1
|
Xu Q, Zhou Y, Wu M, Wu S, Yu J, Xu Y, Wei Z, Jin L. MTHFD2: A metabolic checkpoint altering trophoblast invasion and migration by remodeling folate-nucleotide metabolism in recurrent spontaneous abortion. Cell Signal 2025; 132:111808. [PMID: 40250694 DOI: 10.1016/j.cellsig.2025.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/30/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Recurrent spontaneous abortion (RSA) affects female reproduction worldwide, yet its pathological mechanisms are still unclear. It has been reported that cellular metabolism reprogramming is a critical step for trophoblasts during embryo implantation. Herein, MTHFD2 was recognized as a key metabolic checkpoint attributed to RSA occurrence. This work figured out that the expression level of MTHFD2 was significantly inhibited in villus tissues from RSA patients, suggesting the potential role of MTHFD2 in RSA occurrence. Moreover, MTHFD2 knockdown impaired cellular folate-nucleotide metabolism, induced the accumulation of AICAR, and thereby impairing the EMT process to inhibit the invasion and migration of trophoblasts Besides, the AICAR accumulation further activated the downstream AMPK which deactivated the JAK/STAT/Slug pathway and ultimately deactivated the EMT process. Using a mouse model, MTHFD2 inhibition was observed to induce embryo implantation failure in vivo. Our results highlighted MTHFD2 as a metabolic checkpoint that remodeled folate-nucleotide metabolism to regulate the EMT process and ultimately altered the migration and invasion of trophoblasts in RSA occurrence. Our findings suggested that MTHFD2 was a promising therapeutic target in recurrent spontaneous abortion treatment.
Collapse
Affiliation(s)
- Qingxin Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yicheng Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Meijuan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shengnan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China.
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China.
| |
Collapse
|
2
|
Yang SH, Gan J, Xu HR, Shi JX, Wang J, Zhang X. The BMP Signaling Pathway: Bridging Maternal-Fetal Crosstalk in Early Pregnancy. Reprod Sci 2025; 32:1427-1445. [PMID: 39821798 DOI: 10.1007/s43032-024-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
The maintenance of early pregnancy is a complex and distinctive process, primarily characterized by critical reproductive events such as embryo implantation, trophoblasts differentiation, decidualization, and extravillous trophoblasts (EVTs) invasion etc. However, dysregulation of these essential reproductive processes can result in various pregnancy complications, including recurrent miscarriage, preeclampsia, and fetal growth restriction etc. Notably, these complications exhibit an interconnected regulatory network that suggests shared underlying pathophysiological mechanisms. Meanwhile, the role of the BMP signaling pathway in sustaining early pregnancy is increasingly being investigated and elucidated. In this review, we have clarified the specific molecular mechanisms which are fundamental to essential reproductive processes and summarize an overview of animal models associated with BMP signaling molecules. In addition, we present a novel perspective on several contentious viewpoints regarding the functional roles of BMP ligands. Therefore, we anticipated a comprehensive understanding of the precise ways in which the BMP signaling pathway affects reproductive events during early pregnancy could provide new perspectives and approaches for preventing and addressing early pregnancy complications.
Collapse
Affiliation(s)
- Shu-Han Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Jie Gan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Hao-Ran Xu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Jia-Xin Shi
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Jian Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.
| | - Xuan Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
3
|
Lee W, Song G, Bae H. Alpinumisoflavone ameliorates H 2O 2-induced intracellular damages through SIRT1 activation in pre-eclampsia cell models. Bioorg Chem 2024; 152:107720. [PMID: 39182259 DOI: 10.1016/j.bioorg.2024.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Pre-eclampsia (PE) is classified as pregnancy-specific hypertensive disease and responsible for severe fetal and maternal morbidity and mortality, which influenced an approximate 3 ∼ 8 % of all pregnancies in both developed and developing countries. However, the exact pathological mechanism underlying PE has not been elucidated and it is urgent to find innovate pharmacotherapeutic agents for PE. Recent studies have reported that a crucial part of the etiology of PE is played by placental oxidative stress. Therefore, to treat PE, a possible treatment approach is to mitigate the placental oxidative stress. Alpinumisoflavone (AIF) is a prenylated isoflavonoid originated in mandarin melon berry called Cudrania tricuspidate, and is well known for its versatile pharmacotherapeutic properties, including anti-fibrotic, anti-inflammatory, anti-tumor, and antioxidant activity. However, protective property of AIF on extravillous trophoblast (EVT) under placental oxidative stress has not been elucidated yet. Therefore, we assessed stimulatory effects of AIF on the viability, invasion, migration, mitochondria function in the representative EVT cell line, HTR-8/SVneo cell. Moreover, protective activities of AIF from H2O2 were confirmed, in terms of reduction in apoptosis, ROS production, and depolarization of mitochondrial membrane. Furthermore, we confirmed the direct interaction of AIF with sirtuin1 (SIRT1) using molecular docking analysis and SIRT1-mediated signaling pathways associated with the protective effects of AIF on HTR-8/SVneo cells under oxidative stress. Finally, beneficial efficacy of AIF against oxidative stress was further confirmed using BeWo cells, syncytiotrophoblast cell lines. These results suggest that AIF may ameliorate H2O2-induced intracellular damages through SIRT1 activation in human trophoblast cells.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Hyocheol Bae
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
4
|
Wang D, Li X, Li Y, Wang R, Wang C, Li Y. New molecular mechanisms of quercetin in improving recurrent spontaneous abortion based on in-depth network pharmacology and molecular docking. Front Chem 2024; 12:1407667. [PMID: 39296365 PMCID: PMC11408355 DOI: 10.3389/fchem.2024.1407667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The increasing prevalence of recurrent spontaneous abortion (RSA) poses significant physical and psychological challenges for affected individuals. Quercetin, a natural plant flavonoid, shows promise in reducing miscarriage rates, yet its precise mechanism remains elusive. This study uses network pharmacology, molecular docking, and experimental validation to explore the molecular pathways through which quercetin mitigates RSA. Methods Quercetin-related target genes were sourced from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and RSA target genes were retrieved from the Comparative Toxicogenomics Database (CTD), with overlapping targets identified using Venn diagrams. All genes were visualized using the STRING database, and core targets were selected with Cytoscape 3.7.3. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using the DAVID and Reactome online resources. Subsequently, HTR-8/SVneo cells were stimulated with lipopolysaccharide (LPS) and treated with varying concentrations of quercetin (1, 5, and 10 μM), then subjected to CCK-8, wound healing, transwell, and annexin V-FITC/PI apoptosis assays. Reverse-transcription quantitative PCR was used to determine the mRNA expression levels of IL-1β, TNF-α, and IL-6 in LPS-induced cells post-quercetin intervention, and western blotting was used to measure AKT1, MMP9, and caspase-3 protein levels. Results A total of 139 quercetin-associated target genes were identified from the TCMSP database, and 98 disease-associated target genes were obtained from the CTD, resulting in 25 shared target genes. Gene ontology enrichment highlighted the involvement of these targets in positive regulation of apoptosis, response to hypoxia, and intrinsic apoptotic signaling pathway in response to DNA damage. KEGG pathway analysis indicated enrichment in pathways related to interleukin-4 and interleukin-13 signaling, cytokine signaling in the immune system, and apoptosis. Molecular docking studies revealed robust binding of quercetin with MMP9, AKT1, IL-1β, TNF, and caspase-3. In vitro experiments demonstrated that quercetin enhanced LPS-induced cell activity, fostering proliferation, migration, and invasion, and reducing apoptosis. Moreover, quercetin reduced IL-1β, TNF-α, and IL-6 mRNA expression, increased AKT1 and MMP9 protein levels, and reduced caspase-3 expression. Conclusion Quercetin could mitigate the incidence of RSA by modulating inflammatory responses and apoptotic processes, through upregulation of AKT1 and MMP9, and downregulation of caspase-3, IL-1β, TNF-α, and IL-6. Quercetin opens up a new way of thinking about treating RSA.
Collapse
Affiliation(s)
- Dan Wang
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xuebing Li
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yifan Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruilin Wang
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chunxia Wang
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongwei Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Yu J, Duan Y, Lu Q, Chen M, Ning F, Ye Y, Lu S, Ou D, Sha X, Gan X, Zhao M, Lash GE. Cytochrome c oxidase IV isoform 1 (COX4-1) regulates the proliferation, migration and invasion of trophoblast cells via modulating mitochondrial function. Placenta 2024; 151:48-58. [PMID: 38718733 DOI: 10.1016/j.placenta.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Spontaneous miscarriage is a common complication of early pregnancy. Previous studies have shown that mitochondrial function plays an important role in establishment of a successful pregnancy. Cytochrome c oxidase subunit 4 isoform 1 (COX4I1), a component of electron transport chain complex Ⅳ, is required for coupling the rate of ATP production to energetic requirements. However, there is very limited research on its role in trophoblast biology and how its dysfunction may contribute to spontaneous miscarriage. METHODS Placental villi (7-10 weeks gestational age) collected from either induced termination of pregnancy or after spontaneous miscarriage were examined for expression of COX4I1. COX4I1 was knocked down by siRNA transfection of primary isolates of EVT cells. Real-time cell analysis (RTCA) and 5-Ethynyl-2'-deoxyuridine (EdU) were used to detect changes in proliferation ability after COX4I1 knockdown of EVT cells. Migration and invasion indices were determined by RTCA. Mitochondrial morphology was observed via MitoTracker staining. Oxidative phosphorylation, ATP production, and glycolysis in COX4I1-deficient cells and controls were assessed by a cellular energy metabolism analyzer (Seahorse). RESULTS In placental villous tissue, COX4I1 expression was significantly decreased in the spontaneous miscarriage group. Knockdown of COX4I1 inhibited EVT cell proliferation, increased the migration and invasion ability and mitochondrial fusion of EVT cells. Mitochondrial respiration and glycolysis were impaired in COX4I1-deficient EVT cells. Knockdown of MMP1 could rescue the increased migration and invasion induced by COX4I1 silencing. DISCUSSION Low expression of COX4I1 leads to mitochondrial dysfunction in EVT, resulting in altered trophoblast function, and ultimately to pregnancy loss.
Collapse
Affiliation(s)
- Juan Yu
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yaoyun Duan
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Qinsheng Lu
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Miaojuan Chen
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Fen Ning
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yixin Ye
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Shenjiao Lu
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Deqiong Ou
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiaoyan Sha
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiaowen Gan
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Mingguang Zhao
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Gendie E Lash
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| |
Collapse
|
6
|
Ji L, Jiao Z, Zhang L, Shi J, Wan Q, Qian C, Wang H, Cao X, Shen B, Jiang L. Role of increased IGFBP2 in trophoblast cell proliferation and recurrent spontaneous abortion development: A pilot study. Physiol Rep 2024; 12:e15939. [PMID: 38316422 PMCID: PMC10843903 DOI: 10.14814/phy2.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is a serious condition that adversely affects women's health. Differentially expressed proteins (DEPs) in plasma of patients experiencing RSA is helpful to find new therapeutic targets and identified with mass spectrometry. In 57 DEPs, 21 were upregulated and 36 were downregulated in RSA. Gene ontology analyses indicated that identified DEPs were associated with cell proliferation, including significantly downregulated insulin-like growth factor binding protein 2 (IGFBP2). Immunohistochemical result using clinical decidual tissues also showed that IGFBP2 expression was significantly decreased in RSA trophoblasts. Cell proliferation assay indicated that IGFBP2 treatment increased the proliferation and mRNA expressions of PCNA and Ki67 in trophoblast cells. Transcriptome sequencing experiments and Kyoto Encyclopedia of Genes and Genomes analyses revealed that gene expression for components in PI3K-Akt pathway in trophoblasts was significantly upregulated following IGFBP2 treatment. To confirm bioinformatics findings, we did cell-based experiments and found that treatment of inhibitors for insulin-like growth factor (IGF)-1 receptor-PI3K-Akt pathway significantly reduced IGFBP2-induced trophoblast cell proliferation and mRNA expressions of PCNA and Ki67. Our findings suggest that IGFBP2 may increase trophoblast proliferation through the PI3K-Akt signaling pathway to affect pregnancy outcomes and that IGFBP2 may be a new target for future research and treatment of RSA.
Collapse
Affiliation(s)
- Li Ji
- The First Clinical Medical CollegeNanjing University of Traditional Chinese MedicineNanjingChina
- Department of Obstetrics and GynecologyLu'an Traditional Chinese Hospital, The Affiliated Hospital of Anhui University of Chinese MedicineLu'anChina
| | - Ziying Jiao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Lin Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Jia Shi
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Qianqian Wan
- The First Clinical Medical CollegeNanjing University of Traditional Chinese MedicineNanjingChina
- Department of GynecologyThe First Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Chunzhi Qian
- Department of Obstetrics and GynecologyLu'an Traditional Chinese Hospital, The Affiliated Hospital of Anhui University of Chinese MedicineLu'anChina
| | - Han Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Xiaoyan Cao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
- School of Basic Medicine SciencesAnhui Medical UniversityHefeiChina
| | - Lijuan Jiang
- The First Clinical Medical CollegeNanjing University of Traditional Chinese MedicineNanjingChina
- Department of GynecologyThe First Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
| |
Collapse
|
7
|
Guo X, Dilidaxi D, Li L, Wang C, Ma X, Sang F, Pei G, Li W. Aspirin protects human trophoblast HTR-8/SVneo cells from H 2O 2-Induced oxidative stress via NADPH/ROS pathway. Placenta 2023; 144:55-63. [PMID: 37995441 DOI: 10.1016/j.placenta.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Pre-eclampsia (PE) is a pregnancy complication that can lead to maternal, fetal, and neonatal deaths in clinical practice. Accumulation of trophoblastic reactive oxygen species (ROS), which could result in oxidative stress and cell apoptosis, is considered to play an important role in PE pathology. It has been reported that aspirin has a positive effect on PE treatment in high-risk pregnant women. METHODS In vitro, extravillous trophoblast cell line (HTR-8/SVneo) were treated with hydrogen peroxide (H2O2, 150 μM) after the presence of aspirin (90 and 120 μM) with or without GKT137831 (a Nox4 inhibitor, 20 μM). A series of experiments including CCK-8 assays, flow cytometry, biochemical testing, and Western Blotting etc. verified the protective effects and potential mechanisms of aspirin against oxidative stress-induced damage in PE. RESULTS Our results demonstrated that H2O2 induces oxidative stress and apoptosis in HTR8/SVneo cells. However, aspirin pretreatment rescue cell viability and reduce LDH activity of HTR-8/SVneo cells. Aspirin can suppress the ROS overproduction and MDA level while increase SOD content and CAT activity. In addition, aspirin pretreatment significantly alleviated cell apoptosis and suppressed the expression of Nox4 and its subunits (p22phox and p47phox) at protein and mRNA levels. The above results were more obvious after the combination of aspirin with GKT137831. DISCUSSION This study demonstrated that aspirin protects human trophoblasts against H2O2-induced oxidative stress and cell apoptosis via suppressing NADPH/ROS pathway. These findings provide novel insights for the application of aspirin as a protective and curative agent against PE.
Collapse
Affiliation(s)
- Xin Guo
- Department of Pharmacy, Urumqi Youai Hospital, Urumqi, 830000, China
| | - Dinareer Dilidaxi
- Department of Pharmacy, Urumqi Youai Hospital, Urumqi, 830000, China
| | - Lihua Li
- Department of Pharmacy, Urumqi Youai Hospital, Urumqi, 830000, China
| | - Chunyan Wang
- Department of Pharmacy, Urumqi Youai Hospital, Urumqi, 830000, China
| | - Xiaoqing Ma
- Department of Pharmacy, Urumqi Youai Hospital, Urumqi, 830000, China
| | - Fei Sang
- Department of Pharmacy, Urumqi Youai Hospital, Urumqi, 830000, China
| | - Guizhen Pei
- Department of Pharmacy, Xinjiang Production & Construction Corps Hospital, Urumqi, 830000, China.
| | - Wei Li
- Department of Pharmacy, Urumqi Youai Hospital, Urumqi, 830000, China.
| |
Collapse
|