1
|
Min S, Fang Y, Zhang M, Shen H, Zhu L. The potential mechanism of co-administration of Scutellaria baicalensis Georgi and Rubia cordifolia L ameliorating ulcerative colitis: Integration of metabolomics, network pharmacology, and molecular docking. J Pharm Biomed Anal 2025; 263:116948. [PMID: 40344969 DOI: 10.1016/j.jpba.2025.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/27/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Scutellaria baicalensis Georgi (HQ) and Rubia cordifolia L. (QC) are clinically effective against ulcerative colitis (UC), but their synergistic mechanisms remain unclear. This study evaluated the therapeutic effects of HQ, QC, and their combination (HQ-QC) in dextran sulfate sodium (DSS)-induced colitis and explored underlying mechanisms. Mice were divided into normal, model, HQ, QC, HQ-QC, and 5-ASA groups. Colon tissue metabolomics was performed using UPLC-Q-TOF-MS, while network pharmacology and molecular docking identified potential anti-UC targets. The HQ-QC combination significantly alleviated weight loss, colon shortening, and histopathological damage, and improved intestinal barrier function and inflammation compared to single herbs. Metabolomics revealed xanthine, cytosine, and N-octanoylsphingosine-1-phosphate as key metabolites enriched in vascular smooth muscle contraction and fatty acid metabolism pathways. Network pharmacology identified 62 potential targets, with wogonin and xyloidone as major active compounds. KEGG analysis highlighted platelet activation as a key pathway, and molecular docking confirmed strong binding of wogonin and xyloidone to platelet activation-related targets including PIK3CG, NOS3, PTGS1, and MAPK14. These findings suggest HQ-QC exerts synergistic effects in treating DSS-induced UC by regulating vascular smooth muscle contraction and platelet activation, providing mechanistic insight into its clinical potential.
Collapse
Affiliation(s)
- Shichen Min
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yulai Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Mengyuan Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Xia M, Li Z, Yang C, Wang Y, Zhang J, Zhong G, Ouyang H, Feng Y. Rubia cordifolia L. extract ameliorates vitiligo by inhibiting the CXCL10/CXCL9/STAT1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 350:120027. [PMID: 40412781 DOI: 10.1016/j.jep.2025.120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rubia cordifolia L. (RCL) is a traditional herbal medicine with a long history of use. It has been employed to treat conditions such as abnormal uterine bleeding, primary dysmenorrhea, allergic purpura, eczema, and psoriasis. In Uyghur traditional medicine, it is also utilized to manage vitiligo, tinea, skin scars, and inflammatory wounds. However, the precise mechanism through which RCL improves vitiligo is still not fully understood. AIM OF THE STUDY This research sought to examine the therapeutic impacts of RCL on vitiligo, determine whether its effects on the progression of vitiligo are facilitated via the CXCL10/CXCL9/STAT1 pathway, and perform an analysis of the chemical composition along with the identification of RCL. MATERIALS AND METHODS Chemical composition identification of RCL extract was performed using UHPLC-QTOF-MS/MS. A mouse model of vitiligo was created to assess the therapeutic effectiveness of RCL by analyzing the expression of CD8+ T cells, performing HE staining, conducting melanin staining, evaluating TYR activity, and measuring the levels of inflammatory cytokines. Transcriptomic and metabolomic analyses were conducted to explore the mechanisms underlying RCL-mediated improvement of vitiligo. RESULTS A total of 156 compounds were identified in RCL, predominantly including anthraquinones, naphthoquinones, and terpenoids. RCL treatment significantly reduced CD8+ T cell expression, downregulated expression of cytokines that promote inflammation, and upregulated TYR activity and melanin production. Transcriptomic and metabolomic analyses identified the CXCL10/CXCL9/STAT1 signaling pathway and the metabolism of lysophosphatidylcholine and leukotriene B4 as key mechanisms underlying RCL's therapeutic effects on vitiligo, indicating that RCL ameliorates vitiligo by modulating autoimmunity and attenuating inflammatory responses. Western blotting and qPCR further validated that RCL inhibits the production of proteins linked to the CXCL10/CXCL9/STAT1 axis, including CXCL10, CXCL9, STAT1, and CXCR3. Additionally, RCL reduced the expression of inflammatory markers such as IL-1RAP, IL-6, IL-17A, KNG1, and PLA2G4E, further supporting its anti-inflammatory and immunoregulatory properties. CONCLUSIONS Our study demonstrates that RCL ameliorates the progression of vitiligo by modulating autoimmunity and attenuating inflammatory responses. The underlying mechanisms may involve mediating the CXCL10/CXCL9/STAT1 axis and regulating lysophosphatidylcholine and leukotriene B4 metabolism.
Collapse
Affiliation(s)
- Mengqi Xia
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, No. 56 Yangming Road, Nanchang, 330006, PR China
| | - Zhiqiang Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, PR China
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yilei Wang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, PR China
| | - Jianjian Zhang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, No. 56 Yangming Road, Nanchang, 330006, PR China
| | - Guoyue Zhong
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, No. 56 Yangming Road, Nanchang, 330006, PR China; Research Center for Traditional Chinese Medicine Resources and Ethnomedicine, Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, PR China.
| | - Hui Ouyang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, No. 56 Yangming Road, Nanchang, 330006, PR China.
| | - Yulin Feng
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, No. 56 Yangming Road, Nanchang, 330006, PR China.
| |
Collapse
|
3
|
Lu X, Sun Y, Zhang Z, Sun Z, Wang S, Xu E. Regulation of pyroptosis by natural products in ulcerative colitis: mechanisms and therapeutic potential. Front Pharmacol 2025; 16:1573684. [PMID: 40271055 PMCID: PMC12014637 DOI: 10.3389/fphar.2025.1573684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease, is driven by dysregulated immune responses and persistent intestinal inflammation. Pyroptosis, a caspase/gasdermin-mediated inflammatory cell death that exacerbates mucosal damage through excessive cytokine release and epithelial barrier disruption. Although pyroptosis is considered to be a key mechanism in the pathogenesis of UC, the systematic assessment of the role of natural products in targeting the pyroptosis pathway remains a critical research gap. The purpose of this review is to investigate the regulatory effects of natural products on pyroptosis in UC and elucidate the mechanisms of action and potential therapeutic effects. Key findings highlight polyphenols (e.g., resveratrol), flavonoids (e.g., Quercetin), and terpenoids as promising agents that inhibit NLRP3 inflammasome activation, suppress gasdermin D cleavage, and restore barrier integrity, thereby reducing pro-inflammatory cytokine release in preclinical UC models. Current evidence shows enhanced efficacy and safety when these compounds are combined with standard therapies, but clinical translation requires overcoming three key barriers: limited human trial data, uncharacterized polypharmacology, and suboptimal pharmacokinetics needing formulation refinement. Future research should prioritize standardized animal-to-human translational models, mechanistic studies on synergistic pathways, and rigorous clinical validation to harness the full potential of natural products in pyroptosis-targeted UC therapies.
Collapse
Affiliation(s)
- Xiaobei Lu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yapeng Sun
- Department of Proctology, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhaoyi Zhang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhigang Sun
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shaohui Wang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Erping Xu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Xu G, Liu M, Wang Z, Chen S Y. Cytotoxic and Antitumor Agents from Genus Rubia. Chem Biodivers 2024; 21:e202401498. [PMID: 39183172 DOI: 10.1002/cbdv.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Genus Rubia is widely distributed in almost all regions of the world, with 36 species and 2 varieties in China. Rubia species, such as Rubia cordifolia, have been used in traditional Chinese medicine for the treatment of diseases since ancient times. In recent years, the study of anticancer effects in traditional Chinese medicine has become a popular topic, and some studies have shown that several Rubia species extracts have cytotoxic and antitumor effects, and some of them have been shown to contain specific antitumor agents. Therefore, this review focuses on the cytotoxic and antitumor effects of the chemical constituents contained in Genus Rubia. Summarized 71 types of chemical substances in 5 categories with the effect of cytotoxicity and antitumor, as well as their structures, targets and mechanisms of action.
Collapse
Affiliation(s)
- Geng Xu
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China
| | - Meiyu Liu
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zuobin Wang
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yujuan Chen S
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
5
|
Zeng L, Wang Y, Shen J, Wei X, Wu Y, Chi X, Zheng X, Yu X, Shi Y, Liu W. TIPE2 aggravates experimental colitis and disrupts intestinal epithelial barrier integrity by activating JAK2/STAT3/SOCS3 signal pathway. Exp Cell Res 2024; 443:114287. [PMID: 39426612 DOI: 10.1016/j.yexcr.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Ulcerative colitis (UC) is a chronic relapsing and progressive inflammatory disease of the colon. TIPE2 is a negative regulator of innate and adaptive immunity that maintains immune homeostasis. We found that TIPE2 was highly expressed in mucosa of mice with colitis. However, the role of TIPE2 in colitis remains unclear. We induced colitis in mice with dextran sulfate sodium (DSS) and treated them with TIPE2, and investigated the inflammatory activity of the colon in vivo by cytokines detection and histopathological analyses. We also measured inflammatory alteration and tight junctions induced by DSS in vitro. The results demonstrated that administration of TIPE2 promoted the severity of colitis in mice and human colon epithelial cells. Furthermore, TIPE2 aggravated intestinal epithelial barrier dysfunction by decreasing the expression of the tight junction proteins Occludin, Claudin-1 and ZO-1. In addition, TIPE2 exacerbated intestinal inflammatory response by inhibiting the expression of SOCS3, remarkably activating JAK2/STAT3 signaling pathway, and increasing the translocation of phosphorylated STAT3 into the nucleus. Silencing of TIPE2 attenuated the DSS-induced activation of JAK2/STAT3, thereby rescuing epithelial inflammatory injury and restoring barrier dysfunction. These results indicate that TIPE2 augments experimental colitis and disrupted the integrity of the intestinal epithelial barrier by activating the JAK2/STAT3/SOCS3 signaling pathway.
Collapse
Affiliation(s)
- Lingli Zeng
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuping Wang
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiaxin Shen
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xujin Wei
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yilong Wu
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xintong Chi
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xueyan Zheng
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xing Yu
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Shi
- Department of Gastroenterology, The First Afiiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Wenming Liu
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Liu M, Fu J, Liu Y, Gou W, Yuan W, Shang H. Pectin from comfrey roots alleviate DSS-induced ulcerative colitis in mice through modulating the intestinal barrier. Int J Biol Macromol 2024; 282:137016. [PMID: 39481739 DOI: 10.1016/j.ijbiomac.2024.137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
The objective of this study was to investigate whether pectin extracted from comfrey roots (CRPs) could alleviate ulcerative colitis (UC) induced by sodium dextran sulfate (DSS) in mice by improving the intestinal barrier. CRP was able to relieve symptoms associated with weight loss, diarrhea, and colon length in UC mice. CRP inhibited the excessive secretion of TNF-α and IL-6 and increased the level of IL-10 in the serum. After CRP treatment, the mRNA expression levels of ZO-1 and Muc2 increased. The colonic epithelial cells recovered well, and the mucous layer was relatively intact in the CRP group. CRP and 5-aminosalicylic acid (ASA) alleviated UC symptoms in mice by reducing the abundance of Oscillibacter, Alistipes, and Anaeroplasma and increasing the abundance of Lachnospiraceae_UCG-001 to regulate the intestinal microflora. The abundance of Rikenellaceae was positively correlated with the mRNA expression level of ZO-1, and the abundance of Monoglobus was positively correlated with the mRNA expression level of Muc2. These results suggested that CRP could repair the intestinal barrier and mitigate DSS-induced colon damage in mice, indicating that CRP may be a potential functional component in combating UC.
Collapse
Affiliation(s)
- Mengxue Liu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin provincial key laboratory of tree and grass genetics and breeding, Jilin Agricultural University, Changchun 130118, China
| | - Jia Fu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Yuqian Liu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Wenting Gou
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Yuan
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin provincial key laboratory of tree and grass genetics and breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
7
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S. Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Tang L, Liu Y, Tao H, Feng W, Ren C, Shu Y, Luo R, Wang X. Combination of Youhua Kuijie Prescription and sulfasalazine can alleviate experimental colitis via IL-6/JAK2/STAT3 pathway. Front Pharmacol 2024; 15:1437503. [PMID: 39318778 PMCID: PMC11420560 DOI: 10.3389/fphar.2024.1437503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Youhua Kuijie prescription (YHKJ) is a hospital preparation that is composed of nine kinds of herbs. Sulfasalazine (SASP) is widely used as a first-line clinical treatment for UC. Traditional Chinese medicine and Western medicine have their own advantages in the treatment of UC, and the mechanism of YHKJ combined with SASP in the treatment of UC needs to be investigated. Methods In this study, the therapeutic mechanism of YHKJ combined with SASP in the treatment of UC was predicted by network pharmacology and molecular docking. The chemical components and related targets of YHKJ were obtained from the TCMSP database. The chemical structure of SASP was obtained from the PubChem server, and related targets of SASP molecules were identified using the PharmMapper database. UC-related targets were obtained from the DisGeNET, GeneCards, OMIM, TTD, DrugBank and PharmGkb databases. Results In total, 197 shared targets were identified by constructing a Venn diagram. PPI network data obtained from the STRING database were imported into Cytoscape to visualize the "drug-disease" target network, and STAT3 was selected as the core target by topological analysis. Gene Ontology revealed the biological functions of target genes, and KEGG analysis revealed that the core target STAT3 was differentially expressed in Th17 cells and the JAK-STAT signaling pathway. Thus, the core target STAT3 was subjected to molecular docking with the top 10 components, including nine YHKJ components (quercetin, luteolin, ursolic acid, daidzein, kaempferol, wogonin, myricetin, formononetin, indirubin) and SASP (C18H14N4O5S). The molecular docking results showed that STAT3 had favorable binding with the nine YHKJ components and SASP; STAT3 had the strongest binding with ursolic acid (-10.26 kcal/mol), followed by SASP (-8.54 kcal/mol). Qualitative analysis of the chemical constituents of YHKJ by HPLC revealed that sitosterol, ursolic acid, myricetin, daidzein, quercetin, kaempferol and formononetin were the main components. Additional experiments verified that YHKJ combined with SASP inhibited activation of the IL-6/JAK2/STAT3 pathway and alleviated inflammation in UC model rats. Discussion Our results showed that seven chemical components in YHKJ cooperate with SASP to interfere with activation of the IL-6/JAK2/STAT3 pathway, thus playing a role in the treatment of UC.
Collapse
Affiliation(s)
- Lili Tang
- Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | - Yuedong Liu
- The Third Affiliated Hospital of Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | - Hongwu Tao
- The Second Affiliated Hospital of Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | - Wenzhe Feng
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Cong Ren
- Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | | | - Ruijuan Luo
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, China
| | - Xiangyi Wang
- Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
9
|
Subudhi RN, Poonia N, Singh D, Arora V. Natural approaches for the management of ulcerative colitis: evidence of preclinical and clinical investigations. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:42. [PMID: 39078427 PMCID: PMC11289194 DOI: 10.1007/s13659-024-00463-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024]
Abstract
Ulcerative colitis (UC) is a recurring autoimmune disorder characterized by persistent inflammation in the mucosal lining of the lower part of the large intestine. Conventional treatment options such as salicylates, corticosteroids, and immunosuppressants often come with severe side effects, limited bioavailability, and the development of drug resistance, which hampers their therapeutic effectiveness. Therefore, it is imperative to explore natural strategies as safe and alternative treatments for UC. Currently, around 40% of UC patients find relief through natural constituents, which can help reduce toxic side effects and maintain clinical remission. This review aims to provide a summary of both preclinical and clinical evidence supporting the efficacy of various natural substances in the prophylaxis of UC. These natural options include plant extracts, essential oils, nutraceuticals, and phytochemicals. Furthermore, we will delve into the potential mechanisms that underlie the protective and curative actions of these novel herbal agents. In summary, this review will explore the effectiveness of natural remedies for UC, shedding light on their preclinical and clinical findings and the mechanisms behind their therapeutic actions. These alternatives offer hope for improved treatment outcomes and reduced side effects for individuals suffering from this challenging autoimmune condition.
Collapse
Affiliation(s)
- Rudra Narayan Subudhi
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Vimal Arora
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
10
|
Wang Z, Zhang Z, Shi Q, Liu S, Wu Q, Wang Z, Saiding E, Han J, Zhou J, Wang R, Su X. Whole genome sequencing analysis of Limosilactobacillus reuteri from the intestinal tract of mice recovering from ulcerative colitis and preliminary study on anti-inflammatory effects of its derived peptides. Arch Microbiol 2024; 206:140. [PMID: 38441642 DOI: 10.1007/s00203-024-03906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Limosilactobacillus reuteri is an indigenous inhabitant of the animal gut known for its probiotic effects on the host. In our previous study, a large number of L. reuteri strains were isolated from the gastrointestinal tract of mice recovering from ulcerative colitis, from which we randomly selected L. reuteri RE225 for whole genome sequencing to explore its probiotic properties. The results of next-generation sequencing and third-generation single molecule sequencing showed that L. reuteri RE225 contained many genes encoding functional proteins associated with adhesion, anti-inflammatory and pathogen inhibition. And compared to other L. reuteri strains in NCBI, L. reuteri RE225 has unique gene families with probiotic functions. In order to further explore the probiotic effect of the L. reuteri RE225, the derived peptides were identified by LC-MS/MS, and the peptides with tumor necrosis factor-α binding ability were screened by reverse molecular docking and microscale thermophoresis. Finally, cell experiments demonstrated the anti-inflammatory ability of the peptides. Western blotting and qPCR analyses confirmed that the selected peptides might alleviate LPS-induced inflammation in NCM460 cells by inhibiting JAK2/STAT3 pathway activation.
Collapse
Affiliation(s)
- Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Zhixuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Qiuyue Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Emilaguli Saiding
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Rixin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| |
Collapse
|
11
|
Duan B, Hu Q, Ding F, Huang F, Wang W, Yin N, Liu Z, Zhang S, He D, Lu Q. The effect and mechanism of Huangqin-Baishao herb pair in the treatment of dextran sulfate sodium-induced ulcerative colitis. Heliyon 2023; 9:e23082. [PMID: 38144295 PMCID: PMC10746484 DOI: 10.1016/j.heliyon.2023.e23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Background The haungqing (Scutellariae Radix) and baishao (Paeoniae Radix Alba) herb pair (HBHP) is a common prescribed herbal formula or is added to other traditional Chinese medicine (TCM) prescriptions to treat ulcerative colitis (UC). However, the underlying mechanism is unclear. Purpose Elucidate the efficacy and potential mechanism of HBHP against UC. Methods First, The UC model of mice induced by dextran sulfate sodium (DSS) was established. The mice were randomly divided into Control group, DSS group, SASP group (390 mg/kg), and HPHP group (1.95 g/kg), with 8 mice per group. Drugs were administrated via oral gavage for 7 days. Then, Disease activity index (DAI), length of the colon, histopathology, and changes in inflammatory cytokines in colonic tissues were analyzed to assess the effect of HBHP on UC. Besides, Network pharmacology was applied to identify the active compounds, core targets of HBHP in the treatment of UC, and the corresponding signaling pathways to explore the underlying mechanisms. Finally, Western blot (WB), immunohistochemistry (IHC) and molecular docking were performed to validate the results. Results HBHP significantly reduced DAI score and decreased colon length shortening in DSS-induced UC mice. The administration of HBHP was able to effectively alleviated mucosal ulceration and epithelial destruction. In addition, HBHP treatment obviously - reduced the expressions of TNF-α, IL-6, and IL-1β in colon tissues (p < 0.05 or p < 0.01). 35 bioactive compounds and 290 HBHP targets related to UC were obtained. Among them 3 key active compounds (baicalein, panicolin, and norwogonin) with higher degree values in the drug-compound-target network and 21 hub genes (STAT3, JAK2, SRC, AKT1, PIK3CA, and VEGFA, etc.) were identified. KEGG enrichment analysis suggested that HBHP's mechanisms mainly involve the JAK-STAT pathway. Abnormal activation of JAK/STAT signaling is believed to be involved in the pathogeneses of UC. Notably, WB and IHC showed that HBHP significantly down-regulated the protein expression levels of p-JAK2 (p < 0.05) and p-STAT3 (p < 0.05 or p < 0.01). JAK2 and STAT3 might be core targets for the action of HBHP; this possibility was also supported by molecular docking. Conclusions HBHP could alleviate DSS-induced UC, reduce tissue inflammation, and its mechanism might primarily be achieved by inhibiting JAK2/STAT3 signaling pathway. Meanwhile, our work revealed that network pharmacology combined with experimental verification is a cogent means of studying the mechanism of TCM.
Collapse
Affiliation(s)
- Bailu Duan
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qiong Hu
- First People's Hospital of Jiangxia District, Wuhan City & Union Jiangnan Hospital, HUST, Wuhan, 430200, China
| | - Fengmin Ding
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei Wang
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- Department of Orthopedics, Hubei Provincial Hospital of TCM Affiliated to Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Nina Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhe Liu
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Song Zhang
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| | - Dongchu He
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| | - Qiping Lu
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- Department of General Surgery, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| |
Collapse
|
12
|
Cai T, Cai B. Network pharmacology and molecular docking reveal potential mechanism of esculetin in the treatment of ulcerative colitis. Medicine (Baltimore) 2023; 102:e35852. [PMID: 37960728 PMCID: PMC10637478 DOI: 10.1097/md.0000000000035852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of the colonic mucosa. Esculetin is a type of natural coumarin that has many pharmacological activities such as antioxidant, anticancer, anti-inflammatory, etc. A previous study showed that esculetin improved intestinal inflammation and reduced serum proinflammatory cytokines in UC. The present study aimed to utilize network pharmacology and molecular docking to explore the potential mechanism of esculetin against UC. The potential gene targets of esculetin were predicted through SwissTargetPrediction and Super-PRED web servers. UC-related genes were obtained from DisGeNet, OMIM, and GeneCards databases. The overlap between gene targets of esculetin and UC-related genes were identified as the potential targets of esculetin against UC. The interaction between these overlapping genes was analyzed by the STRING database and the core genes were identified by Cytoscape platform. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the core genes were then performed. And the results of these analyses were further confirmed through molecular docking. A total of 50 overlapping genes were identified as the potential action targets of esculetin against UC. Among them, 10 genes (AKT1, STAT1, CCND1, SRC, PTGS2, EGFR, NFKB1, ESR1, MMP9, SERPINE1) were finally identified as the core genes. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results showed that the top signaling pathway associated with the core genes of esculetin against UC was the prolactin (PRL) signaling pathway. Molecular docking results showed that esculetin has a strong binding affinity to the core genes, as well as PRL and prolactin receptor. This study suggests that esculetin may have a crucial impact on UC through the PRL signaling pathway and provides insights into the potential mechanism of esculetin in the treatment of UC, which may shed light on the mechanism and treatment of UC.
Collapse
Affiliation(s)
- Ting Cai
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Wuxi, China
| | - Bin Cai
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
13
|
Wang Y, Liu H, Yu S, Huang Y, Zhang Y, He X, Chen W. Changes in marker secondary metabolites revealed the medicinal parts, harvest time, and possible synthetic sites of Rubia cordifolia L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108024. [PMID: 37699290 DOI: 10.1016/j.plaphy.2023.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Rubia cordifolia L. is a significant medicinal plant. To investigate the changes of marker metabolites of R. cordifolia, the purpurin, mollugin, carbon, nitrogen contents, and the expression of genes involved in anthraquinones synthesis were examined. The findings indicated that the two secondary metabolites were only detected in stems and roots. Root purpurin content was 5-26 times higher than in stems, and root mollugin content was 92 times higher than in stems in June. These findings suggest that the potential of the roots as a medicinal part. The roots were found to have highest purpurin content in October (2.406 mg g-1), whereas the mollugin content was highest in August (6.193 mg g-1). However, the purpurin content in August was only 0.029 mg g-1 lower than that in October, making August a suitable harvest period for R. cordifolia. The expression 1-deoxy-D-xylulose 5-phosphate synthase (dxs) and 1-deoxy-D-xylulose-5-phosphate reductorisomerase (dxr) genes in roots showed an upward trend. However, the expression level of dxr gene was significantly higher than dxs with the range of 60-518 times higher, indicating the important role of dxr gene. Through correlation and redundancy analyses, it was found that mollugin showed positive correlation with carbon contents and carbon-nitrogen ratio of aerial parts. Additionally, purpurin showed a positive correlation with the expression of both genes. As a result, mollugin is likely to be synthesized in the aerial parts and then stored in the roots, whereas purpurin might be synthesized in the stems and roots. These findings could provide cultivation guidelines for R. cordifolia.
Collapse
Affiliation(s)
- Yanlin Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Shenyang Urban Ecosystem Research Station, National Forestry and Grassland Administration, Shenyang, 110164, China
| | - Huanchu Liu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Liaoning Shenyang Urban Ecosystem Research Station, National Forestry and Grassland Administration, Shenyang, 110164, China
| | - Shuai Yu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Liaoning Shenyang Urban Ecosystem Research Station, National Forestry and Grassland Administration, Shenyang, 110164, China
| | - Yanqing Huang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China; Liaoning Shenyang Urban Ecosystem Research Station, National Forestry and Grassland Administration, Shenyang, 110164, China
| | - Yue Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China; Liaoning Shenyang Urban Ecosystem Research Station, National Forestry and Grassland Administration, Shenyang, 110164, China
| | - Xingyuan He
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China; Liaoning Shenyang Urban Ecosystem Research Station, National Forestry and Grassland Administration, Shenyang, 110164, China
| | - Wei Chen
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China; Liaoning Shenyang Urban Ecosystem Research Station, National Forestry and Grassland Administration, Shenyang, 110164, China.
| |
Collapse
|
14
|
Li YY, Cui Y, Dong WR, Liu TT, Zhou G, Chen YX. Terminalia bellirica Fruit Extract Alleviates DSS-Induced Ulcerative Colitis by Regulating Gut Microbiota, Inflammatory Mediators, and Cytokines. Molecules 2023; 28:5783. [PMID: 37570753 PMCID: PMC10421151 DOI: 10.3390/molecules28155783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease significantly impacting patients' lives. This study aimed to elucidate the alleviating effect of ethyl acetate extract (TBEA) from Terminalia bellirica fruit on UC and to explore its mechanism. TBEA was the fraction with the best anti-inflammatory activity screened using in vitro anti-inflammatory assays, and HPLC initially characterized its composition. The mice model of ulcerative colitis was established after free drinking of 2.5% dextran sulfate sodium for six days, and the experimental group was treated with 50 mg/kg and 100 mg/kg TBEA for seven days. We found that TBEA significantly alleviated symptoms in UC mice, including a physiologically significant reduction in disease activity index and pathological damage to colonic tissue. TBEA dramatically slowed down oxidative stress and inflammatory process in UC mice, as evidenced by decreasing myeloperoxidase and malondialdehyde activities and increasing glutathione and catalase levels by reducing the concentrations of IL-6, IL-1β, TNF-α, and NO in UC mice, as well as by regulating key proteins in the IL-6/JAK2/STAT3 pathway. Meanwhile, TBEA maintained intestinal homeostasis by regulating intestinal flora structure. Our study provides new ideas for developing TBEA into a new drug to treat UC.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Xin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
15
|
Li S, Xu K, Cheng Y, Chen L, Yi A, Xiao Z, Zhao X, Chen M, Tian Y, Meng W, Tang Z, Zhou S, Ruan G, Wei Y. The role of complex interactions between the intestinal flora and host in regulating intestinal homeostasis and inflammatory bowel disease. Front Microbiol 2023; 14:1188455. [PMID: 37389342 PMCID: PMC10303177 DOI: 10.3389/fmicb.2023.1188455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
Pharmacological treatment of inflammatory bowel disease (IBD) is inefficient and difficult to discontinue appropriately, and enterobacterial interactions are expected to provide a new target for the treatment of IBD. We collected recent studies on the enterobacterial interactions among the host, enterobacteria, and their metabolite products and discuss potential therapeutic options. Intestinal flora interactions in IBD are affected in the reduced bacterial diversity, impact the immune system and are influenced by multiple factors such as host genetics and diet. Enterobacterial metabolites such as SCFAs, bile acids, and tryptophan also play important roles in enterobacterial interactions, especially in the progression of IBD. Therapeutically, a wide range of sources of probiotics and prebiotics exhibit potential therapeutic benefit in IBD through enterobacterial interactions, and some have gained wide recognition as adjuvant drugs. Different dietary patterns and foods, especially functional foods, are novel therapeutic modalities that distinguish pro-and prebiotics from traditional medications. Combined studies with food science may significantly improve the therapeutic experience of patients with IBD. In this review, we provide a brief overview of the role of enterobacteria and their metabolites in enterobacterial interactions, discuss the advantages and disadvantages of the potential therapeutic options derived from such metabolites, and postulate directions for further research.
Collapse
Affiliation(s)
- Siyu Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Kan Xu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailin Yi
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuefei Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Minjia Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuting Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Meng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zongyuan Tang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuhong Zhou
- Department of Laboratory Animal Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
16
|
Albalawi GA, Albalawi MZ, Alsubaie KT, Albalawi AZ, Elewa MAF, Hashem KS, Al-Gayyar MMH. Curative effects of crocin in ulcerative colitis via modulating apoptosis and inflammation. Int Immunopharmacol 2023; 118:110138. [PMID: 37030122 DOI: 10.1016/j.intimp.2023.110138] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with characteristic inflammation to mucosal cells in rectum and colon leading to lesions in mucosa and submucosa. Moreover, crocin is a carotenoid compound among active constituents of saffron with many pharmacological effects as antioxidant, anti-inflammatory and anticancer activities. Therefore, we aimed to investigate therapeutic effects of crocin against UC through affecting the inflammatory and apoptotic pathways. For induction of UC in rats, intracolonic 2 ml of 4% acetic acid was used. After induction of UC, part of rats was treated with 20 mg/kg crocin. cAMP was measured using ELISA. Moreover, we measured gene and protein expression of B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3/8/9, NF-κB, tumor necrosis factor (TNF)-α and IL-1β/4/6/10. Colon sections were stained with hematoxylin-eosin and Alcian blue or immune-stained with anti-TNF-α antibodies. Microscopic images of colon sections in UC group revealed destruction of intestinal glands associated with infiltration of inflammatory cell and severe hemorrhage. While images stained with Alcian blue showed damaged and almost absent intestinal glands. Crocin treatment ameliorated morphological changes. Finally, crocin significantly reduced expression levels of BAX, caspase-3/8/9, NF-κB, TNF-α, IL-1β and IL-6, associated with increased levels of cAMP and expression of BCL2, IL-4 and IL-10. In conclusion, protective of action of crocin in UC is proved by restoration of normal weight and length of colon as well as improvement of morphological structure of colon cells. The mechanism of action of crocin in UC is indicated by activation of anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Ghadeer A Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Maha Z Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Kunuz T Alsubaie
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Mohammed A F Elewa
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Khalid S Hashem
- Biochemistry Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M H Al-Gayyar
- Dept. of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Dept. of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
17
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29:1026-1053. [PMID: 36844140 PMCID: PMC9950862 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|