1
|
Zhang S, Shang K, Gong L, Xie Q, Sun J, Xu M, Wei X, Xie Z, Liu X, Tang H, Xu Z, Wang W, Xiao H, Lin Z, Han H. Smart Organic-Inorganic Copolymer Nanoparticles Distinguish Between Microglia and Cancer Cells for Synergistic Immunotherapy in Glioma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500882. [PMID: 40298877 DOI: 10.1002/advs.202500882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/10/2025] [Indexed: 04/30/2025]
Abstract
The stimulator of interferon genes (STING) pathway has emerged as a new immunotherapy strategy with potent local stimulation specificity, showing promising potential to counteract the immunosuppression in glioma. Herein, a tumor microenvironment (TME) responsive nanoagonists are developed based on an organic-inorganic copolymer composed of the polymer PC6AB coupled with manganous phosphate ionic oligomers (MnP). The degradation of nanoagonists into PC6AB and MnP in the acidic TME enables spatiotemporal control of their delivery to tumor cells and immune cells, respectively. PC6AB with membranolytic activity selectively interacts with tumor cell membranes to induce immunogenic cell death, while manganese metal can activate the STING pathway in immune cells and trigger downstream immunostimulatory signals. Nanoagonists can stimulate robust antitumor immunity after local injection into the brain extracellular space (ECS), showing significant therapeutic efficacy in mouse glioma. Nanoagonists can achieve spatiotemporal orchestration of STING activation in response to TME and enhance immune response against "cold" solid tumors, providing a promising approach for clinical immunotherapy.
Collapse
Affiliation(s)
- Shiming Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100190, P. R. China
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100190, P. R. China
| | - Lidong Gong
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Meng Xu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100190, P. R. China
| | - Xunbin Wei
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100190, P. R. China
| | - Zhaoheng Xie
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100190, P. R. China
| | - Xinyu Liu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100190, P. R. China
| | - Hao Tang
- Department of Computer Science, Peking University, Beijing, 100191, P. R. China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science State Key, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Institute of Medical Technology, Peking University Health Science Center, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Li H, Yu W, Zheng X, Zhu Z. TREM1-Microglia crosstalk: Neurocognitive disorders. Brain Res Bull 2025; 220:111162. [PMID: 39645047 DOI: 10.1016/j.brainresbull.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Neurocognitive Disorders (NCDs) primarily affect cognitive functions, including learning, memory, perception, and problem-solving. They predominantly arise as pathological sequelae of central nervous system (CNS) disorders. Emerging evidence suggests that microglial inflammatory activation within the hippocampus underlies the pathogenesis of cognitive impairment. Triggering receptor expressed on myeloid cells 1 (TREM1), a pattern-recognition receptor on microglia, becomes upregulated in response to injury and synergistically amplifies inflammatory responses mediated by other pattern-recognition receptors, leading to uncontrolled inflammation. While TREM1 is lowly expressed in the resting state, its upregulation upon exposure to injurious inflammatory stimuli promotes microglial activation and contributes to the development of NCDs. Consequently, TREM1 may serve as a critical receptor in microglia-mediated inflammation. This article reviews the current understanding of TREM1 and its role in NCDs pathogenesis.
Collapse
Affiliation(s)
- Huashan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China.
| | - Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xue Zheng
- Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China
| | - Zhaoqiong Zhu
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
3
|
Awuah WA, Ben-Jaafar A, Kong JSH, Sanker V, Shah MH, Poornaselvan J, Frimpong M, Imran S, Alocious T, Abdul-Rahman T, Atallah O. Novel insights into the role of TREM2 in cerebrovascular diseases. Brain Res 2025; 1846:149245. [PMID: 39305972 DOI: 10.1016/j.brainres.2024.149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 12/10/2024]
Abstract
Cerebrovascular diseases (CVDs) include conditions such as stroke, cerebral amyloid angiopathy (CAA) and cerebral small vessel disease (CSVD), which contribute significantly to global morbidity and healthcare burden. The pathophysiology of CVD is complex, involving inflammatory, cellular and vascular mechanisms. Recently, research has focused on triggering receptor expressed on myeloid cells 2 (TREM2), an immune receptor predominantly found on microglia. TREM2 interacts with multiple signalling pathways, particularly toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB), inhibiting patients' inflammatory response. This receptor plays an essential role in both immune regulation and neuroprotection. TREM2 deficiency or dysfunction is associated with impaired microglial responses, exacerbated neurodegeneration and neuroinflammation. Up until recently, TREM2 related studies have focused on neurodegenerative diseases (NDs), however a shift in focus towards CVDs is beginning to take place. Advancements in CVD research have focused on developing therapeutic strategies targeting TREM2 to enhance recovery and reduce long-term deficits. These include the exploration of TREM2 agonists and combination therapies with other anti-inflammatory agents, which may synergistically reduce neuroinflammation and promote neuroprotection. The modulation of TREM2 activity holds potential for innovative treatment approaches aimed at improving patient outcomes following cerebrovascular insults. This review compiles current research on TREM2, emphasising its molecular mechanisms, therapeutic potential, and advancements in CNS disease research.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- University College Dublin, School of Medicine, Belfield, Dublin 4, Ireland.
| | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, United Kingdom
| | - Vivek Sanker
- Department of Neurosurgery, Stanford University, CA, USA.
| | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.
| | | | - Mabel Frimpong
- Faculty of Biochemistry and Molecular Biology, Bryn Mawr College 101 N Merion Avenue, Bryn Mawr, PA, USA
| | - Shahzeb Imran
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.
| | - Tony Alocious
- Faculty of Medicine, Imperial College London, London, United Kingdom.
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
4
|
Hu L, Chen Z, Lu J, Jiang S, Lin H, Zhou J, Wang N, Ding C, Ni W, Peng H, Li Y, He X, Li J, Jing C, Cao Y, Zhou H, Yan F, Chen G. Extracellular Vesicles From Bone Marrow-Derived Macrophages Enriched in ARG1 Enhance Microglial Phagocytosis and Haematoma Clearance Following Intracerebral Haemorrhage. J Extracell Vesicles 2025; 14:e70041. [PMID: 39868438 PMCID: PMC11770371 DOI: 10.1002/jev2.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Microglial phagocytosis of haematomas is crucial for neural functional recovery following intracerebral haemorrhage (ICH), a process regulated by various factors from within and outside the central nervous system (CNS). Extracellular vesicles (EVs), significant mediators of intercellular communication, have been demonstrated to play a pivotal role in the pathogenesis and progression of CNS diseases. However, the regulatory role of endogenous EVs on the phagocytic capacity of microglia post-ICH remains elusive. Utilising multi-omics analysis of brain tissue-derived EVs proteomics and single-cell RNA sequencing, this study identified that bone marrow-derived macrophages (BMDMs) potentially enhance microglial phagocytosis via EVs following ICH. By blocking BMDMs and reducing ARG1 in BMDM-derived EVs, we demonstrated that BMDMs facilitate erythrophagocytosis by delivering ARG1 to microglia via EVs post-ICH. EVs-carried ARG1 was found to augment phagocytosis by promoting RAC1-dependent cytoskeletal remodelling in microglia. Collectively, this research uncovers an intercellular communication pathway from BMDMs to microglia mediated by EVs post-ICH. This provides a novel paradigm for EV-mediated intercellular communication mechanisms and suggests a promising therapeutic potential for BMDM-derived EVs in the treatment of ICH.
Collapse
Affiliation(s)
- Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| | - Jianglong Lu
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Shandong Jiang
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Haopu Lin
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Jiayin Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Ning Wang
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Chao Ding
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Weifang Ni
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Haitao Peng
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Yin Li
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Xuchao He
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Chaohui Jing
- Department of NeurosurgeryXinHua Hospital affiliated to Shanghai JiaoTong University School of MedicineShanghaiChina
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| |
Collapse
|
5
|
Chu CT, Uruno A, Katsuoka F, Yamamoto M. Role of NRF2 in Pathogenesis of Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1529. [PMID: 39765857 PMCID: PMC11727090 DOI: 10.3390/antiox13121529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Alzheimer's disease (AD) is a polygenic, multifactorial neurodegenerative disorder and remains the most prevalent form of dementia, globally. Despite decades of research efforts, there is still no effective cure for this debilitating condition. AD research has increasingly focused on transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) as a potential therapeutic target. NRF2 plays a crucial role in protecting cells and tissues from environmental stressors, such as electrophiles and reactive oxygen species. Recently, an increasing number of studies have demonstrated that NRF2 is a key regulator in AD pathology. NRF2 is highly expressed in microglia, resident macrophages in the central nervous system, and contributes to neuroinflammation, phagocytosis and neurodegeneration in AD. NRF2 has been reported to modulate microglia-induced inflammation and facilitate the transition from homeostatic microglia to a disease-associated microglia subset. Genetic and pharmacological activation of NRF2 has been demonstrated to improve cognitive function. Here, we review the current understanding of the involvement of NRF2 in AD and the critical role that NRF2 plays in microglia in the context of AD. Our aim is to highlight the potential of targeting NRF2 in the microglia as a promising therapeutic strategy for mitigating the progression of AD.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Akira Uruno
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan;
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| |
Collapse
|
6
|
Sood A, Mehrotra A, Dhawan DK, Sandhir R. Neuroprotective effects of Withania somnifera on ischemic stroke are mediated via anti-inflammatory response and modulation of neurotransmitter levels. Neurochem Int 2024; 180:105867. [PMID: 39349219 DOI: 10.1016/j.neuint.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
The present study was designed to evaluate the beneficial effects of hydroalcoholic root extract of Withania somnifera (WS) on ischemia-reperfusion injury (IRI) induced by Middle Cerebral Artery Occlusion (MCAO). MCAO animals showed increase in IL-6, TNF-α and MCP-1 levels in terms of mRNA and protein levels. Concomitantly, mRNA and protein levels for astrocyte and microglial activation markers; GFAP and IBA-1, were increased in MCAO animals. COX-2 and NF-kβ protein levels were also increased in the brains of MCAO animals. The levels of neurotransmitters; glutamate and GABA were increased in the MCAO animals. On the contrary, levels of catecholamines; dopamine, norepinephrine and serotonin were reduced in the MCAO animals. Additionally, MCAO animals showed reduced locomotor activity. However, pre-supplementation with WS hydro-alcoholic root extract at a dose of 300 mg/kg, body weight to MCAO animals reduced the expression of IL-6, TNF-α and MCP-1. In addition, WS also reduced the number of GFAP and Iba-1 positive cells in comparison to MCAO animals. WS pre-supplementation was also observed to inhibit MCAO induced increase in COX-2; NF-kβ proteins and reduce the glutamate levels. The levels of GABA, dopamine, norepinephrine and serotonin were increased in WS pre-supplemented MCAO animals. WS pre-supplementation also prevented motor deficits in the MCAO animals. Taken together, these findings suggest that WS is effective in attenuating IRI induced neuroinflammation, neurochemical alterations and motor deficits in MCAO model of ischemic stroke thereby suggesting its ameliorative role in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Abhilasha Sood
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Arpit Mehrotra
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Devinder K Dhawan
- Department of Biophysics, Hargobind Khorana Block, Panjab University, Sectore-25, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Zou Y, Jiang J, Li Y, Ding X, Fang F, Chen L. Quercetin Regulates Microglia M1/M2 Polarization and Alleviates Retinal Inflammation via ERK/STAT3 Pathway. Inflammation 2024; 47:1616-1633. [PMID: 38411775 DOI: 10.1007/s10753-024-01997-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Retinal inflammation is a pivotal characteristic observed in various retinal degenerative disorders, notably age-related macular degeneration (AMD), primarily orchestrated by the activation of microglia. Targeting the inhibition of microglial activation has emerged as a therapeutic focal point. Quercetin (Qu), ubiquitously present in dietary sources and tea, has garnered attention for its anti-neuroinflammatory properties. However, the impact of Qu on retinal inflammation and the associated mechanistic pathways remains incompletely elucidated. In this study, retinal inflammation was induced in adult male C57BL/6 J mice through intraperitoneal administration of LPS. The results revealed that Qu pre-treatment induces a phenotypic shift in microglia from M1 phenotype to M2 phenotype. Furthermore, Qu attenuated retinal inflammation and stabilized the integrity of the blood-retina barrier (BRB). In vitro experiments revealed that Qu impedes microglial activation, proliferation, and migration, primarily via modulation the ERK/STAT3 signaling pathway. Notably, these actions of Qu significantly contributed to the preservation of photoreceptors. Consequently, Qu pre-treatment holds promise as an effective strategy for controlling retinal inflammation and preserving visual function.
Collapse
Affiliation(s)
- Yue Zou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Junliang Jiang
- Department of Orthopedics & Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yunqin Li
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Xinyi Ding
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Fang Fang
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Ling Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.
| |
Collapse
|
8
|
Sun Y, Sun W, Liu J, Zhang B, Zheng L, Zou W. The dual role of microglia in intracerebral hemorrhage. Behav Brain Res 2024; 473:115198. [PMID: 39128628 DOI: 10.1016/j.bbr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Intracerebral hemorrhage has the characteristics of high morbidity, disability and mortality, which has caused a heavy burden to families and society. Microglia are resident immune cells in the central nervous system, and their activation plays a dual role in tissue damage after intracerebral hemorrhage. The damage in cerebral hemorrhage is embodied in the following aspects: releasing inflammatory factors and inflammatory mediators, triggering programmed cell death, producing glutamate induced excitotoxicity, and destroying blood-brain barrier; The protective effect is reflected in the phagocytosis and clearance of harmful substances by microglia, and the secretion of anti-inflammatory and neurotrophic factors. This article summarizes the function of microglia and its dual regulatory mechanism in intracerebral hemorrhage. In the future, drugs, acupuncture and other clinical treatments can be used to intervene in the activation state of microglia, so as to reduce the harm of microglia.
Collapse
Affiliation(s)
- Yue Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Wentao Sun
- Faculty of Chinese Medicine Sciense Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Baiwen Zhang
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lei Zheng
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
9
|
Deng X, Ren J, Chen K, Zhang J, Zhang Q, Zeng J, Li T, Tang Q, Lin J, Zhu J. Mas receptor activation facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. J Neuroinflammation 2024; 21:106. [PMID: 38658922 PMCID: PMC11041011 DOI: 10.1186/s12974-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.
Collapse
Affiliation(s)
- Xiangyang Deng
- Department of Neurosurgery, Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Junwei Ren
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kezhu Chen
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Jin Zhang
- The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Quan Zhang
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Jun Zeng
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Tianwen Li
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Jian Lin
- Department of Neurosurgery, Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China.
| |
Collapse
|
10
|
Del Pilar C, Garrido-Matilla L, Del Pozo-Filíu L, Lebrón-Galán R, Arias RF, Clemente D, Alonso JR, Weruaga E, Díaz D. Intracerebellar injection of monocytic immature myeloid cells prevents the adverse effects caused by stereotactic surgery in a model of cerebellar neurodegeneration. J Neuroinflammation 2024; 21:49. [PMID: 38355633 PMCID: PMC10867997 DOI: 10.1186/s12974-023-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) constitute a recently discovered bone-marrow-derived cell type useful for dealing with neuroinflammatory disorders. However, these cells are only formed during inflammatory conditions from immature myeloid cells (IMCs) that acquire immunosuppressive activity, thus being commonly gathered from diseased animals. Then, to obtain a more clinically feasible source, we characterized IMCs directly derived from healthy bone marrow and proved their potential immunosuppressive activity under pathological conditions in vitro. We then explored their neuroprotective potential in a model of human cerebellar ataxia, the Purkinje Cell Degeneration (PCD) mouse, as it displays a well-defined neurodegenerative and neuroinflammatory process that can be also aggravated by invasive surgeries. METHODS IMCs were obtained from healthy bone marrow and co-cultured with activated T cells. The proliferation and apoptotic rate of the later were analyzed with Tag-it Violet. For in vivo studies, IMCs were transplanted by stereotactic surgery into the cerebellum of PCD mice. We also used sham-operated animals as controls of the surgical effects, as well as their untreated counterparts. Motor behavior of mice was assessed by rotarod test. The Purkinje cell density was measured by immunohistochemistry and cell death assessed with the TUNEL technique. We also analyzed the microglial phenotype by immunofluorescence and the expression pattern of inflammation-related genes by qPCR. Parametric tests were applied depending on the specific experiment: one or two way ANOVA and Student's T test. RESULTS IMCs were proven to effectively acquire immunosuppressive activity under pathological conditions in vitro, thus acting as MDSCs. Concerning in vivo studios, sham-operated PCD mice suffered detrimental effects in motor coordination, Purkinje cell survival and microglial activation. After intracranial administration of IMCs into the cerebellum of PCD mice, no special benefits were detected in the transplanted animals when compared to untreated mice. Nonetheless, this transplant almost completely prevented the impairments caused by the surgery in PCD mice, probably by the modulation of the inflammatory patterns. CONCLUSIONS Our work comprise two main translational findings: (1) IMCs can be directly used as they behave as MDSCs under pathological conditions, thus avoiding their gathering from diseased subjects; (2) IMCs are promising adjuvants when performing neurosurgery.
Collapse
Affiliation(s)
- Carlos Del Pilar
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Lucía Garrido-Matilla
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Lucía Del Pozo-Filíu
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rafael Lebrón-Galán
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Hospital Universitario de Toledo, Avd. Río Guadiana, s/n, 45007, Toledo, Spain
| | - Raúl F Arias
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Diego Clemente
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Eduardo Weruaga
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| | - David Díaz
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| |
Collapse
|
11
|
Zhang BW, Sun KH, Liu T, Zou W. The Crosstalk Between Immune Cells After Intracerebral Hemorrhage. Neuroscience 2024; 537:93-104. [PMID: 38056621 DOI: 10.1016/j.neuroscience.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
The inflammatory mechanism of intracerebral hemorrhage (ICH) has been widely studied, and it is believed that the regulation of this mechanism is of great significance to the prognosis. In the early stage of the acute phase of ICH, the release of a large number of inflammatory factors around the hematoma can recruit more inflammatory cells to infiltrate the area, further release inflammatory factors, cause an inflammatory cascade reaction, aggravate the volume of cerebral hematoma and edema and further destroy the blood-brain barrier (BBB), according to this, the crosstalk between cells may be of great significance in secondary brain injury (SBI). Because most of the cells recruited are inflammatory immune cells, this paper mainly discusses the cells based on the inflammatory mechanism to discuss their functions after ICH, we found that among the main cells inherent in the brain, glial cells account for the majority, of which microglia are the most widely studied and it can interact with a variety of cells, which is reflected in the literature researches on its pathogenesis and treatment. We believe that exploring multi-mechanism and multi-cell regulated drugs may be the future development trend, and the existing research, the comparison and unification of modeling methods, and the observation of long-term efficacy may be the first problem that researchers need to solve.
Collapse
Affiliation(s)
- Bai-Wen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ke-Han Sun
- Rehabilitation Department, Maternal and Child Health Hospital of Xing-an League, Ulanhot City, Inner Mongolia 137400, China
| | - Ting Liu
- Rehabilitation Department, Pengzhou Traditional Chinese Medicine Hospital, Chengdu 611930, China
| | - Wei Zou
- The Third Acupuncture Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
12
|
Pfefferlé M, Vallelian F. Transcription Factor NRF2 in Shaping Myeloid Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:159-195. [PMID: 39017844 DOI: 10.1007/978-3-031-62731-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
NFE2-related factor 2 (NRF2) is a master transcription factor (TF) that coordinates key cellular homeostatic processes including antioxidative responses, autophagy, proteostasis, and metabolism. The emerging evidence underscores its significant role in modulating inflammatory and immune processes. This chapter delves into the role of NRF2 in myeloid cell differentiation and function and its implication in myeloid cell-driven diseases. In macrophages, NRF2 modulates cytokine production, phagocytosis, pathogen clearance, and metabolic adaptations. In dendritic cells (DCs), it affects maturation, cytokine production, and antigen presentation capabilities, while in neutrophils, NRF2 is involved in activation, migration, cytokine production, and NETosis. The discussion extends to how NRF2's regulatory actions pertain to a wide array of diseases, such as sepsis, various infectious diseases, cancer, wound healing, atherosclerosis, hemolytic conditions, pulmonary disorders, hemorrhagic events, and autoimmune diseases. The activation of NRF2 typically reduces inflammation, thereby modifying disease outcomes. This highlights the therapeutic potential of NRF2 modulation in treating myeloid cell-driven pathologies.
Collapse
Affiliation(s)
- Marc Pfefferlé
- Department of Internal Medicine, Spital Limmattal, Schlieren, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University of Zurich and University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|