1
|
Liu Q, Sun Z, Liu Y, He X, Ren C, Wang X, Di R, Zhao Y, Zhang Z, Chu M. Whole transcriptome analysis in oviduct provides insight into microRNAs and ceRNA regulative networks that targeted reproduction of goat (Capra hircus). BMC Genomics 2025; 26:250. [PMID: 40087554 PMCID: PMC11907954 DOI: 10.1186/s12864-025-11438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Reproduction traits are crucial for livestock breeding and represent key economic indicators in the domestic goat (Capra hircus) industry. The oviduct, a critical organ in female mammals, plays a pivotal role in several reproductive processes; however, its molecular mechanisms remain largely unknown. Non-coding RNA and mRNAs are essential regulatory elements in reproductive processes; yet their specific roles and regulatory networks in goat oviducts remain unclear. RESULTS In this study, we conducted small RNA sequencing of the oviduct in high- and low-fecundity goats during the follicular (FH and FL groups, n = 10) and luteal (LH and LL groups, n = 10) phase, profiling 20 tissue samples. Combinatorial whole-transcriptome expression profiles were applied to the same samples to uncover the competitive endogenous RNA (ceRNA) regulation network associated with goat fecundity. RT-qPCR was employed to validate the miRNA profiling results, and ceRNA regulatory networks were analyzed through luciferase assay. Gene set enrichment analysis (GSEA) confirmed that the cytokine-cytokine receptor interaction and TGF-β signaling pathway, both related to embryonic development, were enriched in DEM target genes. Additionally, miR-328-3p, a core miRNA, targets SMAD3 and BOP1, which are involved in the negative regulation of cell growth and embryonic development. TOB1 and TOB2, targeted by miR-204-3p, regulate cell proliferation via the protein kinase C-activating G-protein coupled receptor signaling pathway. Analyses of ceRNA regulatory networks revealed that LNC_005981 - miR-328-3p - SMAD3 and circ_0021923 - miR-204-3p - DOT1L may affect goats' reproduction, findings that were validated using luciferase assay. CONCLUSION Analysis of whole-transcriptome profiling of goat oviducts identified several key miRNAs and ceRNAs that may regulate oocyte maturation, embryo development, and the interactions between the oviduct and gametes/early embryos, providing insights into the molecular mechanisms of reproductive regulatory networks.
Collapse
Affiliation(s)
- Qingqing Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Chongqing, 400715, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yongju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Chongqing, 400715, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China.
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
2
|
Chen J, Liu K, Vadas MA, Gamble JR, McCaughan GW. The Role of the MiR-181 Family in Hepatocellular Carcinoma. Cells 2024; 13:1289. [PMID: 39120319 PMCID: PMC11311592 DOI: 10.3390/cells13151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Ken Liu
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Mathew A. Vadas
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Jennifer R. Gamble
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
3
|
Ge J, Tao M, Zhang G, Cai J, Li D, Tao L. New HCC Subtypes Based on CD8 Tex-Related lncRNA Signature Could Predict Prognosis, Immunological and Drug Sensitivity Characteristics of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1331-1355. [PMID: 38983937 PMCID: PMC11232885 DOI: 10.2147/jhc.s459150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Purpose Hepatocellular carcinoma has become one of the severe diseases threatening human health. T cell exhaustion is deemed as a reason for immunotherapy resistance. However, little is known about the roles of CD8 Tex-related lncRNAs in HCC. Materials and Methods We processed single-cell RNA sequencing to identify CD8 Tex-related genes. CD8 Tex-related lncRNAs were identified based on their correlations with mRNAs. Unsupervised clustering approach was used to identify molecular clusters of CD8 Tex-related lncRNAs. Differences in prognosis and immune infiltration between the clusters were explored. Machine learning algorithms were used to construct a prognostic signature. Samples were classified as low- and high-risk groups based on their risk scores. We identified prognosis-related lncRNAs and constructed a ceRNA network. In vitro experiments were conducted to investigate the impacts of CD8 Tex-related lncRNAs on proliferation and apoptosis of HCC cells. Results We clarified cell types within two HCC single-cell datasets. We identified specific markers of CD8 Tex cells and analyzed their potential functions. Twenty-eight lncRNAs were identified as CD8 Tex-related. Based on CD8 Tex-related lncRNAs, samples were categorized into two distinct clusters, which exhibited significant differences in survival rates and immune infiltration. Ninety-six algorithm combinations were employed to establish a prognostic signature. RSF emerged as the one with the highest C-index. Patients in high- and low-risk groups exhibited marked differences in prognosis, enriched pathways, mutations and drug sensitivities. MCM3AP-AS1, MAPKAPK5-AS1 and PART1 were regarded as prognosis-related lncRNAs. A ceRNA network was constructed based on CD8 Tex-related lncRNAs and mRNAs. Experiments on cell lines and organoids indicated that downregulation of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 suppressed cell proliferation and induced apoptosis. Conclusion CD8 Tex-related lncRNAs played crucial roles in HCC progression. Our findings provided new insights into the regulatory mechanisms of CD8 Tex-related lncRNAs in HCC.
Collapse
Affiliation(s)
- Jiachen Ge
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, People's Republic of China
| | - Gaolei Zhang
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jianping Cai
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Deyu Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lianyuan Tao
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
4
|
He H, Zhang Q, Gu Q, Yang H, Yue C. CircGNAO1 strengthens its host gene GNAO1 expression for suppression of hepatocarcinogenesis. Heliyon 2024; 10:e32848. [PMID: 38988568 PMCID: PMC11233958 DOI: 10.1016/j.heliyon.2024.e32848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent primary liver carcinoma. Guanine nucleotide-binding protein, α-activating activity polypeptide O (GNAO1) was reported to be under-expressed in HCC tissues. This study aimed to investigate the GNAO1-derived circular RNA (circRNA) and its molecular mechanisms in HCC. Methods Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were applied to examine RNA and protein levels. Functional experiments were performed to study HCC cell proliferation, cell cycle and cellular senescence. The interactions among circGNAO1, GNAO1 and DNA methyltransferase 1 (DNMT1) were examined by mechanism assays. The methylation level was analyzed by bisulfite sequencing PCR (BSP). Results CircGNAO1 is down-regulated and positively associated with GNAO1 in HCC tissues. Overexpression of circGNAO1 inhibits cell proliferation, induces cell cycle arrest and facilitates cell senescence in HCC cells. CircGNAO1 facilitates the progression of HCC via modulating GNAO1. Mechanistically, circGNAO1 enhances the transcription of GNAO1 by sequestering DNMT1, thereby up-regulating GNAO1 expression in HCC cells. Conclusions CircGNAO1 up-regulates its host gene GNAO1 expression for suppression of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hongwei He
- Department of Hepatobiliary Surgery, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, 201599, China
| | - Qing Zhang
- Trade Union of Shandong Second Provincial General Hospital, Jinan, 250022, Shandong Province, China
| | - Qiyun Gu
- Department of Hepatobiliary Surgery, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, 201599, China
| | - Hui Yang
- Department of Neurology Medicine, The Second Hospital, Shandong University, Jinan, 250033, Shandong Province, China
| | - Caibin Yue
- General Medicine Department, The Second Hospital, Shandong University, Jinan, 250033, Shandong Province, China
| |
Collapse
|
5
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Qian Y, Chen H, Chen L, Ge C, Zhu D, Zhou D. Suppression of hepatocellular carcinoma progression by long noncoding RNA apolipoprotein C1 pseudogene via the regulation of the microRNA-106b-PTEN axis. Transl Cancer Res 2023; 12:3752-3763. [PMID: 38192998 PMCID: PMC10774056 DOI: 10.21037/tcr-23-2189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Background Numerous researches have reported that long noncoding RNAs (lncRNAs) participate in tumor development and progression. LncRNA apolipoprotein C-I pseudogene 1 (APOC1P1), a pseudogene located in 19q13.2 between apolipoprotein C-I and apolipoprotein C-IV, is involved in a variety of diseases. However, the role of lncRNA APOC1P1 in hepatocellular carcinoma (HCC) remains unknown. Methods Quantitative polymerase chain reaction (qPCR) was performed to examine the expression of APOC1P1, miR-106b, and PTEN (phosphatase and TENsin homolog deleted on chromosome 10) in HCC tissues, adjacent normal tissues, and specific cell lines (LO2, Bel-7407, HCCLM3, MHCC-97H, Hep G2, and Huh-7). Upregulation of APOC1P1 and downregulation of miR-106b were conducted via application of vector transfection and microRNA (miRNA) inhibitor. Bioinformatics analysis and luciferase reporter assay were used to verify the binding sites of APOC1P1, miR-106b, and PTEN. Cell proliferation and invasion were determined with Cell Counting Kit-8 (CCK-8) and Transwell experiments. Subcellular location analysis was used to determine the distribution of APOC1P1 in cells, and Western blotting was used to detect the expression of PTEN. Results It was found that the expressions of APOC1P1 and PTEN were downregulated, while that of miR-106b was upregulated in HCC tissues and cells. Subcellular location analysis showed that APOC1P1 was localized in cytoplasm and competitively bound to miR-106b. APOC1P1 overexpression and miR-106b inhibition suppressed HCC cell proliferation and invasion. qPCR indicated the negative correlation between APOC1P1 expression and miR-106b expression in HCC tissues and a positive correlation between APOC1P1 and PTEN. Conclusions Our findings suggested that the lncRNA APOC1P1 inhibits HCC progression by competitively binding to miR-106b, leading to elevated PTEN expression, inhibiting cell proliferation and invasion in HCC cells. These results provide new insights into the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Yi Qian
- General Surgery Department, The Sixth Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Chen
- Pathology Department, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Liang Chen
- General Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chuang Ge
- General Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Dongmei Zhu
- General Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Dinghua Zhou
- General Surgery Department, The Sixth Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|