1
|
Alesary HF, Odda AH, Ismail HK, Hassan WH, Alghanimi GA, Halbus AF, Sultan HKI, Al-Kinani AA, Barton S. Green triiron tetraoxide@Algae (Fe 3O 4@Algae) nanoparticles for highly efficient removal of lead (Pb 2+), cadmium (Cd 2+), and aluminum (Al 3+) from contaminated water: an isothermal, kinetic, and thermodynamic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6817-6838. [PMID: 40016609 DOI: 10.1007/s11356-025-36169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Developing and producing a versatile adsorbent for effective wastewater treatment remains a significant obstacle to wastewater processing. As the objective is to eliminate various metal ions (lead, cadmium, and aluminum) from wastewater, we therefore strategically designed and synthesized new iron oxide nanoparticles (Fe3O4 NPs) based on the green algae called triiron tetraoxide@algae nanoparticles (Fe3O4@Algae NPs) that grow in the same contaminated water using a facile one-pot green synthetic method. Investigations were conducted into the adsorption circumstances, including pH, starting concentration, adsorbent dosage, and adsorption time. More importantly, great absorption of lead, cadmium, and aluminum was achieved, with 97.5%, 81.3%, and 75.13%, respectively. The best conditions were 60 min, 0.1 g of nanoparticles, at 25 °C, and 150 mL of water containing 30 mg/L of Pb, Cd, and Al, with pH 6 for Cd and Pb and pH 5 for Al. To analyze the kinetics and equilibrium adsorption data and to evaluate the interaction between the metal ions and the adsorbent, a variety of kinetic and isotherm models were employed. The Langmuir isotherm and a pseudo-second-order were the best ways to look at the adsorption isotherm and kinetics data for how the Fe3O4@algae removes metal ions. Furthermore, thermodynamic studies showed that the adsorption process was an exothermic, favorable, and spontaneous reaction. For the elimination of Al(III), Pb(II), and Cd(II), the Fe3O4@algae experimental adsorption capacity was 33.8 mg/g, 56.70 mg/g, and 36.58 mg/g, respectively. The composite of Fe3O4@algae nanoparticles was characterized using several analytical techniques including scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and UV-vis spectroscopy. In addition, the material exhibited notable durability and recyclability, with the metal removal effectiveness remaining at a high level even after undergoing five successive adsorption cycles. This study paves the way to the use of green nanotechnology for eco-friendly, cheap, and rapid techniques that can be used in the purification of wastewater.
Collapse
Affiliation(s)
- Hasan F Alesary
- Applied Medical Sciences College, University of Kerbala, Karbala, Iraq
| | - Atheer Hameid Odda
- Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | - Hani K Ismail
- Department of Chemistry, Faculty of Science and Health, Koya University, Koya, Koya KOY45, Kurdistan Region - F.R, Iraq.
| | - Waqed H Hassan
- University of Warith Al-Anbiyaa, Karbala, 56001, Iraq
- College of Engineering, University of Kerbala, Karbala, 56001, Iraq
| | | | - Ahmed F Halbus
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq
| | - Hani K I Sultan
- College of Pharmacy, Al-Kitab University, Kirkuk, 36015, Iraq
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care Research Group, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, KT1 2EE, UK
| | - Stephen Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, Surrey, UK
| |
Collapse
|
2
|
Zango ZU, Khoo KS, Ali AF, Abidin AZ, Zango MU, Lim JW, Wadi IA, Eisa MH, Alhathlool R, Abu Alrub S, Aldaghri O, Suresh S, Ibnaouf KH. Development of inorganic and mixed matrix membranes for application in toxic dyes-contaminated industrial effluents with in-situ treatments. ENVIRONMENTAL RESEARCH 2024; 256:119235. [PMID: 38810826 DOI: 10.1016/j.envres.2024.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ahmed Fate Ali
- Department of Environmental Management, Bayero University, 3011, Kano State, Nigeria
| | - Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ismael A Wadi
- Prince Sattam Bin Abdulaziz University, Basic Science Unit, Alkharj, 16278, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Raed Alhathlool
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - S Abu Alrub
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Cifuentes-Cabezas M, García-Suarez L, Soler-Cabezas JL, Cuartas-Uribe B, Álvarez-Blanco S, Mendoza-Roca JA, Vincent-Vela MC. Feasibility of Forward Osmosis to Recover Textile Dyes Using Single Salts and Multicomponent Draw Solutions. MEMBRANES 2023; 13:911. [PMID: 38132915 PMCID: PMC10744723 DOI: 10.3390/membranes13120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The textile industry generates large volumes of water characterized mainly by an intense color coming from dyes that are difficult to process due to their synthetic base and the presence of aromatic components. Due to the stricter regulation on the discharge of these effluents, in order to reduce dye waste before discharge into natural channels, alternatives are being sought to manage this wastewater. In this work, the concentration of dyes in simulated wastewater from the textile industry was studied by forward osmosis (with a cellulose triacetate CTA membrane), with the aim of concentrating the dye for its future recovery and reincorporation into the production process. Two dyes of different nature were evaluated to study the efficiency of the proposed process, using NaCl and reverse osmosis brine from a model seawater desalination solution as extraction solutions. It was observed that dye type (reactive or direct) and their charge influence the color rejection with the forward osmosis membrane used. It was able to concentrate the dyes in the feed solution up to approximately 55% with the reverse osmosis brine from the model seawater desalination solution. Finally, the results demonstrate that the FO process is a promising option for concentrating dyes present in wastewater from the textile industry in order to reuse them in the dyeing process.
Collapse
Affiliation(s)
- Magdalena Cifuentes-Cabezas
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain; (J.L.S.-C.); (B.C.-U.); (S.Á.-B.); (J.A.M.-R.); (M.-C.V.-V.)
| | | | - José Luis Soler-Cabezas
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain; (J.L.S.-C.); (B.C.-U.); (S.Á.-B.); (J.A.M.-R.); (M.-C.V.-V.)
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - Beatriz Cuartas-Uribe
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain; (J.L.S.-C.); (B.C.-U.); (S.Á.-B.); (J.A.M.-R.); (M.-C.V.-V.)
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Álvarez-Blanco
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain; (J.L.S.-C.); (B.C.-U.); (S.Á.-B.); (J.A.M.-R.); (M.-C.V.-V.)
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - José Antonio Mendoza-Roca
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain; (J.L.S.-C.); (B.C.-U.); (S.Á.-B.); (J.A.M.-R.); (M.-C.V.-V.)
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - María-Cinta Vincent-Vela
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain; (J.L.S.-C.); (B.C.-U.); (S.Á.-B.); (J.A.M.-R.); (M.-C.V.-V.)
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|