1
|
Vargas A, López JE, Jaimes A, Saldarriaga JF. Phytoremediation of Hg and chlorpyrifos contaminated soils using Phaseolus vulgaris L. with biochar, mycorrhizae, and compost amendments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:478. [PMID: 39412703 DOI: 10.1007/s10653-024-02244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024]
Abstract
Anthropogenic activities, encompassing vast agricultural and industrial operations around the world, exert substantial pressure on the environment, culminating in profound ecological impacts. These activities exacerbate soil contamination problems with pollutants such as mercury (Hg) and chlorpyrifos (CPF) that are notable for their widespread presence and detrimental effects. The objective of this study is to evaluate the phytoremediation potential of Phaseolus vulgaris L., augmented with various combinations of biochar, mycorrhizal, and compost amendments, as a sustainable alternative for the remediation of soils contaminated with Hg and CPF. For this purpose, soil from a mining area with mercury contamination has been taken, to which CPF has been added in different concentrations. Then, previously germinated Phaseolus vulgaris L. seedlings with an average height of 10 cm were planted. Electrical conductivity, pH, organic matter, CPF, and Hg, as well as seedling growth parameters, have been evaluated to determine the processes of absorption of soil contaminants into the plant. A combination of biochar with mycorrhiza has been found to be an optimal choice for CPF and Hg remediation. However, all amendments have proven to be efficient in the remediation processes of the tested contaminants.
Collapse
Affiliation(s)
- Alejandra Vargas
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Julián E López
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034, Medellín, Colombia
| | - Adriana Jaimes
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia.
| |
Collapse
|
2
|
López JE, Marín JF, Saldarriaga JF. Assessing pollution degree and human health risks from hazardous element distribution in soils near gold mines in a Colombian Andean region: Correlation with phytotoxicity biomarkers. CHEMOSPHERE 2024; 361:142471. [PMID: 38815814 DOI: 10.1016/j.chemosphere.2024.142471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
The assessment of human health risk due to the presence of hazardous elements in the environment is now necessary for environmental management and legislative initiatives. This study aims to determine the contamination by As, Cd, Pb, and Cr in soils near gold mines in three municipalities located in the Andean region of Colombia. One of the main objectives of the study is to explore possible correlations between the Lifetime Cancer Risk (LCR) and phytotoxicity biomarkers using a simple and rapid-response plant model, radish (Raphanus sativus L.). In the municipality of Yalí, Puerto Berrío, and Buriticá, the hazardous elements concentrations ranged from 8.1 to 35.5, 1.7 to 892, and 5.8 to 49.8 for As, 0.1 to 4.6, 0.1 to 65.2, and 0.5 to 18.2 for Cd, 18.5 to 201.3, 13.0 to 1908, and 189 to 2345 for Pb, and 5.4 to 118.4, 65.4 to 301, and 5.4 to 102.3 for Cr, respectively. The results showed that the biomarkers intracellular H2O2 concentration, antioxidant activity, and radicle elongation exhibited significant (P < 0.05) variations associated with the concentration of hazardous elements in the soils. Significant correlations (P < 0.05, r > 0.58) were found between the biomarkers and the LCR for Cd, Pb, and Cr, but not for As. The results using biomarkers reveal that soil pH and organic matter content are important variables that control the bioavailability of these elements in the soil. The use of indicators like LCR alone has limitations and should be accompanied by the use of biomarkers that allow for a better understanding of the biological system's response to exposure to potentially toxic elements. The results obtained show the urgent need to implement public policies to minimize exposure to hazardous substances in areas near gold mining projects.
Collapse
Affiliation(s)
- Julián E López
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia.
| | - Juan F Marín
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| |
Collapse
|
3
|
Villada E, Velasquez M, Gómez AM, Correa JD, Saldarriaga JF, López JE, Tamayo A. Combining anaerobic digestion slurry and different biochars to develop a biochar-based slow-release NPK fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171982. [PMID: 38575013 DOI: 10.1016/j.scitotenv.2024.171982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.
Collapse
Affiliation(s)
- Esteban Villada
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Manuela Velasquez
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Ana M Gómez
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Juan D Correa
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| | - Julián E López
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Andrea Tamayo
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia.
| |
Collapse
|
4
|
Al-Tabbal J, Al-Harahsheh M, Al-Zou'by JY. Silica nanoparticles as a waste product to alleviate the harmful effects of water stress in wheat. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1626-1642. [PMID: 38644591 DOI: 10.1080/15226514.2024.2342631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Drought is a threat to food security and agricultural sustainability in arid and semi-arid countries. Using wasted silica nanoparticles could minimize water scarcity. A controlled study investigated wheat plant physiological and morphological growth under tap-water irrigation (80-100, 60-80, and 40-60% field capacity). The benefits of S1: 0%, S2: 5%, and S3: 10% nanoparticle silica soil additions were studied. Our research reveals that water stress damages the physiological and functional growth of wheat plants. Plant height decreased by 8.9%, grain yield by 5.4%, and biological yield by 19.2%. These effects were observed when plants were irrigated to 40-60% field capacity vs. control. In plants under substantial water stress (40-60% of field capacity), chlorophyll a (8.04 mg g-1), b (1.5 mg g-1), total chlorophyll (9.55 mg g-1), carotenoids (2.44 mg g-1), and relative water content (54%), Electrolyte leakage (59%), total soluble sugar (1.79 mg g-1 fw), and proline (80.3 mol g-1) were highest. Plants cultivated with silica nanoparticles exhibit better morphological and physiological growth than controls. The largest effect came from maximum silica nanoparticle loading. Silica nanoparticles may increase drought-stressed plant growth and production.
Collapse
Affiliation(s)
- Jalal Al-Tabbal
- Department of Nutrition and Food Processing, Al‑Huson University College, Al-Balqa Applied University, Irbid, Jordan
| | - Mohammad Al-Harahsheh
- Department of Chemical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Jehad Y Al-Zou'by
- Department of Environmental Engineering, Al‑Huson University College, Al-Balqa Applied University, Irbid, Jordan
| |
Collapse
|
5
|
Serrano MF, López JE, Henao N, Saldarriaga JF. Phosphorus-Loaded Biochar-Assisted Phytoremediation to Immobilize Cadmium, Chromium, and Lead in Soils. ACS OMEGA 2024; 9:3574-3587. [PMID: 38284006 PMCID: PMC10809702 DOI: 10.1021/acsomega.3c07433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Soil contamination with heavy metals (HM) poses significant challenges to food security and public health, requiring the exploration of effective remediation strategies. This study aims to evaluate the remediation process of soils contaminated with Cd, Cr, and Pb using Lolium perenne assisted by four types of biochar: (i) activated coffee husk biochar (BAC), (ii) nonactivated biochar coffee husk (BSAC), (iii) activated sugar cane leaf biochar (BAA), and (iv) nonactivated biochar sugar cane leaf (BSAA). Biochar, loaded with phosphorus (P), was applied to soils contaminated with Cd, Cr, and Pb. L. perenne seedlings, averaging 2 cm in height, were planted. The bioavailability of P and heavy metals (HM) was monitored every 15 days until day 45, when the seedlings reached an average height of 25 cm. At day 45, plant harvesting was conducted and stems and roots were separated to determine metal concentrations in both plant parts and the soil. The study shows that the combined application of biochar and L. perenne positively influences the physicochemical properties of the soil, resulting in an elevation of pH and electrical conductivity (EC). The utilization of biochar contributes to an 11.6% enhancement in the retention of HM in plant organs. The achieved bioavailability of heavy metals in the soil was maintained at levels of less than 1 mg/kg. Notably, Pb exhibited a higher metal retention in plants, whereas Cd concentrations were comparatively lower. These findings indicate an increase in metal immobilization efficiencies when phytoremediation is assisted with P-loaded biochar. This comprehensive assessment highlights the potential of biochar-assisted phytoremediation as a promising approach for mitigating heavy metal contamination in soils.
Collapse
Affiliation(s)
- María F Serrano
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| | - Julián E López
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034 Medellín, Colombia
| | - Nancy Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| |
Collapse
|
6
|
Zhao X, Sang L, Song H, Liang W, Gong K, Peng C, Zhang W. Stabilization of Ni by rhamnolipid modified nano zero-valent iron in soil: Effect of simulated acid rain and microbial response. CHEMOSPHERE 2023; 341:140008. [PMID: 37660786 DOI: 10.1016/j.chemosphere.2023.140008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Nickel (Ni), as one of the essential micronutrients, exists widely in nature, but high concentration of Ni in soil can pose certain biological toxicity. Nano zero-valent iron (nZVI) and rhamnolipid modified nZVI (RL@nZVI) can effectively stabilize Ni in soil. In this study, the stabilization effect of nZVI and RL@nZVI on the Ni-polluted soil under simulated acid rain and the microbial community response during the soil remediation under different Ni levels (200, 600, and 1800 mg/kg) were investigated. The results show that the addition of nZVI and RL@nZVI increased the pH of leachate to neutral and decreased the amount of Ni in leachate (23.33%-47.06% by nZVI and 50.01%-70.47% by RL@nZVI), indicating that nZVI and RL@nZVI could reduce the potential radial migration risk of Ni in soil under simulated acid rain. The addition of RL@nZVI was beneficial to recover the soil bacterial community diversity, which was inhibited by Ni pollution, and rhamnolipid coating could reduce the toxicity of nZVI. The dominant bacteria in RL@nZVI-treated soil with low, medium, and high Ni pollution were Firmicutes, Proteobacteria and Actinobacteria, respectively. Soil potential, total organic carbon, and pH were the main driving factors affecting the bacterial community structure, while Ni stress only caused changes in the relative abundance of some tolerant bacteria.
Collapse
Affiliation(s)
- Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Li Sang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Ningbo Yonghuanyuan Environmental Engineering and Technology Co., Ltd, China
| | - Huihui Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
7
|
Acosta-Luque MP, López JE, Henao N, Zapata D, Giraldo JC, Saldarriaga JF. Remediation of Pb-contaminated soil using biochar-based slow-release P fertilizer and biomonitoring employing bioindicators. Sci Rep 2023; 13:1657. [PMID: 36717659 PMCID: PMC9886935 DOI: 10.1038/s41598-022-27043-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023] Open
Abstract
Soil contamination by Pb can result from different anthropogenic sources such as lead-based paints, gasoline, pesticides, coal burning, mining, among others. This work aimed to evaluate the potential of P-loaded biochar (Biochar-based slow-release P fertilizer) to remediate a Pb-contaminated soil. In addition, we aim to propose a biomonitoring alternative after soil remediation. First, rice husk-derived biochar was obtained at different temperatures (450, 500, 550, and 600 °C) (raw biochars). Then, part of the resulting material was activated. Later, the raw biochars and activated biochars were immersed in a saturated KH2PO4 solution to produce P-loaded biochars. The ability of materials to immobilize Pb and increase the bioavailability of P in the soil was evaluated by an incubation test. The materials were incorporated into doses of 0.5, 1.0, and 2.0%. After 45 days, soil samples were taken to biomonitor the remediation process using two bioindicators: a phytotoxicity test and enzyme soil activity. Activated P-loaded biochar produced at 500 °C has been found to present the best conditions for soil Pb remediation. This material significantly reduced the bioavailability of Pb and increased the bioavailability of P. The phytotoxicity test and the soil enzymatic activity were significantly correlated with the decrease in bioavailable Pb but not with the increase in bioavailable P. Biomonitoring using the phytotoxicity test is a promising alternative for the evaluation of soils after remediation processes.
Collapse
Affiliation(s)
- María Paula Acosta-Luque
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Julián E López
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034, Medellín, Colombia
| | - Nancy Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Daniela Zapata
- Faculty of Engineering, Universidad de Medellín, Carrera 87 #30-65, 050026, Medellín, Colombia
| | - Juan C Giraldo
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034, Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia.
| |
Collapse
|