1
|
Xu L, Li S, Li H, Pan H, Li S, Yang Y, Jiao Y, Lan F, Chen S, Chen Q, Du L, Man C, Wang F, Gao H. Predicting Tuberculosis Risk in Cattle, Buffaloes, Sheep, and Goats in China Based on Air Pollutants and Meteorological Factors. Animals (Basel) 2024; 14:3704. [PMID: 39765608 PMCID: PMC11672850 DOI: 10.3390/ani14243704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis is a zoonotic chronic respiratory infectious disease caused by the Mycobacterium tuberculosis complex. The outbreak and epidemic of tuberculosis can seriously threaten human and veterinary health. To investigate the effects of environmental factors on tuberculosis in domestic ruminants, we collected data regarding the prevalence of tuberculosis in cattle, buffaloes, sheep, and goats in China (1956-2024) from publicly published literature and available databases. We identified the key risk factors among six major air pollutants and 19 bioclimatic variables; simulated the risk distribution of tuberculosis in cattle, buffaloes, sheep, and goats in China using the maximum entropy ecological niche model; and evaluated the effects of environmental factors. The area under the curve of the model was 0.873 (95% confidence interval, 0.851-0.895). The risk factors that most significantly influenced the prevalence of tuberculosis were the nitrogen dioxide (NO2) level, mean temperature of the coldest quarter, cattle distribution density, sheep distribution density, ozone (O3) level, and precipitation of the driest month. The predicted map of tuberculosis risk in cattle, buffaloes, sheep, and goats indicated that the high-risk regions were mainly distributed in South, North, East, and Northwest China. Improved surveillance is needed in these high-risk areas, and early preventive measures must be implemented based on the risk factors identified to reduce the future prevalence of tuberculosis in cattle, buffaloes, sheep, and goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Fengyang Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (L.X.); (S.L.); (H.L.); (H.P.); (S.L.); (Y.Y.); (Y.J.); (F.L.); (S.C.); (Q.C.); (L.D.); (C.M.)
| | - Hongyan Gao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (L.X.); (S.L.); (H.L.); (H.P.); (S.L.); (Y.Y.); (Y.J.); (F.L.); (S.C.); (Q.C.); (L.D.); (C.M.)
| |
Collapse
|
2
|
Li Z, Wang Z, Lu P, Ning J, Ding H, Zhu L, Pei X, Liu Q. Association between ambient particulate matter and latent tuberculosis infection among 198 275 students. J Glob Health 2024; 14:04244. [PMID: 39666581 PMCID: PMC11636952 DOI: 10.7189/jogh.14.04244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Background Numerous studies have estimated the impact of outdoor particulate matter (PM) on tuberculosis risk. Nevertheless, whether there is an association between ambient PM and latent tuberculosis infection (LTBI) risk remains uncertain. Methods We collected the basic information and LTBI test results of students who underwent freshmen enrolment physical examinations in 68 middle schools from six prefecture-level cities located in eastern China between 2018 and 2021. We also extracted data on air pollutant concentrations and meteorological factors in six cities between 2015 and 2021. We applied the generalised additive model (GAM) to assess the effect of PM on LTBI risk. Results We included 198 275 students in the final analysis, of whom 11 721 were diagnosed with LTBI. The LTBI group had higher proportions of males (P < 0.001), individuals of Han nationality (P < 0.001), and body mass index compared to the non-LTBI group (P < 0.001). For each 1-μg/m3 increase in PM10 concentration, the LTBI risk increased by 0.82% (95% confidence interval (CI) = 0.65-1.00), 0.90% (95% CI = 0.73-1.08), and 0.86% (95% CI = 0.69-1.03) when lagged at one, two, and three years, respectively. For PM2.5, the LTBI risk increased by 0.91% (95% CI = 0.63-1.20), 1.05% (95% CI = 0.75-1.36), and 1.32% (95% CI = 0.96-1.69) when lagged at one, two, and three years, respectively. Conclusions Outdoor PM concentration was positively correlated with LTBI risk. Considering that many developing countries are facing the dual challenges of high LTBI rates and serious ambient air pollution, reducing outdoor PM concentration would contribute to alleviating their tuberculosis burden.
Collapse
Affiliation(s)
- Zhongqi Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Zhan Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Jingxian Ning
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Ding
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Xiaohua Pei
- Division of Geriatric Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiao Liu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| |
Collapse
|
3
|
Li Z, Liu Q, Chen L, Zhou L, Qi W, Wang C, Zhang Y, Tao B, Zhu L, Martinez L, Lu W, Wang J. Ambient air pollution contributed to pulmonary tuberculosis in China. Emerg Microbes Infect 2024; 13:2399275. [PMID: 39206812 PMCID: PMC11378674 DOI: 10.1080/22221751.2024.2399275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Published studies on outdoor air pollution and tuberculosis risk have shown heterogeneous results. Discrepancies in prior studies may be partially explained by the limited geographic scope, diverse exposure times, and heterogeneous statistical methods. Thus, we conducted a multi-province, multi-city time-series study to comprehensively investigate this issue. We selected 67 districts or counties from all geographic regions of China as study sites. We extracted data on newly diagnosed pulmonary tuberculosis (PTB) cases, outdoor air pollutant concentrations, and meteorological factors in 67 sites from January 1, 2014 to December 31, 2019. We utilized a generalized additive model to evaluate the relationship between ambient air pollutants and PTB risk. Between 2014 and 2019, there were 172,160 newly diagnosed PTB cases reported in 67 sites. With every 10-μg/m3 increase in SO2, NO2, PM10, PM2.5, and 1-mg/m3 in CO, the PTB risk increased by 1.97% [lag 0 week, 95% confidence interval (CI): 1.26, 2.68], 1.30% (lag 0 week, 95% CI: 0.43, 2.19), 0.55% (lag 8 weeks, 95% CI: 0.24, 0.85), 0.59% (lag 10 weeks, 95% CI: 0.16, 1.03), and 5.80% (lag 15 weeks, 95% CI: 2.96, 8.72), respectively. Our results indicated that ambient air pollutants were positively correlated with PTB risk, suggesting that decreasing outdoor air pollutant concentrations may help to reduce the burden of tuberculosis in countries with a high burden of tuberculosis and air pollution.
Collapse
Affiliation(s)
- Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Qiao Liu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Liang Chen
- Guangdong Provincial Institute of Public Health, Guangzhou, People's Republic of China
| | - Liping Zhou
- Institute of Tuberculosis Control, Center for Disease Control and Prevention of Hubei Province, Wuhan, People's Republic of China
| | - Wei Qi
- Department of tuberculosis, Center for Disease Control and Prevention of Liaoning Province, Shenyang, People's Republic of China
| | - Chaocai Wang
- Department of tuberculosis, Center for Disease Control and Prevention of Qinghai Province, Xining, People's Republic of China
| | - Yu Zhang
- Institute of Tuberculosis Control, Center for Disease Control and Prevention of Hubei Province, Wuhan, People's Republic of China
| | - Bilin Tao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Leonardo Martinez
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Wei Lu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Su Y, Chen R, Chen Z, Lin J, Fu H, Cao Z, Chang Q, Li L, Liu S. Exploring the short-term effects of extreme temperatures on tuberculosis incidence in Shantou, China: a Coastal City perspective. Int Arch Occup Environ Health 2024; 97:981-989. [PMID: 39436430 DOI: 10.1007/s00420-024-02100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Coastal cities, due to their proximity to coastlines and unique climatic conditions, face growing challenges from extreme temperature events associated with climate change. Research on the impact of extreme temperatures on tuberculosis (TB) in these cities is limited, and findings from different regions lack consensus. This study focuses on Shantou, a coastal city in China, to investigate the influence of extreme temperatures on TB within this distinctive geographical context. METHODS Distributed Lag Non-Linear Models (DLNM) were employed to evaluate the effect of extreme temperatures on TB incidence risk in Shantou, a coastal city in China, spanning from 2014 to 2021. Daily TB case data were provided by the Shantou Tuberculosis Prevention and Control Institute. Daily meteorological information was sourced from the Reliable Prognosis website, while daily air pollutant data were obtained from the China Air Quality Online Monitoring and Analysis Platform. RESULTS The study revealed a significant association between extreme temperatures and TB incidence, with the impact peaking at a lag of 27 days after exposure. Notably, extreme cold temperatures led to a temporary decrease in TB incidence with a lag of 1-2 days. Subgroup analysis indicated that males had a notably higher risk of TB under extreme temperature conditions compared to females. Additionally, individuals aged 65 years and above showed a significant cumulative effect in such conditions. CONCLUSIONS This research enhances our comprehension of the effects of extreme temperatures on TB in coastal cities and carries substantial public health implications for TB prevention in China.
Collapse
Affiliation(s)
- Yaqian Su
- School of Public Health, Shantou University, 243 Daxue Road, Shantou, 515063, China
| | - Ruiming Chen
- Shantou Tuberculosis Prevention and Control Institute, Shantou, China
| | - Zhuanghao Chen
- Shantou Tuberculosis Prevention and Control Institute, Shantou, China
| | - Jianxiong Lin
- Shantou Tuberculosis Prevention and Control Institute, Shantou, China
| | - Hui Fu
- Shantou Tuberculosis Prevention and Control Institute, Shantou, China
| | - Zicheng Cao
- School of Public Health, Shantou University, 243 Daxue Road, Shantou, 515063, China
| | - Qiaocheng Chang
- School of Public Health, Shantou University, 243 Daxue Road, Shantou, 515063, China
| | - Liping Li
- School of Public Health, Shantou University, 243 Daxue Road, Shantou, 515063, China
| | - Suyang Liu
- School of Public Health, Shantou University, 243 Daxue Road, Shantou, 515063, China.
| |
Collapse
|
5
|
Peptenatu D, Băloi AM, Andronic O, Bolocan A, Cioran N, Gruia AK, Grecu A, Panciu TC, Georgescu L, Munteanu I, Pistol A, Furtunescu F, Strâmbu IR, Ibrahim E, Băiceanu D, Popescu GG, Păduraru D, Jinga V, Mahler B. Spatio-Temporal Pattern of Tuberculosis Distribution in Romania and Particulate Matter Pollution Associated With Risk of Infection. GEOHEALTH 2024; 8:e2023GH000972. [PMID: 38638801 PMCID: PMC11025721 DOI: 10.1029/2023gh000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 04/20/2024]
Abstract
The study proposes a dynamic spatio-temporal profile of the distribution of tuberculosis incidence and air pollution in Romania, where this infectious disease induces more than 8,000 new cases annually. The descriptive analysis for the years 2012-2021 assumes an identification of the structuring patterns of mycobacterium tuberculosis risk in the Romanian population, according to gender and age, exploiting spatial modeling techniques of time series data. Through spatial autocorrelation, the degree of similarity between the analyzed territorial systems was highlighted and the relationships that are built between the analysis units in spatial proximity were investigated. By modeling the geographical distribution of tuberculosis, the spatial correlation with particulate matter (PM2.5) pollution was revealed. The identification of clusters of infected persons is an indispensable step in the construction of efficient tuberculosis management systems. The results highlight the link between the distribution of tuberculosis, air pollution and socio-economic development, which requires a detailed analysis of the epidemiological data obtained in the national tuberculosis surveillance and control program from the perspective of geographical distribution.
Collapse
Affiliation(s)
- D. Peptenatu
- Faculty of GeographyResearch Center for Integrated Analysis and Territorial Management (CAIMT)University of BucharestBucharestRomania
- Graphit Innovation FactoryStr.Constantin BrancoveanuDrobeta Turnu SeverinRomâniaRomânia
| | - A. M. Băloi
- Faculty of GeographyResearch Center for Integrated Analysis and Territorial Management (CAIMT)University of BucharestBucharestRomania
- Graphit Innovation FactoryStr.Constantin BrancoveanuDrobeta Turnu SeverinRomâniaRomânia
- Faculty of Administration and BusinessUniversity of BucharestBucharestRomania
| | - O. Andronic
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - A. Bolocan
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - N. Cioran
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - A. K. Gruia
- Faculty of Administration and BusinessUniversity of BucharestBucharestRomania
| | - A. Grecu
- Faculty of Administration and BusinessUniversity of BucharestBucharestRomania
| | - T. C. Panciu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - L. Georgescu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - I. Munteanu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - A. Pistol
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - F. Furtunescu
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - I. R. Strâmbu
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - E. Ibrahim
- Marius Nasta Institute of PneumologyBucharestRomania
| | - D. Băiceanu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - G. G. Popescu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - D. Păduraru
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - V. Jinga
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - B. Mahler
- Carol Davila University of Medicine and PharmacyBucharestRomania
| |
Collapse
|
6
|
Lau LHW, Wong NS, Leung CC, Chan CK, Tai LB, Lau AKH, Lin C, Shan Lee S. Association of ambient PM 2.5 concentration with tuberculosis reactivation diseases-an integrated spatio-temporal analysis. IJID REGIONS 2023; 8:145-152. [PMID: 37674566 PMCID: PMC10477485 DOI: 10.1016/j.ijregi.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
Objectives While the plausible role of ambient particulate matter (PM)2.5 exposure in tuberculosis (TB) reactivation has been inferred from in vitro experiments, epidemiologic evidence is lacking. We examined the relationship between ambient PM2.5 concentration and pulmonary TB (PTB) in an intermediate TB endemicity city dominated by reactivation diseases. Methods Spatio-temporal analyses were performed on TB notification data and satellite-based annual mean PM2.5 concentration in Hong Kong. A total of 52,623 PTB cases from 2005-2018 were mapped to over 400 subdistrict units. PTB standardized notification ratio by population subgroups (elderly aged ≥65, middle-aged 50-64, and young adults aged 15-49) was calculated and correlated with ambient PM2.5 concentration. Results Significant associations were detected between high ambient PM2.5 concentration and increased PTB among the elderly. Such associations were stable to the adjustment for socio-economic factors and other criteria pollutants. Unstable patterns of association between PM2.5 and PTB risk were observed in the middle-aged population and young adults, for which the observed associations were confounded by other criteria pollutants. Conclusion With elderly PTB almost exclusively attributable to reactivation, our findings suggested that increased TB reactivations have occurred in association with high ambient PM2.5 exposure, lending support to preventive measures that minimize PM2.5-related TB reactivation.
Collapse
Affiliation(s)
- Leonia Hiu Wan Lau
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ngai Sze Wong
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Chi Chiu Leung
- Hong Kong Tuberculosis, Chest, and Heart Disease Association, Wan Chai, Hong Kong
| | - Chi Kuen Chan
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Wan Chai, Hong Kong
| | - Lai-bun Tai
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Wan Chai, Hong Kong
| | - Alexis Kai Hon Lau
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Shui Shan Lee
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|