1
|
Inanan T, Önal Darilmaz D, Karaduman Yeşildal T, Yüksekdağ Z, Yavuz S. Structural characteristics of Lacticaseibacillus rhamnosus ACS5 exopolysaccharide in association with its antioxidant and antidiabetic activity in vitro. Int J Biol Macromol 2024; 280:136148. [PMID: 39357712 DOI: 10.1016/j.ijbiomac.2024.136148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
A novel structure of exopolysaccharide from the Lactic Acid Bacteria (LAB) Lacticaseibacillus rhamnosus ACS5, isolated from home-made Turkish cheese, is described. After lyophilization, the L-EPS-ACS5 was characterized in production and functional activities in vitro, including antioxidant and antidiabetic activities. The physicochemical characterizations of the L-EPS-ACS5 were determined through molecular weight, UV, FTIR, SEM, TGA, HPLC, NMR, methylation, and GC-MS analysis. Strong antioxidant activities of L-EPS-ACS5 were confirmed from the results obtained in the hydroxyl radical, DPPH, ABTS, FRAP, superoxide anion radical, total antioxidant activity, and DNA damage protective effect, and also the L-EPS-ACS5 exhibited high antidiabetic activity (60 %). This study isolated L-EPS-ACS5 from a home-made cheese L. rhamnosus strain, demonstrating its novel and enhanced functionalities compared to existing strains. This opens exciting avenues for its development in the fields of biomedicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tülden Inanan
- Technical Vocational School, Department of Chemistry and Chemical Processing Technology, Aksaray University, Aksaray 68100, Turkey
| | - Derya Önal Darilmaz
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey.
| | - Tuğçe Karaduman Yeşildal
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey
| | - Zehranur Yüksekdağ
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey.
| | - Serkan Yavuz
- Department of Chemistry, Faculty of Science, Gazi University, Ankara 06500, Turkey.
| |
Collapse
|
2
|
Jiang M, Yang SZ, Zhang XY, Zhang LZ, Gong JS, Han TT, Chen Y, Wang XN, Shi JS. Protective effect of ferulic acid-hyaluronic acid copolymer against UVB irradiation in a human HaCaT cell line. Int J Biol Macromol 2024; 279:135570. [PMID: 39270908 DOI: 10.1016/j.ijbiomac.2024.135570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Excessive UVB exposure increased the production of reactive oxygen species (ROS), leading to oxidative damage and epidermal inflammation. To enhance UVB protection effect, a strong phenolic antioxidant, ferulic acid (FA) was designed onto HA via a free radical mediated method. Our previous work has confirmed its structural characterization and in vitro antioxidant. The aim of this study was to evaluate its protective effects against UVB-induced damage in human HaCaT cells. We observed a significant reduction in cell viability to 57.43 % following UVB exposure at a dose of 80 mJ/cm2. However, pretreatment with FA-HA (250 to 2000 μg·mL-1) significantly attenuated cytotoxicity in a dose-dependent manner. Furthermore, FA-HA was found to suppress the intracellular generation of ROS and up-regulated the expression of the antioxidant enzyme superoxide dismutase (SOD). The elevated levels of pro-inflammatory cytokines, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) as well as the mRNA expression of matrix metalloproteinase-1/9 (MMP-1/9) induced by UVB irradiation, were also effectively reduced by FA-HA. Additionally, FA-HA treatment decreases the phosphorylation of mitogen-activated protein kinase (MAPK) and activator protein-1 (AP-1), ultimately preventing apoptosis. These findings suggest that FA-HA is a promising candidate for UVB protection in skincare formulations.
Collapse
Affiliation(s)
- Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Su-Zhen Yang
- Shandong Freda Biotech Co., Ltd., Jinan 250000, PR China
| | - Xiao-Yue Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lu-Zhi Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ting-Ting Han
- Shandong Freda Biotech Co., Ltd., Jinan 250000, PR China
| | - Yu Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Na Wang
- Shandong Freda Biotech Co., Ltd., Jinan 250000, PR China.
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Lall D, Glaser MM, Higgs PI. Myxococcus xanthus fruiting body morphology is important for spore recovery after exposure to environmental stress. Appl Environ Microbiol 2024; 90:e0166024. [PMID: 39365039 PMCID: PMC11497814 DOI: 10.1128/aem.01660-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores. Myxococcus xanthus are ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium, Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions.
Collapse
Affiliation(s)
- Dave Lall
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maike M. Glaser
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Penelope I. Higgs
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
4
|
Ji W, Qian C, Su X, Li X, Zhang Z, Ma Y, Zhang M, Li D. Structure characterization and protective effect against UVB irradiation of polysaccharides isolated from the plateau plant Gentiana dahurica Fisch. Int J Biol Macromol 2024; 267:131551. [PMID: 38621566 DOI: 10.1016/j.ijbiomac.2024.131551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Gentiana dahurica Fisch. (G. dahurica) is one of the legitimate sources of Qinjiao in Traditional Chinese Medicine (TCM) and grows on high-altitude plateaus. Plants develop unique biochemical accumulations to resist plateau conditions, especially the strong UV irradiation. Thus, this study aimed to investigate the polysaccharide of G. dahurica (GDP), its structure and its activity against UVB irradiation. Four GDPs were isolated and two of them were subjected to structural elucidation. The results suggested that GDP-1 has 53.5 % Ara and 30.8 % GalA as its main monosaccharides, with a molecular weight (Mw) of 23 kDa; the GDP-2 has 33.9 % Ara and 48.5 % GalA, with a Mw of 82 kDa. Methylation and NMR spectroscopy analysis revealed that GDP-1 contains →5)-α-Araf-(1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1 → 3,4)-α-GalpA-(6-OMe)-(1→ as the main chain, the branches of GalA (with esterification), and the terminal Ara; the GDP-2 contains →4)-α-GalpA-(1 → 4)-α-GalpA-(6-OMe)-(1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1→ as the main chain, the branches of →5)-α-Araf-(1-5)-α-Araf, and the terminal GalA. Both GDP-1 and GDP-2 exhibited concentration-dependent antioxidant activity against DPPH, ABTS and hydroxyl radicals. Moreover, GDPs significantly attenuated the decreases in viability and proliferation of HaCaT cells after UVB irradiation. They can scavenge reactive oxygen species (ROS) and improve the activities of endogenous antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH). The potential mechanism explored by flow cytometry assays of cell apoptosis and cell cycle distribution suggested that GDPs exert protective effects against UVB irradiation by reducing ROS and attenuating S phase cell arrest. In brief, the GDP-1 and GDP-2 are α-1,3- and α-1,4- arabinogalacturonan, respectively. The high content of Ara could be attributed to biochemical accumulation in resisting to the plateau environment and to prevent UVB irradiation-related damage in cells. These findings provide insight into authentic medicinal herbs and the development of GDPs in the modern pharmaceutical and cosmetics industry.
Collapse
Affiliation(s)
- Wen Ji
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Cuiyin Qian
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Xiaopeng Su
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Xiang Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Zhenqing Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Yonggui Ma
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, School of Life Sciences, Qinghai Normal University, Xining 810008, PR China.
| | - Mingjin Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, PR China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, PR China.
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, PR China.
| |
Collapse
|
5
|
Peng S, Guo C, Cui H, Duan Z. Complete genome analysis of Lactiplantibacillus plantarum VHProbi P06, a novel probiotic that resists Streptococcus pneumoniae in the upper respiratory tract. Int J Biol Macromol 2023; 253:127320. [PMID: 37832615 DOI: 10.1016/j.ijbiomac.2023.127320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The purpose of this study was to screen lactic acid bacteria active against Streptococcus pneumoniae and to analyze the genetic basis of their probiotic functions from the genome. We isolated a novel Lactiplantibacillus plantarum VHProbi P06 from pickles, which showed strong antibacterial activity against S. pneumoniae, adhesion to 5-8F cells, and inhibition of S. pneumoniae colonization in the respiratory tract. Genome of VHProbi P06 was analyzed, we found one class II bacteriocin synthesis gene cluster. Genome of the strain contained 42 adhesion-related protein-coding genes, and implicated three exopolysaccharide biosynthesis gene clusters with low homologous to L. plantarum WCFS1. Moreover, VHProbi P06 possessed 3 intact phage regions and 117 Carbohydrate Active Enzyme genes. By comparing the genomes of five L. plantarum, 275 unique genes were found in VHProbi P06. Finally, the gene prediction was verified, the bacteriocin PlnJK produced by P06 was identified by LC-MS/MS, and the laminar exopolysaccharide with a weight-averaged molecular of 125.37 KDa was also found. This study provides a theoretical basis for the application of VHProbi P06 to the upper respiratory tract to resist pathogenic bacteria.
Collapse
Affiliation(s)
- Shudong Peng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China; Guangdong Youmei Institute of Intelligent Bio-manufacturing Co., Ltd, Guangzhou, China
| | - Chaoqun Guo
- Qingdao Vland Biotech Inc. Nutrition & Health Technology Center, Qingdao, China
| | - Hongchang Cui
- Qingdao Vland Biotech Inc. Nutrition & Health Technology Center, Qingdao, China
| | - Zhi Duan
- Qingdao Vland Biotech Inc. Nutrition & Health Technology Center, Qingdao, China.
| |
Collapse
|
6
|
Guo W, Mao B, Tang X, Zhang Q, Zhao J, Zhang H, Chen W, Cui S. Improvement of inflammatory bowel disease by lactic acid bacteria-derived metabolites: a review. Crit Rev Food Sci Nutr 2023; 65:1261-1278. [PMID: 38078699 DOI: 10.1080/10408398.2023.2291188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lactic acid bacteria (LAB) plays a crucial role in the establishment and maintenance of host health, as well as the improvement of some diseases. One of the major modes is the secretion of metabolites that may be intermediate or end products of the LAB's metabolism. In this review, we summarized some common metabolites (particularly short-chain fatty acids [SCFAs], bacteriocin, and exopolysaccharide [EPS]) from LAB in fermented foods and the gut for the first time. The effects of LAB-derived metabolites (LABM) on inflammation, oxidative stress, the intestinal barrier, and gut microbiota in inflammatory bowel disease (IBD) model are also discussed. The discovery of LABM and identification of IBD biomarkers are mainly attributed to the development of metabolomics technologies, especially nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography tandem mass spectrometry (LC-MS). The application of these metabolomics technologies in identification of LABM and IBD biomarkers are also summarized and analyzed. Although the beneficial effects of some LABM have been explored, undiscovered metabolites and their functions still need further investigations.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|