1
|
Lai S, Wan H, Deng F, Li Y, An Y, Peng J, Yang XN. Efficacy and Safety of Acupuncture for Tourette Syndrome in Children: A Meta-Analysis and Systematic Review. Clin Pediatr (Phila) 2025; 64:719-735. [PMID: 39345099 DOI: 10.1177/00099228241283279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Despite the widespread use of acupuncture, its effectiveness and safety in treating Tourette syndrome (TS) remain controversial. Our research seeks to further evaluate the safety and effectiveness of acupuncture as a replacement therapy approach for children with TS. We conducted a comprehensive search for studies published from their inception to October 2023. The statistical analysis and subgroup analysis were conducted by software. Conduct a meta-analysis on the extracted data using the appropriate effect models. The meta-analysis was conducted on 26 studies consisting 1862 pediatric patients, which were selected from 976 identified articles. Acupuncture group demonstrated a significantly lower risk with a risk ratio (RR) of 0.29 (95% confidence interval [CI] = 0.19, 0.44, P < .0001), with only 5% of participants experiencing adverse reactions. Acupuncture treatment resulted in an 18% improvement in total effectiveness rates (RR = 1.18, 95% CI = [1.12, 1.25], P < .00001). The pooled data demonstrated that acupuncture therapy had a significant advantage in reducing the total score with the weighted mean difference (WMD) -4.92 (95% CI = [-6.38, -3.45], P < .00001) of the Yale Global Tic Severity Scale (YGTSS), the motor tic scores (WMD = -2.24, 95% CI = [-3.14, -1.35], P < .00001), the vocal tic scores (WMD: -2.34, 95% CI = [-3.31, -1.37], P < .00001), and the Traditional Chinese Medicine Syndrome Scores (TCMSS) (WMD: -2.47, 95% CI = [-2.87, -2.07], P < .0001). This meta-analysis reveals that acupuncture is more effective than most existing treatments in mitigating the symptoms of motor and vocal tics in children with TS, while also reducing the incidence of adverse reactions.
Collapse
Affiliation(s)
- Siran Lai
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongjun Wan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyuan Deng
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Li
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue An
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junsheng Peng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang-Na Yang
- Department of Pediatric Traditional Chinese Medicine Clinic, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
2
|
Wu X, Hao J, Jiang K, Wu M, Zhao X, Zhang X. Neuroinflammation and pathways that contribute to tourette syndrome. Ital J Pediatr 2025; 51:63. [PMID: 40022157 PMCID: PMC11871796 DOI: 10.1186/s13052-025-01874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/26/2025] [Indexed: 03/03/2025] Open
Abstract
Tourette syndrome (TS), a neurological and psychological disease, typically exhibit motor and phonic tics. The pathophysiology of TS remains controversial. Currently, the recognized pathogenesis of TS is the imbalance of neurotransmitters, involving abnormality of the cortex-striatum-thalamus-cortex circuit. Recently, clinical researches demonstrate that triggers such as infection and allergic reaction could lead to the onset or exacerbation of tic symptoms. Current studies have also suggested that neural-immune crosstalk caused by inflammation is also associated with TS, potentially leading to the occurrence of tics by inducing neurotransmitter abnormalities. Herein, we review inflammation-related factors contributing to the occurrence of TS as well as the mechanisms by which immune-inflammatory pathways mediate the onset of TS. This aims to clarify the pathogenesis of TS and provide a theoretical basis for the treatment of TS.
Collapse
Affiliation(s)
- Xinnan Wu
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Hao
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Keyu Jiang
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wu
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Zhao
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Zhang
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Aydin S, Darko K, Jenkins A, Detchou D, Barrie U. Deep brain stimulation for Tourette's syndrome. Neurosurg Rev 2024; 47:734. [PMID: 39367173 DOI: 10.1007/s10143-024-02958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Tourette's syndrome is a neuropsychiatric disorder characterized by formidable motor and vocal tics. Many individuals also present with comorbid neuropsychiatric conditions. Though patients often benefit from pharmacological and behavioral therapies, a subset of individuals develop severe, treatment-resistant symptoms that might necessitate more invasive interventions, such as Deep Brain Stimulation (DBS). DBS, particularly targeting regions like the globus pallidus internus (GPi) and the centromedian-parafascicular complex (CM-Pf) of the thalamus, has demonstrated effectiveness in reducing tic severity and improving quality of life. This review outlines the mechanism, clinical efficacy, and long-term outcome of DBS in TS. Results from clinical studies reveal significant reductions in tics. However, success with DBS is variable depending on a number of factors, including target selection and electrode placement. The use of DBS has ethical considerations, which include risks to the surgical procedure, the need for full and complete informed consent, and questions about the implications of such treatment on cognitive and emotional growth. Long-term follow-up will be required to ensure appropriate patient outcomes and complication management. Additional research and ethical debate will be needed with advancing DBS technology to ensure responsible and equitable treatment. This paper narratively summarizes the surgical options available for TS, with a focus on the current status of DBS in the management of the disease.
Collapse
Affiliation(s)
- Serhat Aydin
- School of Medicine, Koc University, Istanbul, Turkey
| | - Kwadwo Darko
- Department of Neurosurgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Abigail Jenkins
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donald Detchou
- Department of Neurosurgery, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Umaru Barrie
- Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA
| |
Collapse
|
4
|
Zhao J, Bai X. Discovery of key biomarkers in tourette syndrome by network pharmacology. Front Pharmacol 2024; 15:1397203. [PMID: 39318779 PMCID: PMC11420008 DOI: 10.3389/fphar.2024.1397203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024] Open
Abstract
Background Yangxue Xifeng Decoction (YXD) has been utilized in clinical settings for the treatment of Tourette Syndrome (TS). However, the action mechanism of YXD needs further research. Methods The ingredients and targets of YXD were identified via database searches and then constructed an active ingredient-target network using Cytoscape. Pathway enrichment analysis was performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The core genes were determined by LASSO regression and SVM algorithm. Additionally, we analyzed the immune infiltration. The signaling pathways associated with core genes were investigated through KEGG and GO. We predicted the transcription factors using "RcisTarge". Results 127 active ingredients of YXD and 255 targets were obtained. TNF and the IL-17 signaling pathway were the main pathways. OPRM1 and VIM were screened out as core genes, which were associated with the immune infiltration. The signaling pathways involved in OPRM1 and VIM were enriched. Furthermore, remarkable correlation was found between OPRM1 and VIM levels and other TS-related genes such as MAPT and MAPT. Conclusion OPRM1 and MAPT, and the signaling pathways are associated with TS. YXD exerts its therapeutic TS through multi-component and multi-targets including immune infiltration.
Collapse
Affiliation(s)
- Jiali Zhao
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Harbin Hospital of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaohong Bai
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
5
|
Orth L, Meeh J, Leiding D, Habel U, Neuner I, Sarkheil P. Aberrant Functional Connectivity of the Salience Network in Adult Patients with Tic Disorders: A Resting-State fMRI Study. eNeuro 2024; 11:ENEURO.0223-23.2024. [PMID: 38744491 PMCID: PMC11167695 DOI: 10.1523/eneuro.0223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 05/16/2024] Open
Abstract
Tic disorders (TD) are characterized by the presence of motor and/or vocal tics. Common neurophysiological frameworks suggest dysregulations of the cortico-striatal-thalamo-cortical (CSTC) brain circuit that controls movement execution. Besides common tics, there are other "non-tic" symptoms that are primarily related to sensory perception, sensorimotor integration, attention, and social cognition. The existence of these symptoms, the sensory tic triggers, and the modifying effect of attention and cognitive control mechanisms on tics may indicate the salience network's (SN) involvement in the neurophysiology of TD. Resting-state functional MRI measurements were performed in 26 participants with TD and 25 healthy controls (HC). The group differences in resting-state functional connectivity patterns were measured based on seed-to-voxel connectivity analyses. Compared to HC, patients with TD exhibited altered connectivity between the core regions of the SN (insula, anterior cingulate cortex, and temporoparietal junction) and sensory, associative, and motor-related cortices. Furthermore, connectivity changes were observed in relation to the severity of tics in the TD group. The SN, particularly the insula, is likely to be an important site of dysregulation in TD. Our results provide evidence for large-scale neural deviations in TD beyond the CSTC pathologies. These findings may be relevant for developing treatment targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| | - Delia Leiding
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment: symptomatic (based on phenomenology) and molecular mechanism-based therapy or 'precision medicine' (which is disease-modifying). RECENT FINDINGS We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich's ataxia and Rett syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain stimulation and lesioning with focused ultrasound. SUMMARY Childhood-onset movement disorders have traditionally been treated symptomatically based on phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics. The development of precision therapies is driven by increasing capabilities for genetic testing and a better delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the treatment of genetic childhood-onset movement disorders while also discussing general challenges in therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness framework.
Collapse
Affiliation(s)
- Lindsey Vogt
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto Ontario, Canada
| | - Vicente Quiroz
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|