1
|
Pamulang YV, Oontawee S, Rodprasert W, Padeta I, Sa-Ard-Lam N, Mahanonda R, Osathanon T, Somparn P, Pisitkun T, Torsahakul C, Sawangmake C. Potential upscaling protocol establishment and wound healing bioactivity screening of exosomes isolated from canine adipose-derived mesenchymal stem cells. Sci Rep 2025; 15:10617. [PMID: 40148423 PMCID: PMC11950392 DOI: 10.1038/s41598-025-93219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stem cell-derived exosomes exhibit promising potential in tissue regeneration. Recent studies highlight its significant therapeutic potential in various stages of wound healing. However, the clinical translation of exosome-based therapy was hindered due to issues regarding low productivity and the lack of efficient production protocol to obtain a clinically relevant exosome quantity. Therefore, this study established a potential upscaling protocol to produce exosomes derived from canine adipose-derived mesenchymal stem cells (cAD-MSCs) and explored its potential for wound treatment. The potential upscaling protocol, termed VSCBIC-3-3D, was carried out using VSCBIC-3 in-house serum-free exosome-collecting solution in a three-dimensional (3D) culture system followed by the tangential flow filtration (TFF) isolation. Our findings suggest that culturing cAD-MSCs with VSCBIC-3 maintained cell morphology and viability. Compared to conventional two-dimensional (2D) protocols, The potential upscaling protocol increased exosome yield and concentration in conditioned medium by 2.4-fold and 3.2-fold, respectively. The quality assessment revealed enhanced purity and bioactivity of exosomes produced using the VSCBIC-3-3D protocol. In addition, the cAD-MSCs-derived exosomes were shown to significantly improve fibroblast migration, proliferation, and wound healing-related gene expression in vitro. This study collectively demonstrates that potential upscaling protocol establishment allowed robust production of exosomes from cAD-MSCs, which exhibit therapeutic potential for wound healing in vitro.
Collapse
Affiliation(s)
- Yudith Violetta Pamulang
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saranyou Oontawee
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Irma Padeta
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Noppadol Sa-Ard-Lam
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rangsini Mahanonda
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chutirat Torsahakul
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chenphop Sawangmake
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Hou W, Sun C, Han X, Fan M, Qiao W. NEDD4L affects stability of the CHEK2/TP53 axis through ubiquitination modification to enhance osteogenic differentiation of periodontal ligament stem cells. Connect Tissue Res 2024; 65:433-446. [PMID: 39373023 DOI: 10.1080/03008207.2024.2406794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Checkpoint kinase 2 (CHEK2) and its regulated tumor protein p53 (TP53) have been correlated with osteogenic differentiation of osteoblast-like cells. Based on bioinformatics predictions, this study aims to investigate the effect of the CHEK2/TP53 axis on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and to explore the regulatory mechanism. METHODS PDLSCs were isolated from human impacted wisdom teeth, and they were cultured in normal medium (NM) or osteogenic medium (OM). Protein levels of CHEK2 and TP53 were examined using western blot analysis. Osteogenic differentiation ability of PDLSCs was analyzed by measuring marker proteins (RUNX2, OCN, and OSX), ALP activity, and ALP staining. Molecular interaction between NEDD4 like E3 ubiquitin protein ligase (NEDD4L) and CHEK2 was examined by ubiquitination and co-immunoprecipitation assays. Gain- and loss-of function assays of NEDD4L, CHEK2, and TP53 were performed to analyze their function in osteogenic differentiation of PDLSCs. A rat model of mandibular bone defect was generated for in vivo validation. RESULTS NEDD4L was upregulated, while CHEK2 and TP53 were downregulated in PDLSCs cultured in OM. CHEK2 protected TP53 from degradation, while NEDD4L reduced CHEK2 protein level by ubiquitination modification. NEDD4L silencing reduced osteogenic differentiation ability of PDLSCs both in vitro and in vivo, which was restored by CHEK2 silencing. By contrast, CHEK2 overexpression blocked the osteogenic differentiation of PDLSCs in vitro. CONCLUSION This study demonstrates that NEDD4L affects protein stability of the CHEK2/TP53 axis through ubiquitination modification, thus increasing osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Wenyue Hou
- Outpatient Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Changsheng Sun
- Department of Stomatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xue Han
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Mingyu Fan
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Wenjuan Qiao
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
3
|
Taephatthanasagon T, Purbantoro SD, Rodprasert W, Pathanachai K, Charoenlertkul P, Mahanonda R, Sa-Ard-Lam N, Kuncorojakti S, Soedarmanto A, Jamilah NS, Osathanon T, Sawangmake C, Rattanapuchpong S. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration. BMC Vet Res 2024; 20:403. [PMID: 39251976 PMCID: PMC11382457 DOI: 10.1186/s12917-024-04246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The integration of stem cells, signaling molecules, and biomaterial scaffolds is fundamental for the successful engineering of functional bone tissue. Currently, the development of composite scaffolds has emerged as an attractive approach to meet the criteria of ideal scaffolds utilized in bone tissue engineering (BTE) for facilitating bone regeneration in bone defects. Recently, the incorporation of polycaprolactone (PCL) with hydroxyapatite (HA) has been developed as one of the suitable substitutes for BTE applications owing to their promising osteogenic properties. In this study, a three-dimensional (3D) scaffold composed of PCL integrated with HA (PCL/HA) was prepared and assessed for its ability to support osteogenesis in vitro. Furthermore, this scaffold was evaluated explicitly for its efficacy in promoting the proliferation and osteogenic differentiation of canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) to fill the knowledge gap regarding the use of composite scaffolds for BTE in the veterinary orthopedics field. RESULTS Our findings indicate that the PCL/HA scaffolds substantially supported the proliferation of cBM-MSCs. Notably, the group subjected to osteogenic induction exhibited a markedly upregulated expression of the osteogenic gene osterix (OSX) compared to the control group. Additionally, the construction of 3D scaffold constructs with differentiated cells and an extracellular matrix (ECM) was successfully imaged using scanning electron microscopy. Elemental analysis using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy confirmed that these constructs possessed the mineral content of bone-like compositions, particularly the presence of calcium and phosphorus. CONCLUSIONS This research highlights the synergistic potential of PCL/HA scaffolds in concert with cBM-MSCs, presenting a multidisciplinary approach to scaffold fabrication that effectively regulates cell proliferation and osteogenic differentiation. Future in vivo studies focusing on the repair and regeneration of bone defects are warranted to further explore the regenerative capacity of these constructs, with the ultimate goal of assessing their potential in veterinary clinical applications.
Collapse
Affiliation(s)
- Teeanutree Taephatthanasagon
- Graduate Program in Veterinary Bioscience, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Steven Dwi Purbantoro
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Koranis Pathanachai
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Charoenlertkul
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rangsini Mahanonda
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Lam
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
| | - Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adretta Soedarmanto
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nabila Syarifah Jamilah
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Purbantoro SD, Taephatthanasagon T, Purwaningrum M, Hirankanokchot T, Peralta S, Fiani N, Sawangmake C, Rattanapuchpong S. Trends of regenerative tissue engineering for oral and maxillofacial reconstruction in veterinary medicine. Front Vet Sci 2024; 11:1325559. [PMID: 38450027 PMCID: PMC10915013 DOI: 10.3389/fvets.2024.1325559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Oral and maxillofacial (OMF) defects are not limited to humans and are often encountered in other species. Reconstructing significant tissue defects requires an excellent strategy for efficient and cost-effective treatment. In this regard, tissue engineering comprising stem cells, scaffolds, and signaling molecules is emerging as an innovative approach to treating OMF defects in veterinary patients. This review presents a comprehensive overview of OMF defects and tissue engineering principles to establish proper treatment and achieve both hard and soft tissue regeneration in veterinary practice. Moreover, bench-to-bedside future opportunities and challenges of tissue engineering usage are also addressed in this literature review.
Collapse
Affiliation(s)
- Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teeanutree Taephatthanasagon
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Thanyathorn Hirankanokchot
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Thamnium S, Laomeephol C, Pavasant P, Osathanon T, Tabata Y, Wang C, Luckanagul JA. Osteogenic induction of asiatic acid derivatives in human periodontal ligament stem cells. Sci Rep 2023; 13:14102. [PMID: 37644086 PMCID: PMC10465493 DOI: 10.1038/s41598-023-41388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Asiatic acid (AA) and asiaticoside, pentacyclic triterpenoid compounds derived from Centella asiatica, are known for their biological effects in promoting type I collagen synthesis and inducing osteogenesis of stem cells. However, their applications in regenerative medicine are limited due to their low potency and poor aqueous solubility. This work aimed to evaluate the osteogenic induction activity of AA derivatives in human periodontal ligament stem cells (hPDLSCs) in vitro. Four compounds were synthesised, namely 501, 502, 503, and 506. AA was used as the control. The 502 exhibited low water solubility, while the 506 compound showed the highest. The cytotoxicity analysis demonstrated that 503 caused significant deterioration in cell viability, while other derivatives showed no harmful effect on hPDLSCs. The dimethyl aminopropyl amine derivative of AA, compound 506, demonstrated a relatively high potency in inducing osteogenic differentiation. An elevated mRNA expression of osteogenic-related genes, BMP2, WNT3A, ALP, OSX and IBSP was observed with 506. Additionally, the expression of BMP-2 protein was enhanced with increasing dose of 506, and the effect was pronounced when the Erk signalling molecule was inhibited. The 506 derivative was proposed for the promotion of osteogenic differentiation in hPDLSCs by upregulating BMP2 via the Erk signalling pathway. The 506 molecule showed promise in bone tissue regeneration.
Collapse
Affiliation(s)
- Sirikool Thamnium
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Chao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 6100641, Sichuan, People's Republic of China
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, People's Republic of China
| | - Jittima A Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Purwaningrum M, Giachelli CM, Osathanon T, Rattanapuchpong S, Sawangmake C. Dissecting specific Wnt components governing osteogenic differentiation potential by human periodontal ligament stem cells through interleukin-6. Sci Rep 2023; 13:9055. [PMID: 37270571 PMCID: PMC10239497 DOI: 10.1038/s41598-023-35569-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
Periodontal ligament stem cells (PDLSCs) play a significant role on periodontal tissue and alveolar bone homeostasis. During inflammation, interleukin (IL)-6 serves as one of key cytokine players controlling tissue reaction as well as alveolar bone tissue remodeling. It is believed that periodontal tissue inflammation causes periodontium degradation, especially alveolar bone. However, in this study, we show that an inflammatory mediator, IL-6, may serve another direction on alveolar bone homeostasis during inflammatory condition. We found that, IL-6 at 10 and 20 ng/mL was not cytotoxic and dose-dependently exerted beneficial effects on osteogenic differentiation of human PDLSCs (hPDLSCs), as demonstrated by increased alkaline phosphatase activity, mRNA expression of osteogenic markers, and matrix mineralization. The presence of physiological and inflammatory level of IL-6, the osteogenic differentiation potential by hPDLSCs was enhanced by several possible mechanisms including transforming growth factor (TGF), Wnt, and Notch pathways. After in-depth and thorough exploration, we found that Wnt pathway serves as key regulator controlling osteogenic differentiation by hPDLSCs amid the IL-6 presentation. Surprisingly, apart from other mesenchymal stem cells, distinct Wnt components are employed by hPDLSCs, and both canonical and non-canonical Wnt pathways are triggered by different mechanisms. Further validation by gene silencing, treatment with recombinant Wnt ligands, and β-catenin stabilization/translocation confirmed that IL-6 governed the canonical Wnt/β-catenin pathway via either WNT2B or WNT10B and employed WNT5A to activate the non-canonical Wnt pathway. These findings fulfill the homeostasis pathway governing periodontal tissue and alveolar bone regeneration and may serve for further therapeutic regimen design for restoring the tissues.
Collapse
Affiliation(s)
- Medania Purwaningrum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|