1
|
Goldhawk DE, Al KF, Donnelly SC, Varela-Mattatall GE, Dassanayake P, Gelman N, Prato FS, Burton JP. Assessing microbiota in vivo: debugging with medical imaging. Trends Microbiol 2025; 33:408-420. [PMID: 39746827 DOI: 10.1016/j.tim.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
The microbiota is integral to human health and has been mostly characterized through various ex vivo 'omic'-based approaches. To better understand the real-time function and impact of the microbiota, in vivo molecular imaging is required. With technologies such as positron emission tomography (PET), magnetic resonance imaging (MRI), and computed tomography (CT), insight into microbiological processes may be coupled to in vivo information. Noninvasive imaging enables longitudinal tracking of microbes and their components in real time; mapping of microbiota biodistribution, persistence and migration; and simultaneous monitoring of host physiological responses. The development of molecular imaging for clinical translation is an interdisciplinary science, with broad implications for deeper understanding of host-microbe interactions and the role(s) of the microbiome in health and disease.
Collapse
Affiliation(s)
- Donna E Goldhawk
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Kait F Al
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotic Research, Lawson Research Institute, London, Ontario, Canada
| | | | - Gabriel E Varela-Mattatall
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Praveen Dassanayake
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Neil Gelman
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Frank S Prato
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotic Research, Lawson Research Institute, London, Ontario, Canada; Department of Surgery, Division of Urology, Western University, London, Ontario, Canada.
| |
Collapse
|
2
|
Anwer M, Bhaliya K, Munn A, Wei MQ. Bacterial ghosts: A breakthrough approach to cancer vaccination. Biomed Pharmacother 2025; 182:117766. [PMID: 39700871 DOI: 10.1016/j.biopha.2024.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer is a devastating disease worldwide with high mortality rates and is a foremost concern for society. Immunotherapy has emerged as a promising strategy for treating cancer, harnessing the power of immune system to recognize and kill tumor cells. Bacterial ghosts (BGs), a novel platform in cancer vaccination, are suitable for personalized and effective immunotherapeutic interventions. BG are empty bacterial cell envelopes generated through a controlled lysis process, leaving behind empty but structurally intact cell membranes. BGs have been used as vaccine adjuvants and vaccine delivery vehicles worldwide. They possess inherent immunogenicity, enabling them to be used for controlled release and targeted drug delivery. Recently, the potential of BGs has been explored for tumor inhibition, making them suitable carrier vehicles. This review highlights cancer immunotherapy, methods of BG preparation, characterization of BGs, the interaction of BGs with the immune system, and research progress on BG-based cancer vaccines with future insights.
Collapse
Affiliation(s)
- Muneera Anwer
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia.
| | - Krupa Bhaliya
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| | - Alan Munn
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| | - Ming Q Wei
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| |
Collapse
|
3
|
Zaatry R, Herren R, Gefen T, Geva-Zatorsky N. Microbiome and infectious disease: diagnostics to therapeutics. Microbes Infect 2024; 26:105345. [PMID: 38670215 DOI: 10.1016/j.micinf.2024.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Over 300 years of research on the microbial world has revealed their importance in human health and disease. This review explores the impact and potential of microbial-based detection methods and therapeutic interventions, integrating research of early microbiologists, current findings, and future perspectives.
Collapse
Affiliation(s)
- Rawan Zaatry
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Rachel Herren
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Tal Gefen
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Naama Geva-Zatorsky
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel; CIFAR, Humans & the Microbiome, Toronto, Canada.
| |
Collapse
|
4
|
Obregon-Gutierrez P, Bonillo-Lopez L, Correa-Fiz F, Sibila M, Segalés J, Kochanowski K, Aragon V. Gut-associated microbes are present and active in the pig nasal cavity. Sci Rep 2024; 14:8470. [PMID: 38605046 PMCID: PMC11009223 DOI: 10.1038/s41598-024-58681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The nasal microbiota is a key contributor to animal health, and characterizing the nasal microbiota composition is an important step towards elucidating the role of its different members. Efforts to characterize the nasal microbiota composition of domestic pigs and other farm animals frequently report the presence of bacteria that are typically found in the gut, including many anaerobes from the Bacteroidales and Clostridiales orders. However, the in vivo role of these gut-microbiota associated taxa is currently unclear. Here, we tackled this issue by examining the prevalence, origin, and activity of these taxa in the nasal microbiota of piglets. First, analysis of the nasal microbiota of farm piglets sampled in this study, as well as various publicly available data sets, revealed that gut-microbiota associated taxa indeed constitute a substantial fraction of the pig nasal microbiota that is highly variable across individual animals. Second, comparison of herd-matched nasal and rectal samples at amplicon sequencing variant (ASV) level showed that these taxa are largely shared in the nasal and rectal microbiota, suggesting a common origin driven presumably by the transfer of fecal matter. Third, surgical sampling of the inner nasal tract showed that gut-microbiota associated taxa are found throughout the nasal cavity, indicating that these taxa do not stem from contaminations introduced during sampling with conventional nasal swabs. Finally, analysis of cDNA from the 16S rRNA gene in these nasal samples indicated that gut-microbiota associated taxa are indeed active in the pig nasal cavity. This study shows that gut-microbiota associated taxa are not only present, but also active, in the nasal cavity of domestic pigs, and paves the way for future efforts to elucidate the function of these taxa within the nasal microbiota.
Collapse
Affiliation(s)
- Pau Obregon-Gutierrez
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Laura Bonillo-Lopez
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Karl Kochanowski
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain.
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
5
|
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M. Interaction of Heavy Metal Lead with Gut Microbiota: Implications for Autism Spectrum Disorder. Biomolecules 2023; 13:1549. [PMID: 37892231 PMCID: PMC10605213 DOI: 10.3390/biom13101549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by persistent deficits in social interaction and communication, manifests in early childhood and is followed by restricted and stereotyped behaviors, interests, or activities in adolescence and adulthood (DSM-V). Although genetics and environmental factors have been implicated, the exact causes of ASD have yet to be fully characterized. New evidence suggests that dysbiosis or perturbation in gut microbiota (GM) and exposure to lead (Pb) may play important roles in ASD etiology. Pb is a toxic heavy metal that has been linked to a wide range of negative health outcomes, including anemia, encephalopathy, gastroenteric diseases, and, more importantly, cognitive and behavioral problems inherent to ASD. Pb exposure can disrupt GM, which is essential for maintaining overall health. GM, consisting of trillions of microorganisms, has been shown to play a crucial role in the development of various physiological and psychological functions. GM interacts with the brain in a bidirectional manner referred to as the "Gut-Brain Axis (GBA)". In this review, following a general overview of ASD and GM, the interaction of Pb with GM in the context of ASD is emphasized. The potential exploitation of this interaction for therapeutic purposes is also touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|