1
|
Yan Y, Peng MY, Yang Y, Zhang ZB, Zhang LL, Tang L, Qin XJ, Cheng YY, Di YT, Hao XJ. Highly oxygenated ent-abietane diterpenoid lactones from Euphorbia peplus and their anti-inflammatory activity. Bioorg Chem 2025; 154:107989. [PMID: 39591686 DOI: 10.1016/j.bioorg.2024.107989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Eleven new ent-abietane diterpenoid lactones, designated euphjatrophanes H-R (1-11), were isolated from the whole plants of Euphorbia peplus, along with nine previously identified congeners (12-20). Their structures, including absolute configurations, were elucidated through a combination of NMR, HRESIMS, single-crystal X-ray diffraction, and calculations of ECD and DP4 + technologies. Notably, the absolute configurations of six compounds 1, 2, 4, 5, 6, and 7 were unambiguously determined by single-crystal X-ray diffraction analyses, conducted with Cu Kα radiation. The anti-inflammatory potential of all ent-abietane diterpenoid lactones was evaluated on macrophages. Compounds 6-9, 12-16 and 19 significantly suppressed nitric oxide production, while 10 μM of compounds 6, 9, 11 and 16 remarkably suppressed the mRNA expression of IL-6, IL-1β, and TNFα in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Notably, compound 6 demonstrated a dose-dependent inhibition of the levels of inflammatory mediators (IL-6, IL-1β, and TNFα). Furthermore, compound 6 effectively suppressed FOXO1 expression and reduced the phosphorylation level of NF-κB p65. These findings suggest that compound 6 might be a promising candidate for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Ying Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Ming-You Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Ying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhi-Bi Zhang
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Long-Long Zhang
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Xu-Jie Qin
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Yuan-Yuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Ying-Tong Di
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Xiao-Jiang Hao
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
2
|
Zheng L, Li B, Yuan A, Bi S, Puscher H, Liu C, Qiao L, Qiao Y, Wang S, Zhang Y. TFEB activator tanshinone IIA and derivatives derived from Salvia miltiorrhiza Bge. Attenuate hepatic steatosis and insulin resistance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118662. [PMID: 39117022 DOI: 10.1016/j.jep.2024.118662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bge. (SMB) is an herbal medicine extensively used for improving metabolic disorders, including Nonalcoholic fatty liver disease (NAFLD). However, the potential material basis and working mechanism still remained to be elucidated. AIM OF THE STUDY To find potential ingredients for therapy of NAFLD by high content screening and further verify the efficacy on restoring hepatic steatosis and insulin resistance, and clarify the potential working mechanism. MATERIALS AND METHODS The mouse transcription factor EB (Tfeb) in preadipocytes was knocked out by CRISPR-Cas9 gene editing. High content screening of TFEB nuclear translocation was performed to identify TFEB activators. The effect of candidate compounds on reducing lipid accumulation was evaluated using Caenorhabditis elegans (C. elegans). Then the role of Salvia miltiorrhiza extract (SMB) containing Tanshinone IIA and the derivatives were further investigated on high-fat diet (HFD) fed mice. RNA-seq was performed to explore potential molecular mechanism of SMB. Finally, the gut microbiota diversity was evaluated using 16S rRNA sequencing to investigate the protective role of SMB on regulating gut microbiota homeostasis. RESULTS Knockout of Tfeb led to excessive lipid accumulation in adipocytes while expression of TFEB homolog HLH-30 in C. elegans (MAH240) attenuated lipid deposition. Screening of TFEB activators identified multiple candidates from Salvia miltiorrhiza, all of them markedly induced lysosome biogenesis in HepG2 cells. One of the candidate compounds Tanshinone IIA significantly decreased lipid droplet deposition in HFD fed C. elegans. Administration of SMB on C57BL/6J mice via gastric irrigation at the dose of 15 g/kg/d markedly alleviated hepatic steatosis, restored serum lipid profile, and glucose tolerance. RNA-seq showed that gene expression profile was altered and the genes related to lipid metabolism were restored. The disordered microbiome was remodeled by SMB, Firmicutes and Actinobacteriotawere notably reduced, Bacteroidota and Verrucomicrobiota were significantly increased. CONCLUSION Taken together, the observations presented here help address the question concerning what were the main active ingredients in SMB for alleviating NAFLD, and established that targeting TFEB was key molecular basis for the efficacy of SMB.
Collapse
Affiliation(s)
- Lulu Zheng
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Beiyan Li
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Anlei Yuan
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Shijie Bi
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Harrison Puscher
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Chaoqun Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Liansheng Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Yanjiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Shifeng Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China.
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beisanhuan East Road No. 11, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
3
|
Sargazifar Z, Ghorbanian Charami D, Esmaeilzadeh Kashi M, Asili J, Shakeri A. Abietane-Type Diterpenoids: Insights into Structural Diversity and Therapeutic Potential. Chem Biodivers 2024; 21:e202400808. [PMID: 38881249 DOI: 10.1002/cbdv.202400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The abietane-type diterpenoids are among the most significant diterpene subsets found in hundreds of plant species belonging to various families. Among which, the members of the genus Salvia and Euphorbia are rich in abietane diterpenoids. Because of the chemical diversity and notable bioactivities, such as anticancer, antiinflammatory, antimicrobial, and antioxidant activities, they are attractive. Herein, recent advances in the isolation and characterization of abietanes from natural sources, as well as their biological activities, from 2015 up to 2024 are reviewed. During this time, over 300 abietanes with diverse structures have been discovered.
Collapse
Affiliation(s)
- Zahra Sargazifar
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Danial Ghorbanian Charami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Li Y, Yu ZP, Li YP, Yu JH, Yue JM. Diterpenoids from Euphorbia peplus possessing cytotoxic and anti-inflammatory activities. Bioorg Chem 2024; 145:107194. [PMID: 38367429 DOI: 10.1016/j.bioorg.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Phytochemical investigation into the medium polar fraction of the ethanol extract of Euphorbia peplus led to the identification of 32 diterpenoids with five structural types. Compounds 1-5 and 7-11 are reported for the first time, while the configuration of 6,7-epoxy group of 6 was revised to be β-oriented. Compounds 1-5 feature a rare structural variation of the double bond at Δ1 migrating to Δ1(10) in the tigliane-type diterpenoid family. Biologically, compound 21 was found to be the only one to show moderate cytotoxic activity, associated with the presence of a benzoyloxy residue at C-16. Besides, compounds 4, 8, 12, 13, 16, and 19 show significant inhibitory activities against NO production induced by LPS in RAW264.7 macrophage cells, with IC50 values within 2-5 μM. Structure-activity relationship (SAR) analysis revealed that the ingenane-type diterpenoids have the best anti-inflammatory activity, and the esterification at 3-OH or 5-OH is crucial. Further biological researches demonstrated that 13, the predominant metabolite in this plant, exerts anti-inflammatory effects by blocking the activation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Zhi-Pu Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China. Qingdao 266003, People's Republic of China
| | - Yu-Peng Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Jin-Hai Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China.
| | - Jian-Min Yue
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
5
|
Li S, Luo RC, Liang ZZ, Zhang BD, Wei YL, Wen HY, Dong J, Li XY, Guo LL, Hao XJ, Li N, Zhang Y. Corydecusines A-H, new phthalideisoquinoline hemicetal alkaloids from the bulbs of Corydalis decumbens inhibit Tau pathology by activating autophagy mediated by AMPK-ULK1 pathway. Bioorg Chem 2024; 144:107166. [PMID: 38308998 DOI: 10.1016/j.bioorg.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Twelve phthalideisoquinoline hemiacetal alkaloids including eight new ones (1-8) and one natural alkaloid characterized by an aziridine moiety with unassigned NMR data (9), were isolated and identified from the bulbs of Corydalis decumbens. Their structures were established by comprehensive analyses of HRESIMS, NMR, X-ray crystallography, and ECD analyses. The unambiguously established structures of the phthalideisoquinoline hemiacetal alkaloids indicated that the absolute configurations of C-1, C-9, and C-7' were confusable only relied on coupling constants. A summary of their ECD spectra was concluded and provided an insight for C-1, C-9, and C-7' absolute configuration assignment. These new compounds were evaluated to induce autophagy flux through flow cytometry analysis. Moreover, compounds 2 and 6 could significantly induce autophagy and inhibit Tau pathology by AMPK-ULK1 pathway activation, which provided an avenue for anti-AD lead compounds discovery.
Collapse
Affiliation(s)
- Sheng Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Rong-Can Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, and Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhen-Zhen Liang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Bo-Dou Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Yin-Ling Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hong-Yan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Jing Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Xiao-Yu Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Ling-Li Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
6
|
Cai M, Bai XL, Zang HJ, Tang XH, Yan Y, Wan JJ, Peng MY, Liang H, Liu L, Guo F, Zhao PJ, Liao X, Di YT, Hao XJ. Quassinoids from Twigs of Harrisonia perforata (Blanco) Merr and Their Anti-Parkinson's Disease Effect. Int J Mol Sci 2023; 24:16196. [PMID: 38003386 PMCID: PMC10671724 DOI: 10.3390/ijms242216196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Six new C-20 and one new C-19 quassinoids, named perforalactones F-L (1-7), were isolated from twigs of Harrisonia perforata. Spectroscopic and X-ray crystallographic experiments were conducted to identify their structures. Through oxidative degradation of perforalactone B to perforaqussin A, the biogenetic process from C-25 quassinoid to C-20 via Baeyer-Villiger oxidation was proposed. Furthermore, the study evaluated the anti-Parkinson's disease potential of these C-20 quassinoids for the first time on 6-OHDA-induced PC12 cells and a Drosophila Parkinson's disease model of PINK1B9. Perforalactones G and I (2 and 4) showed a 10-15% increase in cell viability of the model cells at 50 μM, while compounds 2 and 4 (100 μM) significantly improved the climbing ability of PINK1B9 flies and increased the dopamine level in the brains and ATP content in the thoraces of the flies.
Collapse
Affiliation(s)
- Min Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China;
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xiao-Lin Bai
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hao-Jing Zang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China;
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xiao-Han Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China;
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Ying Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Jia-Jia Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Min-You Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Hong Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Lin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Feng Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Pei-Ji Zhao
- School of Life Sciences, Yunnan University, Kunming 650091, China;
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ying-Tong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|