1
|
Ukaegbu K, Allen E, Svoboda KKH. Reactive Oxygen Species and Antioxidants in Wound Healing: Mechanisms and Therapeutic Potential. Int Wound J 2025; 22:e70330. [PMID: 40288766 PMCID: PMC12034374 DOI: 10.1111/iwj.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 04/29/2025] Open
Abstract
Wound healing is a complex biological process encompassing haemostasis, inflammation, proliferation and matrix remodelling. Reactive oxygen species (ROS) play a pivotal role in regulating key events such as antimicrobial defence, platelet activation and angiogenesis. However, excessive ROS levels can induce oxidative stress (OS), disrupting the healing cascade and contributing to chronic wounds, inflammation and impaired tissue repair. Systemic conditions like diabetes, obesity, smoking and ageing further exacerbate OS, highlighting its clinical significance in wound management. Antioxidants (AOx), both endogenous and exogenous, have demonstrated therapeutic potential in mitigating OS, promoting wound closure and enhancing cellular recovery. Compounds like Vitamin E, curcumin, ferulic acid and resveratrol improve AOx enzyme activity, reduce oxidative damage and accelerate wound healing in multiple studies. Emerging evidence supports targeting oxidative pathways as a viable strategy to improve outcomes in chronic and systemic OS-related conditions. This review explores the dual role of ROS in wound healing, the impact of OS in systemic diseases, and the therapeutic potential of AOx in fostering optimal healing outcomes, advocating for robust clinical trials to establish standardised interventions.
Collapse
Affiliation(s)
- Kelechi Ukaegbu
- Department of PeriodontologyTexas A&M School of DentistryDallasTexasUSA
- Private PracticeHoustonTexasUSA
| | - Edward Allen
- Department of PeriodontologyTexas A&M School of DentistryDallasTexasUSA
- Center for Advanced Dental EducationDallasTexasUSA
| | - Kathy K. H. Svoboda
- Department of Biomedical SciencesTexas A&M School of DentistryDallasTexasUSA
| |
Collapse
|
2
|
Li Z, Zhang L, Wang Y, Zhu Y, Shen H, Yuan J, Li X, Yu Z, Song B. LA-peptide Hydrogel-Regulation of macrophage and fibroblast fates and their crosstalk via attenuating TGF-β to promote scarless wound healing. Bioact Mater 2025; 47:417-431. [PMID: 40034411 PMCID: PMC11872614 DOI: 10.1016/j.bioactmat.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 03/05/2025] Open
Abstract
The homeostasis of the wound microenvironment is fundamental for scarless wound healing, while the excessive accumulation of transforming growth factor-beta (TGF-β) in the wound microenvironment always leads to hypertrophic scars (HS) formation by regulating cell fates and crosstalk among various types of cells, such as macrophages and fibroblasts. This study reports that an injectable, self-assembling LA-peptide hydrogel has the potential to facilitate scarless cutaneous wound healing through dynamically adsorbing TGF-β within the wound environment. We found that the released LA peptides led to the suppression of both the PI3K/Akt and TGF-β/Smad2/3 pathways in macrophages and fibroblasts. As expected, the application of LA-peptide hydrogel alleviated the M2 type polarization of macrophages and inhibited fibroblasts activation by adsorbing TGF-β both in vitro and in vivo. Furthermore, designated concentrations of the LA-peptide hydrogel achieved controlled release of LA peptides, enabling dynamic regulation of TGF-β for maintaining microenvironment homeostasis during different phases of wound healing. This contributed to the inhibition of HS formation without delaying wound healing in both a mouse full-thickness skin wound model and a rabbit ear scar model. Overall, the LA-peptide hydrogel provides promising avenues for promoting scarless healing of wounds, exemplifying precision medicine-guided targeting of specific pathogenic molecules, such as TGF-β, and highlighting the significance of dynamic regulation of TGF-β homeostasis in wound microenvironment.
Collapse
Affiliation(s)
- Zichao Li
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Leyang Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yifu Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Haomiao Shen
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juzheng Yuan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Zhang HJ, Ming JJ, Zhang HX, Fang SYIH, Liu QW, Zhang HY. A Comprehensive Review: Advances in Mesenchymal Stem Cell Applications for Burn Wound Repair. Stem Cells Int 2025; 2025:6683745. [PMID: 40151391 PMCID: PMC11949610 DOI: 10.1155/sci/6683745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Tissue repair following skin injury is a complex process that encompasses hemostasis, inflammation, tissue cell proliferation, and structural remodeling. Mesenchymal stem cells (MSCs) are derived from the mesodermal layer of tissues and possess multidirectional differentiation potential and self-renewal capabilities. MSCs from various sources, including the bone marrow, adipose tissue, dental pulp, umbilical cord, and amniotic membrane, have demonstrated effectiveness in promoting skin injury repair. They aid in this process by fostering the formation of new blood vessels in damaged tissues, self-renewal, or transdifferentiation into skin or sweat gland cells. Moreover, MSCs promote the proliferation and migration of skin cells, reduce wound inflammation, and restore the extracellular matrix through paracrine secretion. In this paper, we review recent findings regarding MSCs and their role in burn wound repair. Additionally, we explore the potential of combining MSCs with various biomaterials for treating burn wounds and analyze clinical cases wherein MSCs were administered to patients, offering insights into ongoing research on MSC-based therapies for skin injuries.
Collapse
Affiliation(s)
- Hui-Juan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jing-Jie Ming
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong-Xiao Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shao-YI-Han Fang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang 330031, China
| | - Hong-Yan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Zengi N R, Erdoğan S, Özhan O, Karaca ET, Özçinar S, Yilmazteki N Y, Yağin FH, Uğur Y, Firat C, Parlakpinar H, Uyumlu AB. Effects of black mulberry, chokeberry, and elderberry extracts on the healing of burn wounds. Burns 2025; 51:107391. [PMID: 39864262 DOI: 10.1016/j.burns.2025.107391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND In the burn affected area of the skin, the progression or deepening of wounds is related to oxidative stress. Especially in the highly susceptible stasis zone, tissues survive to the extent that they can cope with oxidative stress. OBJECTIVE This study investigated the potential of extracts (E) derived from the fruits (F) and leaves (L) of elderberry (E), chokeberry (C), and black mulberry (M), which are rich in antioxidant properties, to enhance the recovery of the stasis zone in burn wounds. METHODS The study employed a sample size of 56 healthy rats. The comb burn model was used. The rats were administered the extracts via gastric gavage for a period of 21 days. Histological examination and biochemical analyses were conducted on biopsies taken from the stasis zone on the 3rd, 7th, and 21st days of the study. Photography was performed for macroscopic evaluations. The histological assays included the evaluation of inflammatory cell infiltration, reepithelialization, and collagenization, as well as immunohistochemical analysis of vascular endothelial growth factor (VEGF). Bioassays pertaining to the enzymatic activities of catalase, superoxide dismutase, glutathione peroxidase, and malondialdehyde (MDA) levels were performed. RESULTS In macroscopic evaluation, a significant difference was found between the groups in terms of stasis area (F=3.58, p2< 0.001). Post-hoc analyses showed that there was a significant difference between CFE-ELE, EFE-Burn, ELE-Burn and MLE-Burn groups in terms of stasis zones (p < 0.05). However, the difference between the groups according to time was not significant (F=1.36, p = 0.16). At the end of the 21-day experiment, inflammatory cell infiltration was higher in the burn group compared to the other groups, but similar to the CFE group. Re-epithelialization was similar in the burn group compared to the fruit extract groups and significantly lower compared to the leaf extract groups. Furthermore, a significant increase in collagenization and VEGF immunoreactivity was observed in all treatment groups compared to the burn group (p < 0.05). However, no significant difference was detected between the treatment groups. The treatment groups presented a notable reduction in MDA levels in comparison to the burn group (p < 0.001). CONCLUSION This study demonstrated the efficacy of fruit and leaf extracts in burn healing. Histological examination revealed that leaf extracts exhibited superior healing effects compared to fruit extracts. These results suggest that bioactive components in fruits and leaves may have different biological effects.
Collapse
Affiliation(s)
- Rukiye Zengi N
- Republic of Türkiye Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Apricot Research Institute, Malatya, Türkiye.
| | - Selim Erdoğan
- Pharmacy Faculty, Inonu University, Malatya, Türkiye
| | - Onural Özhan
- Medicine Faculty, Inonu University, Malatya, Türkiye
| | | | - Semih Özçinar
- Medicine Faculty, Inonu University, Malatya, Türkiye
| | | | | | - Yılmaz Uğur
- Health Services Vocational School, Inonu University, Malatya, Türkiye
| | | | | | | |
Collapse
|
5
|
Askin S, Kaynarpinar M. Efficacy of Formulation With Potential as Herbal Medicine on Second Degree Burn Wound: Biochemical and Molecular Evaluation. J Cosmet Dermatol 2025; 24:e70122. [PMID: 40098566 PMCID: PMC11915081 DOI: 10.1111/jocd.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Burn injury is a condition caused by heat, cold, electricity, synthetic substances, and radiation, and it causes psychological and physical problems in the affected individuals. AIMS In this study, it was aimed to investigate the healing effect of the spray formulation prepared using ethanol extracts of Olea europaea and Aloe vera leaves, Cocus nucifera fruit, and Chamomilla recutita flower plants (OACC) in a second-degree burn model created in rats, using biochemical and molecular parameters. METHODS Experimental groups were assigned to Healthy control (HC), Burn control (BC), Silver-Sulfadiazine (SS) and OACC. A deep second-degree burn was induced on the lower back and upper back of each rat under standard burning procedures, respectively. Experiments were performed using serum and skin tissue samples obtained on the 3rd-21st days after the burns were created. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were calculated. Transforming Growth Factor Beta-1 (Tgf-β1), Vascular Endothelial Growth Factor-alfa (Vegf-α), interleukin-6 (Il-6) and Tumor Necrosis Factor Alpha (Tnf-α) mRNA expression levels were determined using real-time polymerase chain reaction (RT-PCR). RESULTS AOCC reduced the increased MDA levels in serum related to the burning event, while increasing the decreased SOD enzyme activity levels. In addition, AOCC decreased the gene expression levels of Tgf-β1 and Vegf-α, which are growth factors that were increased in the burn group, and Il-6 and Tnf-α, which are oxidative stress markers. CONCLUSIONS We believe that our study will shed light on the detailed examination of biochemical and molecular pathways affecting the wound healing process in future studies and will contribute to opening new doors for treatment.
Collapse
Affiliation(s)
- Seda Askin
- Health Services Vocational SchoolAtaturk UniversityErzurumTurkey
| | | |
Collapse
|
6
|
Tanzadehpanah H, Nobari S, Hoseini AJ, Ghotbani F, Mehrabzadeh M, Jalili shahri J, Alipour A, Sheykhhasan M, Manoochehri H, Darroudi S, Mahaki H. Effect of platelet-rich plasma on angiogenic and regenerative properties in patients with critical limb ischemia. Regen Ther 2025; 28:517-526. [PMID: 39995496 PMCID: PMC11848493 DOI: 10.1016/j.reth.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Platelet-rich plasma (PRP) is a promising regenerative therapy due to its simplicity, clinical application, safety, and ability to promote angiogenesis. It utilizes various angiogenic growth factors in platelets, including platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β), insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF), which are integral to the tissue repair. Critical limb ischemia (CLI) is a major symptom of peripheral arterial disease (PAD), and PRP therapy aims to improve blood circulation to the distal limb through the development of blood vessels. This review focuses on the extensive research on the molecular mechanisms of PRPs in treating CLI. A comprehensive search was conducted on Web of Science, PubMed, Google Scholar, and Scopus to find studies published during PRP therapy in critical limb ischemia up to June 2024. Current studies reveal that PRP composition varies by case, affecting preparation methods, storage duration, storage methods, and interaction with other materials. PRP-derived growth factors have shown promising results in treating CLI, but well-controlled human research is scarce despite positive animal studies.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Basic Science Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Nobari
- Deputy of Health, Iran University of Medical Science, Tehran, Iran
| | | | - Farzaneh Ghotbani
- Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mehrabzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamal Jalili shahri
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirreza Alipour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Susan Darroudi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Yu WR, Jiang YH, Jhang JF, Kuo HC. Repeated intravesical injections of platelet-rich plasma are safe and effective in the treatment of interstitial cystitis/bladder pain syndrome. Tzu Chi Med J 2025; 37:72-79. [PMID: 39850397 PMCID: PMC11753520 DOI: 10.4103/tcmj.tcmj_166_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 01/25/2025] Open
Abstract
Objectives Interstitial cystitis/bladder pain syndrome (IC/BPS) is a challenging chronic inflammatory condition affecting the urinary bladder, with limited treatment options. This study aims to assess the clinical efficacy of repeated intravesical platelet-rich plasma (PRP) injections for promoting urothelial regeneration and reducing inflammation in patients with IC/BPS and investigate its correlation with subjective and objective treatment-related outcomes. Materials and Methods Four monthly intravesical PRP injections were given to 98 patients with non-Hunner-type IC/BPS. Treatment outcomes were assessed using a global response assessment (GRA) score 3 months posttreatment. In addition, clinical symptom scores, pain severity, voiding diary data, uroflowmetry parameters, and GRA scores were compared before and after treatment and between different treatment outcome groups (satisfactory: GRA≥2 unsatisfactory: GRA<2). Baseline urine biomarkers were analyzed to identify potential treatment outcome predictors. Results After four PRP injections, 54 (55.1%) patients reported satisfactory outcomes. Lower urinary tract symptoms, bladder pain, urinary frequency, anxiety, and flow rate significantly improved from baseline (P < 0.05) in all patients, regardless of the treatment outcome. All patients experienced improved treatment outcomes and increased maximum bladder capacity with successive PRP treatments, and no major complications were reported. Urine biomarkers indicated elevated inflammation and oxidative stress biomarkers in patients with IC/BPS compared to controls. Conclusion Repeated PRP injections are safe and effective for reducing symptoms and bladder pain and improving bladder capacity in a majority of IC/BPS patients, with better outcomes observed in patients with a mild form of bladder inflammation. These results support PRP as a promising novel bladder therapy for IC/BPS.
Collapse
Affiliation(s)
- Wan-Ru Yu
- Department of Nursing, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Yuan-Hong Jiang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
8
|
Nouri S, Shokraneh S, Fatehi Shalamzari P, Ahmed MH, Radi UK, Idan AH, Ebrahimi MJ, Moafi M, Gholizadeh N. Application of Mesenchymal Stem Cells and Exosome alone or Combination Therapy as a Treatment Strategy for Wound Healing. Cell Biochem Biophys 2024; 82:3209-3222. [PMID: 39068609 DOI: 10.1007/s12013-024-01448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The process of wound healing consists of multiple phases, and any disruptions in these phases can lead to the wound becoming chronic and impose heavy financial and psychological costs on the patient and a huge economic burden on the country's healthcare system. Various treatments such as drugs, matrix and scaffolds, blood products, cell therapy, and a combination of these treatments are used for wound healing. The use of mesenchymal stem cells (MSCs) is one of these methods that have produced appropriate responses in the healing of patients' wounds. MSCs by secreting growth factors, cytokines, chemokines, and RNAs elicit changes in cell proliferation, migration, growth, signaling, immunomodulation, and wound re-epithelialization process, and as a result, accelerate wound closure and wound healing. These cells can be isolated from different body sources with different cell characteristics and used directly on the wound site or by injection. In addition, MSCs-derived exosomes have attracted growing attention due to circumventing concerns relating to the direct use of MSCs. To increase the performance of MSCs, they can be used together with other compounds such as platelets, matrices, or scaffolds. This study examined the functions of MSCs in wound healing, as well as the vesicles they secrete, cellular and molecular mechanisms, and combined treatments with MSCs for wound healing.
Collapse
Affiliation(s)
- Soheil Nouri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Mohammad Javad Ebrahimi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Das P, Pal D, Roy S, Chaudhuri S, Kesh SS, Basak P, Nandi SK. Unveiling advanced strategies for therapeutic stem cell interventions in severe burn injuries: a comprehensive review. Int J Surg 2024; 110:6382-6401. [PMID: 38869979 PMCID: PMC11487052 DOI: 10.1097/js9.0000000000001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
This comprehensive review explores the complex terrain of stem cell therapies as a potential therapeutic frontier in the healing of complicated burn wounds. Serious tissue damage, impaired healing processes, and possible long-term consequences make burn wounds a complex problem. An in-depth review is required since, despite medical progress, existing methods for treating severe burn wounds have significant limitations. Burn wounds are difficult to heal because they cause extensive tissue damage. The challenges of burn injury-induced tissue regeneration and functional recovery are also the subject of this review. Although there is a lot of promise in current stem cell treatments, there are also some limitations with scalability, finding the best way to transport the cells, and finding consistent results across different types of patients. To shed light on how to improve stem cell interventions to heal severe burn wounds, this review covers various stem cell applications in burn wounds and examines these obstacles. To overcome these obstacles, one solution is to enhance methods of stem cell distribution, modify therapies according to the severity of the burn, and conduct more studies on how stem cell therapy affects individual patients. Novel solutions may also be possible through the combination of cutting-edge technologies like nanotechnology and biotechnology. This review seeks to increase stem cell interventions by analyzing present challenges and suggesting strategic improvements. The goal is to provide a more effective and tailored way to repair serious burn wounds.
Collapse
Affiliation(s)
- Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
- School of Bioscience and Engineering, Jadavpur University
| | - Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Sudipta Roy
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Shyam S. Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| |
Collapse
|
10
|
Atewologun FA, Okesanya OJ, Okon II, Kayode HH, Ukoaka BM, Olaleke NO, Ogaya JB, Okikiola LA, Manirambona E, Lucero-Prisno Iii DE. Examining the potentials of stem cell therapy in reducing the burden of selected non-communicable diseases in Africa. Stem Cell Res Ther 2024; 15:253. [PMID: 39135088 PMCID: PMC11321202 DOI: 10.1186/s13287-024-03864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
Stem cell therapy (SCT) is a promising solution for addressing health challenges in Africa, particularly non-communicable diseases (NCDs). With their regenerative potential, stem cells have the inherent capacity to differentiate into numerous cell types for tissue repair. Despite infrastructural, ethical, and legal challenges, SCT holds immense promise for managing chronic illnesses and deep-seated tissue injuries. The rising prevalence of NCDs in Africa highlights the need for innovative strategies and treatment options. SCT offers hope in combating conditions like burns, osteoarthritis, diabetes, Alzheimer's disease, stroke, heart failure and cancer, potentially reducing the burden of NCDs on the continent. Despite SCT's opportunities in Africa, there are significant obstacles. However, published research on SCT in Africa is scarce, but recent initiatives such as the Basic School on Neural Stem Cells (NSC) express interest in developing NSC research in Africa. SCT research in African regions, notably on neurogenesis, demonstrates a concentration on studying neurological processes in indigenous settings. While progress has been made in South Africa and Nigeria, issues such as brain drain and impediments to innovation remain. Clinical trials have investigated the efficacy of stem cell treatments, emphasising both potential benefits and limitations in implementing these therapies efficiently. Financing research, developing regulatory frameworks, and resolving affordability concerns are critical steps toward realizing the potential of stem cell treatment in Africa.
Collapse
Affiliation(s)
| | | | - Inibehe Ime Okon
- Department of Research, Medical Research Circle (MedReC), Democratic Republic of the Congo, Postal Code 50 Goma, Bukavu, Democratic Republic of Congo.
| | - Hassan Hakeem Kayode
- Department of Medical Laboratory Science, Federal Medical Centre, Bida, Niger State, Nigeria
| | | | - Noah Olabode Olaleke
- Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Osun State, Nigeria
| | - Jerico Bautista Ogaya
- Department of Medical Technology, Far Eastern University, Manila, Philippines
- Center for University Research, University of Makati, Makati City, Philippines
| | - Lawal Azeez Okikiola
- Department of Biology, University of Texas at Tyler, Tyler, USA
- Department of Medical Laboratory Science, Kwara State University, Malete, Nigeria
| | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Don Eliseo Lucero-Prisno Iii
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Innovation Office, Southern Leyte State University, Sogod, Southern Leyte, Philippines
| |
Collapse
|
11
|
Liu M, Du X, Hu J, Liang X, Wang H. Utilization of convolutional neural networks to analyze microscopic images for high-throughput screening of mesenchymal stem cells. Open Life Sci 2024; 19:20220859. [PMID: 39005738 PMCID: PMC11245879 DOI: 10.1515/biol-2022-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 07/16/2024] Open
Abstract
This work investigated the high-throughput classification performance of microscopic images of mesenchymal stem cells (MSCs) using a hyperspectral imaging-based separable convolutional neural network (CNN) (H-SCNN) model. Human bone marrow mesenchymal stem cells (hBMSCs) were cultured, and microscopic images were acquired using a fully automated microscope. Flow cytometry (FCT) was employed for functional classification. Subsequently, the H-SCNN model was established. The hyperspectral microscopic (HSM) images were created, and the spatial-spectral combined distance (SSCD) was employed to derive the spatial-spectral neighbors (SSNs) for each pixel in the training set to determine the optimal parameters. Then, a separable CNN (SCNN) was adopted instead of the classic convolutional layer. Additionally, cultured cells were seeded into 96-well plates, and high-functioning hBMSCs were screened using both manual visual inspection (MV group) and the H-SCNN model (H-SCNN group), with each group consisting of 96 samples. FCT served as the benchmark to compare the area under the curve (AUC), F1 score, accuracy (Acc), sensitivity (Sen), specificity (Spe), positive predictive value (PPV), and negative predictive value (NPV) between the manual and model groups. The best classification Acc was 0.862 when using window size of 9 and 12 SSNs. The classification Acc of the SCNN model, ResNet model, and VGGNet model gradually increased with the increase in sample size, reaching 89.56 ± 3.09, 80.61 ± 2.83, and 80.06 ± 3.01%, respectively at the sample size of 100. The corresponding training time for the SCNN model was significantly shorter at 21.32 ± 1.09 min compared to ResNet (36.09 ± 3.11 min) and VGGNet models (34.73 ± 3.72 min) (P < 0.05). Furthermore, the classification AUC, F1 score, Acc, Sen, Spe, PPV, and NPV were all higher in the H-SCNN group, with significantly less time required (P < 0.05). Microscopic images based on the H-SCNN model proved to be effective for the classification assessment of hBMSCs, demonstrating excellent performance in classification Acc and efficiency, enabling its potential to be a powerful tool in future MSCs research.
Collapse
Affiliation(s)
- MuYun Liu
- National Engineering Research Center of Foundational Technologies for CGT Industry, Shenzhen, Guangdong, China
| | - XiangXi Du
- Shenzhen Cellauto Automation Co., Ltd., Shenzhen, Guangdong, China
| | - JunYuan Hu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, Guangdong, China
| | - Xiao Liang
- National Engineering Research Center of Foundational Technologies for CGT Industry, Shenzhen, Guangdong, China
| | - HaiJun Wang
- Shenzhen Cellauto Automation Co., Ltd., Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Karadbhajne P, More A, Dzoagbe HY. Enhancing Endometrial Health in Assisted Reproductive Technology (ART): Evaluating Autologous Endometrial Cells and Platelets-Rich Plasma (PRP) via Hysteroscopic Injections. Cureus 2024; 16:e64068. [PMID: 39114217 PMCID: PMC11305442 DOI: 10.7759/cureus.64068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
This review article examines the effectiveness of incorporating autologous endometrial cells and platelet-rich plasma (PRP) through hysteroscopic injections within the field of assisted reproductive technology (ART). This study assesses the outcomes of these injections on the susceptibility of the endometrium, the dynamics of the uterus, and the frequencies of pregnancy in individuals with refractory thin endometrium. Based on a complete examination of several trials, it becomes apparent that autologous PRP injections provide encouraging turnouts in augmenting endometrial thickness, raising endometrial receptivity, and, in the end, raising chances of being pregnant and successful delivery. The research highlights the promise of autologous PRP and minimally changed endometrial cellular treatments in enhancing outcomes in ART, especially for people who have had problems with implantation. This article gives a whole evaluation of the medical use of and upgrades regarding the utilization of infusions of PRP and autologous endometrial cells under hysteroscopic control to deal with infertility issues related to endometrial health through the synthesis of contemporary studies.
Collapse
Affiliation(s)
- Priti Karadbhajne
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akash More
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Hellen Y Dzoagbe
- Obstetrics and Gynecology, Acharya Vinoba Bhave Rural Hospital, Wardha, IND
| |
Collapse
|
13
|
Li XH, Xiao HX, Wang ZX, Tang XR, Yu XF, Pan YP. Platelet Concentrates Preconditioning of Mesenchymal Stem Cells and Combined Therapies: Integrating Regenerative Strategies for Enhanced Clinical Applications. Cell Transplant 2024; 33:9636897241235460. [PMID: 38506426 PMCID: PMC10956156 DOI: 10.1177/09636897241235460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 03/21/2024] Open
Abstract
This article presents a comprehensive review of the factors influencing the efficacy of mesenchymal stem cells (MSCs) transplantation and its association with platelet concentrates (PCs). It focuses on investigating the impact of PCs' composition, the age and health status of platelet donors, application methods, and environmental factors on the outcomes of relevant treatments. In addition, it delves into the strategies and mechanisms for optimizing MSCs transplantation with PCs, encompassing preconditioning and combined therapies. Furthermore, it provides an in-depth exploration of the signaling pathways and proteomic characteristics associated with preconditioning and emphasizes the efficacy and specific effects of combined therapy. The article also introduces the latest advancements in the application of biomaterials for optimizing regenerative medical strategies, stimulating scholarly discourse on this subject. Through this comprehensive review, the primary goal is to facilitate a more profound comprehension of the factors influencing treatment outcomes, as well as the strategies and mechanisms for optimizing MSCs transplantation and the application of biomaterials in regenerative medicine, offering theoretical guidance and practical references for related research and clinical practice.
Collapse
Affiliation(s)
- Xu-huan Li
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Han-xi Xiao
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zu-xiu Wang
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin-rong Tang
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xue-feng Yu
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong-ping Pan
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
15
|
Joglar A, Song J, Golovko G, Jay J, Wolf S, El Ayadi A. Comparing the Effectiveness of Glucocorticoids in Preventing Hypertrophic Scar Diagnosis in Burn Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1970. [PMID: 38004018 PMCID: PMC10673324 DOI: 10.3390/medicina59111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: The prevalence of hypertrophic scarring after a burn is approximately 70%. Despite advances in burn management, there is currently no gold standard treatment to reduce or prevent its occurrence. Glucocorticoids are frequently given to patients early after burns for other therapeutic purposes and have been shown to induce scar regression. Therefore, the purpose of the present work is to determine the incidence of hypertrophic scar diagnosis in burn patients who were administered glucocorticoid treatment using TriNetX, a large patient database. Materials and Methods: Patients diagnosed with hypertrophic scarring, hypertrophic disorders of the skin, or scar conditions and fibrosis of the skin after burn injury were identified in the TriNetX database. The glucocorticoids investigated include hydrocortisone, methylprednisolone, dexamethasone, triamcinolone, and prednisone. Patients were stratified into three groups based on total body surface area (TBSA) burned: 0-19%, 20-39%, and 40-100%. The risk ratio was evaluated for burn patients who received varying glucocorticoids after injury based on TBSA burned. Additionally, treatment pathways, time of treatment, and treatment purity pathways were evaluated. Results: In patients with a 0-19% TBSA burn, methylprednisolone showed a decreased risk of developing hypertrophic scar diagnosis. In those with a 20-39% TBSA burn or 40-100% TBSA burn, dexamethasone showed an increased risk of developing hypertrophic scar diagnosis. Additionally, dexamethasone was the most commonly administered glucocorticoid for burn patients and was most likely to be administered earlier after burn injury, comparatively. Conclusions: Methylprednisolone was associated with reduced hypertrophic scar diagnosis in burn patients independent of TBSA burn. While glucocorticoids are one of the mainstay treatments for hypertrophic scarring, further studies are needed to determine early therapeutic interventions that will reduce the potential for hypertrophic scar development in burn patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.J.); (J.S.); (G.G.); (J.J.); (S.W.)
| |
Collapse
|