcer healing, platelet-rich plasma, DFU treatment, and PRP limitations and efficacy, alone or in combination, to search the related articles. The articles describing DFU and the use of PRP in DFU healing were included. The existing literature suggests that PRP is effective and safe for promoting DFU healing, but larger clinical trials are needed to improve clinical outcomes. There is a need to consider multiple factors including the role of epigenetics, lifestyle modification, and the percentage composition of each constituent in PRP.
Collapse
Affiliation(s)
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
6
|
Sheng X, Hu L, Li T, Zou Y, Fu HY, Xiong GP, Zhu Y, Deng B, Xiong LL, Yin XL. Clinical efficacy and mechanism of the combination of autologous platelet-rich gel and recombinant human acidic fibroblast growth factor in the management of refractory diabetic foot. Front Endocrinol (Lausanne) 2024; 15:1374507. [PMID: 39539934 PMCID: PMC11557328 DOI: 10.3389/fendo.2024.1374507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Objective This study aims to explore the influence of combining autologous platelet-rich gel (APG) with continuous vacuum-sealed drainage (CVSD) and the exogenous recombinant human acidic fibroblast growth factor (rh-aFGF) on the healing processes of diabetic foot ulcers (DFU). The primary objective is to elucidate the complex molecular mechanisms associated with DFU, providing innovative perspectives for its treatment. Methods Ninety patients diagnosed with DFU were randomly allocated into three distinct groups. Group A underwent CVSD following wound cleansing to facilitate healing. In Group B, in addition to conventional treatment, negative pressure wound therapy was applied, and rh-aFGF was introduced into normal saline for lavage, building upon the procedures of Group A. Group C received APG along with the interventions applied in Group B. The clinical efficacy of each group was systematically observed and analyzed. Additionally, changes in plasma oxidative stress, inflammatory markers, vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor (PEDF) were assessed both before treatment and 14 days post-treatment. Results Following treatment, all groups exhibited commendable clinical efficacy. Group C demonstrated a superior wound healing rate, reduced frequency of dressing changes, and shorter wound healing duration (P< 0.05). Compared to baseline measurements, the levels of superoxide dismutase and PEDF increased, while malondialdehyde, VEGF, interleukin-6, interleukin-8, and monocyte chemotactic factor MCP-1 decreased in the wound tissue across all groups. Notably, Group C showed the most significant improvement in clinical efficacy and fortification of molecular mechanisms against oxidative stress (all P< 0.05). Conclusions The integrative therapeutic approach combining APG with CVSD and rh-aFGF demonstrates notable efficacy in advancing wound healing. This effectiveness is evident through the reduced frequency of dressing changes and alleviation of wound-related pain. Additionally, the treatment regimen improves the cure rate for challenging, refractory wounds. These favorable outcomes can be attributed to the reduction of oxidative stress levels, attenuation of the local inflammatory response, and the enhancement of the balance between PEDF and VEGF.
Collapse
|
7
|
Zhong M, Guo J, Qahar M, Huang G, Wu J. Combination therapy of negative pressure wound therapy and antibiotic-loaded bone cement for accelerating diabetic foot ulcer healing: A prospective randomised controlled trial. Int Wound J 2024; 21:e70089. [PMID: 39379061 PMCID: PMC11461018 DOI: 10.1111/iwj.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Negative pressure wound therapy (NPWT) and antibiotic-loaded bone cement (ALBC) are commonly used treatments for diabetic foot ulcers (DFUs). However, the combined efficacy of these two modalities remains unclear. This clinical study aimed to assess the effectiveness and underlying mechanisms of NPWT&ALBC in the management of DFUs. A total of 28 patients were recruited, 16 of whom served as controls and received only NPWT, whilst 12 received NPWT&ALBC. Both groups underwent wound repair surgery following the treatments. Blood samples were obtained to detect infections and inflammation. Wound tissue samples were also collected before and after the intervention to observe changes in inflammation, vascular structure and collagen through tissue staining. Compared with the NPWT group, the NPWT&ALBC group exhibited a superior wound bed, which was characterised by reduced inflammation infiltration and enhanced collagen expression. Immunostaining revealed a decrease in IL-6 levels and an increase in α-SMA, CD68, CD206 and collagen I expression. Western blot analysis demonstrated that NPWT&ALBC led to a decrease in inflammation levels and an increase in vascularization and collagen content. NPWT&ALBC therapy tends to form a wound bed with increased vascularization and M2 macrophage polarisation, which may contribute to DFUs wound healing.
Collapse
Affiliation(s)
- Meifang Zhong
- Department of Burn and Plastic SurgeryShenzhen Second People' s Hospital (The First Hospital Affiliated to Shenzhen University)ShenzhenChina
| | - Jiawei Guo
- Department of Hand and Foot SurgeryShenzhen Second People' s Hospital (The First Hospital Affiliated to Shenzhen University)ShenzhenChina
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenChina
| | - Mulan Qahar
- Shenzhen Institute of Translational MedicineShenzhenChina
| | - Guangtao Huang
- Department of Burn and Plastic SurgeryShenzhen Second People' s Hospital (The First Hospital Affiliated to Shenzhen University)ShenzhenChina
| | - Jun Wu
- Department of Burn and Plastic SurgeryShenzhen Second People' s Hospital (The First Hospital Affiliated to Shenzhen University)ShenzhenChina
| |
Collapse
|
8
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
9
|
Nebbioso G, Nebbioso V. Pleiotropic effects of hyaluronic acid and silver sulfadiazine dressings in the treatment of acute and chronic skin lesions. Minerva Surg 2024; 79:33-39. [PMID: 38037671 DOI: 10.23736/s2724-5691.23.10189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
BACKGROUND Hyaluronic acid (HA) is a natural unbranched polymer that belongs to a group of heteropolysaccharide glycosaminoglycans (GAGs) that are major components of the extracellular matrix (ECM), while silver sulfadiazine exerts antibacterial activity. In this study, we evaluated the efficacy and safety of dressings with hyaluronic acid and silver sulfadiazine in acute and chronic lesions, according to the wound bed preparation and TIME principles. METHODS Thirty-two patients with acute and chronic injuries participated in the study. After collecting their personal histories and making a differential diagnosis by evaluating their ankle/arm index, patients with a Winsor Index below 0.8 underwent lower extremity color Doppler echocardiography. The dressing protocol followed the principles of wound bed preparation, identifying the prevailing clinical sign by evaluating the lesion background, margins, and perilesional skin. A product containing low molecular weight hyaluronic acid (200 kDa) and silver sulfadiazine 1% was used for the dressing. RESULTS In the acute lesion group, the protocol we applied resulted in all injuries being healed. Of the 20 treated wounds in the chronic lesion group, 10 healed at the end of 8 weeks of treatment and 8 saw an improvement with a reduction in the lesion area. CONCLUSIONS Consisting of a combination of hyaluronic acid and silver sulfadiazine, the dressing is widely used in the management of acute and chronic skin wounds. In the present study, the healing rate of acute wounds was 100%; in chronic wounds, healing was reported in 50% of cases while in 40% of the remainder, we found a 40% reduction in the lesion area.
Collapse
|
10
|
Elsherbini AM, Sabra SA, Rashed SA, Abdelmonsif DA, Haroun M, Shalaby TI. Electrospun polyvinyl alcohol/ Withania somnifera extract nanofibers incorporating tadalafil-loaded nanoparticles for diabetic ulcers. Nanomedicine (Lond) 2023; 18:1361-1382. [PMID: 37800462 DOI: 10.2217/nnm-2023-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Background: Impaired inflammation and vascularization are common reasons for delayed diabetic wound healing. Nanoparticles (NPs)-in-nanofibers composites can manage diabetic wounds. A multifunctional scaffold was developed based on tadalafil (TDF)-loaded NPs incorporated into polyvinyl alcohol/Withania somnifera extract nanofibers. Materials & methods: TDF-loaded NPs were prepared and fully characterized in terms of their physicochemical properties. Extract of ashwagandha was prepared and a blend composed of TDF-loaded NPs, herbal extract and polyvinyl alcohol was used to prepare the whole composite. Results: The whole composite exhibited improved wound closure in a diabetic rat model in terms of reduced inflammation and enhanced angiogenesis. Conclusion: Results suggest that this multifunctional composite could serve as a promising diabetic wound dressing.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Shimaa A Rashed
- Department of Botany& Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt 4 Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
12
|
Shchepankevich LA, Pervuninskaya MA, Gribacheva IA, Popova TF, Nicolaev YA, Taneeva EV, Petrova EV, Shchepankevich MS. [The role of inflammation in the development of diabetic polyneuropathy and the possibility of its correction]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:68-71. [PMID: 37084367 DOI: 10.17116/jnevro202312304168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
OBJECTIVE To study the effect of the combined drug Cytoflavin on the mechanisms of nonspecific inflammation in the treatment of diabetic polyneuropathy (DPN) with an assessment of the dynamics of the TNF-α index. MATERIAL AND METHODS An open comparative prospective observation of patients with a history of DPN for more than 5 years and a high level of TNF-α was carried out. All patients underwent basic oral combined hypoglycemic therapy, the main group used the combined drug Cytoflavin 10 ml (per 200 ml 0.9% NaCl) for 10 days, followed by the transition to the enteral form of the drug, 2 tablets 2 times a day for 1 months The main indication for the appointment of Cytoflavin was the presence of comorbid pathology in the form of cerebrovascular disease in all studied patients. The severity of clinical symptoms of DPN, the quality of life (QOL) of patients, as well as the dynamics of the level of TNF-α as an indicator reflecting the process of inflammation were assessed. RESULTS As a result of the treatment in the study group, there was an improvement in QoL, a decrease in the severity of sensory complaints and a decrease in the level of TNF-α, which may indicate a possible anti-inflammatory mechanism of the combined drug Cytoflavin. CONCLUSION Cytoflavin can inhibit inflammation and reduce the severity of sensitive disorders in patients with DPN.
Collapse
Affiliation(s)
- L A Shchepankevich
- Novosibirsk State Medical University, Novosibirsk, Russia
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
- State Novosibirsk Regional Clinical Hospital, Novosibirsk, Russia
| | - M A Pervuninskaya
- Novosibirsk State Medical University, Novosibirsk, Russia
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - I A Gribacheva
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - T F Popova
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - Yu A Nicolaev
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E V Taneeva
- State Novosibirsk Regional Clinical Hospital, Novosibirsk, Russia
| | - E V Petrova
- Novosibirsk State Medical University, Novosibirsk, Russia
| | | |
Collapse
|
13
|
Yu XY, Zhao MY, Zhang Y, Xu G. [Research advances on the treatment of diabetic foot ulcers with autologous platelet-rich fibrin]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:1185-1189. [PMID: 36594150 DOI: 10.3760/cma.j.cn501225-20220110-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetic foot is one of the serious complications of diabetic patients, which makes the society and public health bear a huge economic burden. In recent years, more and more studies at home and abroad have been conducted on the treatment of chronic wounds with autologous platelet-rich fibrin, and the therapeutic concepts and methods have been updated constantly. In this paper, we reviewed the general situation of autologous platelet-rich fibrin, the mechanism of autologous platelet-rich fibrin in promoting the healing of diabetic foot ulcers and the new progress in its application, so as to provide a new strategy for the repair of diabetic foot ulcers.
Collapse
Affiliation(s)
- X Y Yu
- Graduate School of Dalian Medical University, Dalian 116044, China
| | - M Y Zhao
- The First Department of Facial and Neck Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Y Zhang
- Department of Burns and Plastic Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - G Xu
- Department of Burns and Plastic Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| |
Collapse
|