1
|
Zhu N, Hou J, Zhang Y, Yang N, Ding K, Chang C, Liu Y, Gu H, Chen B, Wei X, Zhu L. A prognostic glycolysis-related gene signature in osteosarcoma: implications for metabolic programming, immune microenvironment, and drug response. PeerJ 2025; 13:e19369. [PMID: 40321814 PMCID: PMC12047218 DOI: 10.7717/peerj.19369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Background/Aims Osteosarcoma (OS), a malignant tumor originating in the bone or cartilage, primarily affects children and adolescents. Notably, glycolysis is the main target for metabolic programming to ensuring the energy supply for cancer. This study aimed to establish a glycolysis-related gene (GRG) risk signature in OS to comprehensively assessing the pathogenic, prognosis, and their application in predicting drug response. Methods mRNA expression profiles were acquired from the Gene Expression Omnibus (GEO, GSE16091, GSE39058, and GSE21257). Using the non-negative matrix factorization (NMF) algorithm, patients with OS were stratified into distinct subgroups based on 288 GRGs identified through univariable Cox analysis. Univariate Cox regression analysis of differentially expressed genes (DEGs) between the molecular clusters was conducted to establish a risk signature comprising GRGs in OS. The prognostic efficacy of this risk signature was assessed via Kaplan-Meier curve analysis and Cox regression, evaluating its independence as a prognostic indicator. Additionally, the predictive potential of the risk model for drug response was evaluated using the "OncoPredict" package. Furthermore, the distribution of immune cell types in single-cell RNA sequencing (scRNA-seq) data was examined in correlation with the four identified GRGs risk signatures, followed by validation of expression levels in vitro using RT-PCR. Results Patients diagnosed with OS were categorized into two distinct molecular subgroups, exhibiting notable variations in prognosis and tumor microenvironment. Univaria te Cox regression analysis was employed to identify four GRGs, namely chondroitin sulfate glucuronyltransferase (CHPF), Ras-related GTP-binding protein D (RRAGD), nucleoprotein TPR (TPR), and versican core protein (VCAN), which constitute a prognostic signature for patients with OS. This signature demonstrated robust prognostic value, as corroborated by Kaplan-Meier, univariate, and multivariate Cox regression analyses. Significant differences in tumor microenvironment immune infiltration (such as B cells, monocytes) were observed between molecular subgroups. Moreover, a significant disparity in drug sensitivity to AZD8055, paclitaxel, and PD0325901 was noted between the high-risk and low-risk cohorts, and the established four-gene risk signature served as dependable prognostic indicators in the validation cohort, confirmed at the cellular level through external dataset validation and reverse transcription quantitative PCR (RT-qPCR) experiments. Conclusion A risk signature based on GRGs was established for OS, exhibiting robust predictive efficacy for prognostic assessment, and offering significant clinical utility for the prognosis of OS.
Collapse
Affiliation(s)
- Naiqiang Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Hou
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Yu Zhang
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - Ning Yang
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - KaiKai Ding
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - Chengbing Chang
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanqi Liu
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - Haipeng Gu
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - Bin Chen
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Alizadeh H, Kerachian S, Jabbari K, Soltani BM. Phosphatidic acid as a cofactor of mTORC1 in platinum-based chemoresistance: Mechanisms and therapeutic potential. Eur J Pharmacol 2025; 988:177220. [PMID: 39716566 DOI: 10.1016/j.ejphar.2024.177220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Platinum-based chemotherapeutics, such as cisplatin and carboplatin, are widely used to treat various malignancies. However, the development of chemoresistance remains a significant challenge, limiting their efficacy. This review explores the multifaceted mechanisms of platinum-based chemoresistance, with a particular focus on the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which plays a critical role in promoting tumor survival and resistance to platinum compounds. Additionally, we examined the role of phosphatidic acid (PA) and its synthesizing enzymes, phospholipase D (PLD) and lysophosphatidic acid acyltransferase (LPAAT), in the regulation of mTORC1 activity. Given the involvement of mTORC1 in chemoresistance, we evaluated the potential of mTOR inhibitors as a therapeutic strategy to overcome platinum resistance. Finally, we discuss combination therapies targeting the mTOR pathway alongside conventional chemotherapy to improve treatment outcomes. This review highlights the potential of targeting mTORC1 and related pathways to improve therapeutic strategies for chemoresistant cancers.
Collapse
Affiliation(s)
- Hadi Alizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Sana Kerachian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
3
|
Liang C, Wang S, Wu C, Wang J, Xu L, Wan S, Zhang X, Hou Y, Xia Y, Xu L, Huang X, Xie H. Role of the AKT signaling pathway in regulating tumor-associated macrophage polarization and in the tumor microenvironment: A review. Medicine (Baltimore) 2025; 104:e41379. [PMID: 39889181 PMCID: PMC11789917 DOI: 10.1097/md.0000000000041379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 02/02/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are present in and are important components of the tumor microenvironment (TME). TAMs differentiate into 2 functionally distinct morphologies, classically activated (M1)-type TAMs and alternatively activated (M2)-type TAMs, when stimulated by different cytokines. The 2 types of TAMs exhibit distinct properties and functions. M1 TAMs secrete high levels of pro-inflammatory and chemotactic factors, exerting proinflammatory, antitumor effects. Conversely, M2 TAMs alter the extracellular matrix, facilitate cellular immune escape, and stimulate tumor angiogenesis, thereby promoting anti-inflammatory responses and tumor growth. The ratio of M1 TAMs to M2 TAMs in the TME is closely related to the prognosis of the tumor. Tumor cells and other cells in the TME can regulate the polarization of TAMs and thus promote tumor progression through the secretion of various substances; however, polarized TAMs can also act on various cells in the TME through the secretion of exosomes, thus forming a positive feedback loop. Therefore, modulating the phenotype of TAMs in the TME or blocking the polarization of M2 TAMs might be a new approach for cancer treatment. However, the intracellular signaling pathways involved in the polarization of TAMs are poorly understood. The AKT signaling pathway is an important signaling pathway involved in the polarization, growth, proliferation, recruitment, and apoptosis of TAMs, as well as the action of TAMs on other cells within the TME. This paper reviews the AKT signaling pathway in the polarization of TAMs and the regulation of the TME and provides new ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Changming Liang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Chengwei Wu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Jiawei Wang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Lishuai Xu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Senlin Wan
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Xu Zhang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Yinfen Hou
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Li Xu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Hao Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| |
Collapse
|
4
|
Zhang X, Wang J, Su H, Liu X. Integrative analysis of single-cell and transcriptome sequencing with experimental validation reveals PKHD1L1 as a novel biomarker in lung adenocarcinoma. Sci Rep 2025; 15:2795. [PMID: 39843484 PMCID: PMC11754870 DOI: 10.1038/s41598-025-85981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is predicted to encode a large type I transmembrane protein involved in hearing transmission and mediating cellular immunity under physiological conditions. However, its role in cancer progression, especially in lung adenocarcinoma (LUAD), has not been fully elucidated. In this study, we observed significantly lower expression of PKHD1L1 in LUAD tissues than in normal lung tissues on the basis of the integration of public datasets from the TCGA and GEO cohorts. Furthermore, we found that low PKHD1L1 expression was a strong predictor of poor prognosis in patients with LUAD. Pathway enrichment analyses revealed that PKHD1L1 is associated primarily with asthma and multiple immune processes. Through meticulous analysis of immune cell infiltrates and single-cell datasets, we discerned a notable correlation between the expression of PKHD1L1 and the presence of B cells, with a particularly strong association observed in plasma cells. This finding led us to believe that the role of PKHD1L1 may extend beyond its previously reported involvement in cellular immunity, potentially impacting humoral immunity as well. In vitro experiments revealed that the over-expression of PKHD1L1 significantly inhibited the proliferation and migration ability of LUAD cell lines. These findings suggest that PKHD1L1 is an important prognostic indicator and a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xiangqian Zhang
- Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Wang
- Department of Gastroenterology & National Clinical Research Centerfor Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hanyang Su
- Department of Respiratory Medicine & Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojin Liu
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Liu C, Li H, Hu X, Yan M, Fu Z, Zhang H, Wang Y, Du N. Spermine Synthase : A Potential Prognostic Marker for Lower-Grade Gliomas. J Korean Neurosurg Soc 2025; 68:75-96. [PMID: 39492653 PMCID: PMC11725456 DOI: 10.3340/jkns.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The objective of this study was to assess the relationship between spermine synthase (SMS) expression, tumor occurrence, and prognosis in lower-grade gliomas (LGGs). METHODS A total of 523 LGG patients and 1152 normal brain tissues were included as controls. Mann-Whitney U test was performed to evaluate SMS expression in the LGG group. Functional annotation analysis was conducted to explore the biological processes associated with high SMS expression. Immune cell infiltration analysis was performed to examine the correlation between SMS expression and immune cell types. The association between SMS expression and clinical and pathological features was assessed using Spearman correlation analysis. In vitro experiments were conducted to investigate the effects of overexpressing or downregulating SMS on cell proliferation, apoptosis, migration, invasion, and key proteins in the protein kinase B (AKT)/epithelialmesenchymal transition signaling pathway. RESULTS The study revealed a significant upregulation of SMS expression in LGGs compared to normal brain tissues. High SMS expression was associated with certain clinical and pathological features, including older age, astrocytoma, higher World Health Organization grade, poor disease-specific survival, disease progression, non-1p/19q codeletion, and wild-type isocitrate dehydrogenase. Cox regression analysis identified SMS as a risk factor for overall survival. Bioinformatics analysis showed enrichment of eosinophils, T cells, and macrophages in LGG samples, while proportions of dendritic (DC) cells, plasmacytoid DC (pDC) cells, and CD8+ T cells were decreased. CONCLUSION High SMS expression in LGGs may promote tumor occurrence through cellular proliferation and modulation of immune cell infiltration. These findings suggest the prognostic value of SMS in predicting clinical outcomes for LGG patients.
Collapse
Affiliation(s)
- Chen Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongqi Li
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Xiaolong Hu
- Department of Radiation Oncology, Beijing Geriatric Hospital, Beijing, China
| | - Maohui Yan
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Zhiguang Fu
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Hengheng Zhang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Yingjie Wang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Nan Du
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Chen Y, Tang YX, Zeng DT, Wen JY, Zhan YT, Li DM, He RQ, Huang ZG, Chen YZ, Wei QY, Chen G, Tang YL, Li H. The Potential Biological Roles and Clinical Significance of Anaphase-Promoting Complex Subunit 1 in Colorectal Cancer. Cancer Control 2025; 32:10732748251330059. [PMID: 40229946 PMCID: PMC12033653 DOI: 10.1177/10732748251330059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
BackgroundAnaphase-promoting complex subunit 1 (ANAPC1) is a regulator of cellular mitosis and an important factor in tumorigenesis. To date, a comprehensive assessment of the potential role, biological behaviours, and clinical significance of ANAPC1 in colorectal cancer (CRC) is still lacking.Materials and methodsThis study integrated 2329 mRNA expression data, single-cell RNA sequencing (scRNA-seq), and internal immunohistochemistry of 416 tissue samples to comprehensively evaluate the abnormal expression pattern of ANAPC1 in CRC. It also incorporated evidence from immune infiltration analysis, functional enrichment analysis, and weighted gene co-expression network analysis to explore the biological behaviour of ANAPC1 in CRC. In addition, in vitro cell biology experiments such as real-time polymerase chain reaction (RT-PCR), western blot (WB), cholecystokinin 8 (CCK-8), wound healing, cell cycle, and apoptosis assays were conducted to verify the potential effect of ANAPC1 on CRC cells.ResultsANAPC1 mRNA was significantly overexpressed in CRC tissue (SMD = 2.07, 95% CI 1.59-2.55, P < .05) and malignant epithelial cells (P < .05). Validation at the protein level similarly confirmed the overexpression of ANAPC1 in CRC tissue (P < .05). ANAPC1 in CRC may play a role in abnormal ribosome biogenesis, DNA replication, ATP-dependent activity acting on DNA, nuclear division, chromosome segregation, and other pathways. In vitro experiments demonstrated that HCT-116 cells with ANAPC1 knockdown had reduced proliferation and migration abilities, increased cell apoptosis rate, and altered cell cycle distribution. In addition, CRC patients with low ANAPC1 expression were more likely to benefit from treatment with immune checkpoint inhibitors. ANAPC1 was significantly downregulated in malignant epithelial cells of CRC treated with PD-1 inhibitors (P < .05).ConclusionANAPC1 may have a positive impact on the development of CRC by being involved in pathways related to DNA replication, chromosome segregation, and ribosomes.
Collapse
Affiliation(s)
- Yi Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yu-Xing Tang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Da-Tong Zeng
- Department of Pathology, Redcross Hospital of Yulin, Yulin, P.R. China
| | - Jia-Ying Wen
- Department of Radiotherapy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yan-Ting Zhan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yu-Zhen Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Qiu-Yu Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Hui Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
7
|
Yan S, Zhao J, Gao P, Li Z, Li Z, Liu X, Wang P. Diagnostic potential of NRG1 in benign nerve sheath tumors and its influence on the PI3K-Akt signaling and tumor immunity. Diagn Pathol 2024; 19:28. [PMID: 38331905 PMCID: PMC10851500 DOI: 10.1186/s13000-024-01438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE Benign nerve sheath tumors (BNSTs) present diagnostic challenges due to their heterogeneous nature. This study aimed to determine the significance of NRG1 as a novel diagnostic biomarker in BNST, emphasizing its involvement in the PI3K-Akt pathway and tumor immune regulation. METHODS Differential genes related to BNST were identified from the GEO database. Gene co-expression networks, protein-protein interaction networks, and LASSO regression were utilized to pinpoint key genes. The CIBERSORT algorithm assessed immune cell infiltration differences, and functional enrichment analyses explored BNST signaling pathways. Clinical samples helped establish PDX models, and in vitro cell lines to validate NRG1's role via the PI3K-Akt pathway. RESULTS Nine hundred eighty-two genes were upregulated, and 375 downregulated in BNST samples. WGCNA revealed the brown module with the most significant difference. Top hub genes included NRG1, which was also determined as a pivotal gene in disease characterization. Immune infiltration showed significant variances in neutrophils and M2 macrophages, with NRG1 playing a central role. Functional analyses confirmed NRG1's involvement in key pathways. Validation experiments using PDX models and cell lines further solidified NRG1's role in BNST. CONCLUSION NRG1 emerges as a potential diagnostic biomarker for BNST, influencing the PI3K-Akt pathway, and shaping the tumor immune microenvironment.
Collapse
Affiliation(s)
- Suwei Yan
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, P. R. China
| | - Jingnan Zhao
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, P. R. China
| | - Pengyang Gao
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, P. R. China
| | - Zhaoxu Li
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, P. R. China
| | - Zhao Li
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, P. R. China
| | - Xiaobing Liu
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, P. R. China
| | - Pengfei Wang
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, P. R. China.
| |
Collapse
|
8
|
Ye G, Tu L, Li Z, Li X, Zheng X, Song Y. SYNPO2 promotes the development of BLCA by upregulating the infiltration of resting mast cells and increasing the resistance to immunotherapy. Oncol Rep 2024; 51:14. [PMID: 38038167 PMCID: PMC10758676 DOI: 10.3892/or.2023.8673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023] Open
Abstract
Synaptopodin 2 (SYNPO2) plays a pivotal role in regulating tumor growth, development and progression in bladder urothelial Carcinoma (BLCA). However, the precise biological functions and mechanisms of SYNPO2 in BLCA remain unclear. Based on TCGA database‑derived BLCA RNA sequencing data, survival analysis and prognosis analysis indicate that elevated SYNPO2 expression was associated with poor survival outcomes. Notably, exogenous SYNPO2 expression significantly promoted tumor invasion and migration by upregulating vimentin expression in BLCA cell lines. Enrichment analysis revealed the involvement of SYNPO2 in humoral immune responses and the PI3K/AKT signaling pathway. Moreover, increased SYNPO2 levels increased the sensitivity of BLCA to PI3K/AKT pathway‑targeted drugs while being resistant to conventional chemotherapy. In in vivo BLCA mouse models, SYNPO2 overexpression increased pulmonary metastasis of 5637 cells. High SYNPO2 expression led to increased infiltration of innate immune cells, particularly mast cells, in both nude mouse model and clinical BLCA samples. Furthermore, tumor immune dysfunction and exclusion score showed that patients with BLCA patients and high SYNPO2 expression exhibited worse clinical outcomes when treated with immune checkpoint inhibitors. Notably, in the IMvigor 210 cohort, SYNPO2 expression was significantly associated with the population of resting mast cells in BLCA tissue following PD1/PDL1 targeted therapy. In conclusion, SYNPO2 may be a promising prognostic factor in BLCA by modulating mast cell infiltration and exacerbating resistance to immune therapy and conventional chemotherapy.
Collapse
Affiliation(s)
- Gongjie Ye
- Department of Critical Care Medicine, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhuduo Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiangyu Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
9
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|