1
|
Zewail M, Abbas H, Ali ME, Makled S. Melatonin hyalurosomes as a powerful antioxidant for combating skin damage induced by UV radiation. J Liposome Res 2025:1-16. [PMID: 40167246 DOI: 10.1080/08982104.2025.2484732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Extrinsic skin aging is caused by chronic skin photodamage. The present study aims to inspect the role of nanoencapsulation of melatonin (MEL) in hyalurosomes in combating UVB-induced skin damage to take advantage of the hydrating penetration enhancing and antiaging effects of hyaluronic acid along with the powerful antioxidant effects of MEL. Measurement of particle size, zeta potential, encapsulation efficiency and in vitro MEL release were carried out. The in vivo photoprotective effects of MEL were tested in rats. A histopathological examination was conducted, and antioxidant and anti-inflammatory markers were measured along with estimating the expression of P38 MAPK, P-ERK and P-JNK. Particle size and zeta potential of MEL hyalurosomes were 285.9 nm and -26.3 mV with 95% entrapment efficiency and provided a sustained release profile for 48h. In vivo, results revealed the superior effect of MEL hyalurosomes in protecting skin against UVB-induced damage and reducing the levels of inflammatory mediators like TNF-α and IL6 compared with MEL suspension. However, they had a prominent role in increasing the levels of antioxidants. These findings may be accredited to the effect of nanoencapsulation in enhancing skin penetration and deposition of MEL besides the effect of hyaluronic acid as a powerful antiaging tool.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Xu FH, Sun X, Zhu J, Kong LY, Chang Y, Li N, Hui WX, Zhang CP, Cheng YM, Han WX, Tian ZM, Qiao YN, Chen DF, Liu L, Feng DY, Han J. Significance of the gut tract in the therapeutic mechanisms of polydopamine for acute cerebral infarction: neuro-immune interaction through the gut-brain axis. Front Cell Infect Microbiol 2025; 14:1413018. [PMID: 40104260 PMCID: PMC11913817 DOI: 10.3389/fcimb.2024.1413018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/25/2024] [Indexed: 03/20/2025] Open
Abstract
Background Recent research has made significant progress in elucidating gastrointestinal complications following acute cerebral infarction (ACI), which includes disorders in intestinal motility and dysbiosis of the gut microbiota. Nevertheless, the role of the gut (which is acknowledged as being the largest immune organ) in the immunoreactive effects of polydopamine nanoparticles (PDA) on acute ischemic stroke remains inadequately understood. In addition to its function in nutrient absorption, the gut acts as a protective barrier against microbes. Systemic immune responses, which are triggered by the disruption of gut barrier integrity, are considered as one of the mechanisms underlying acute ischemic stroke, with the gut-brain axis (GBA) playing a pivotal role in this process. Methods In this study, we used a PDA intervention in an ACI model to investigate ACI-like behavior, intestinal barrier function, central and peripheral inflammation, and hippocampal neuron excitability, thus aiming to elucidate the mechanisms through which PDA improves ACI via the GBA. Results Our findings indicated that as ACI mice experienced dysbiosis of the gut microbiota and intestinal barrier damage, the levels of proinflammatory factors in the serum and brain significantly increased. Additionally, the activation of astrocytes in the hippocampal region and neuronal apoptosis were observed in ACI mice. Importantly, our study is the first to provide evidence demonstrating that PDA effectively suppresses the neuroimmune interactions of the gut-brain axis and significantly improves intestinal epithelial barrier integrity. Conclusion We hope that our discoveries will serve as a foundation for further explorations of the therapeutic mechanisms of PDA in ACI, particularly in elucidating the protective roles of gut microbiota and intestinal barrier function, as well as in the development of more targeted clinical interventions for ACI.
Collapse
Affiliation(s)
- Feng-Hua Xu
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Xiao Sun
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Jun Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Ling-Yang Kong
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Yuan Chang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Ning Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen-Xiang Hui
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Cong-Peng Zhang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Yi-Ming Cheng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- College of life sciences, Shaanxi Normal University, Xi’an, China
| | - Wen-Xin Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Zhi-Min Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Yan-Ning Qiao
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Dong-feng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Da-Yun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
3
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Akbar K, Rehman MU, Shah FA, Younas S, Al-Otaibi JS, Khan H. Paroxetine Loaded Nanostructured Lipid Carriers Based In-situ Gel for Brain Delivery via Nasal Route for Enhanced Anti-Depressant Effect: In Vitro Prospect and In Vivo Efficacy. AAPS PharmSciTech 2024; 25:248. [PMID: 39433712 DOI: 10.1208/s12249-024-02954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
This study focused on developing a thermosensitive gel with nanostructured lipid carriers (NLCs) loaded with paroxetine (PAR) to enhance the treatment and management of depression via nasal administration. Micro emulsion technique was utilized for the PAR-NLCs preparation. The acetyl alcohol and oleic acid were used in the ratio of 76:24. In the NLCs Tween 40, Span40 and Myrj 52 were used as a surfactant. The NLCs were then added into Poloxamer mixture to get thermosensitive NLCs based gel. Characterization, in vitro and in vivo studies were performed to check the efficiency of formulation in drug delivery. The entrapment efficiency of optimized PAR-NLCs was about 90%. The particle size, zeta potential and PDI were 155 ± 1.4 nm, -25.9 ± 0.5 mV, and 0.12 ± 0.01 respectively. The optimized gel showed a gelling temperature of 31.50 ± 0.50°C and a gelling time of 1 ± 0.12 s with a pH of 6, suitable for nasal administration. The in vitro release assay of PAR-NLC-gel showed a cumulative release of about 59% in the first 6 h after comparison with PAR-NLCs which showed almost 100%release. In vivo studies included forced swim test and tail suspension tests showed significant potential for treating depression when compared to PAR-NLCs. PAR-NLCs and NLCs based gel enhanced the tissue architecture and suppressed the expression of TNF-α in brain cortex from histological and immunohistochemical analysis. PAR- NLCs gel-based delivery system can prove to be an effective delivery system for brain targeting through nose for the better management of depression.
Collapse
Affiliation(s)
- Kiran Akbar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology College of Pharmacy Prince Sattam bin Abdul Aziz University Saudi Arab, Al-Kharj, Saudi Arabia
| | - Sidra Younas
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
5
|
You C, Yan S, Li M, Xie S, Zhang S, Chen XD, Wu WD. Fabrication of Uniform Melatonin Microparticles Potentially for Nasal Delivery: A Comparison of Spray Drying and Spray Freeze Drying. Pharm Res 2024; 41:2057-2073. [PMID: 39394484 DOI: 10.1007/s11095-024-03770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE Insomnia is a major health concern, and melatonin (MLT) is key for initiating sleep. Delivering MLT nasally can enhance brain bioavailability by targeting the olfactory region. This study aimed to fabricate MLT embedded microparticles for nasal delivery. METHODS MLT-cyclodextrin (CD) derivatives complex microparticles (MCCMPs) were fabricated by spray drying and spray freeze drying MLT and CD derivative solutions. Phase solubility and 1H-1H ROSEY NMR analysis assessed MLT-CD assembly. The effects of formulation compositions and process parameters on microparticle structural attributes were investigated. The in vitro nasal release and deposition performances were evaluated by a modified paddle-over-disk apparatus and 3D-printed nasal cavity cast, respectively. RESULTS Sodium sulphobutylether-β-cyclodextrin (SBE-β-CD) exhibited the best complexation ability with MLT, with the indole structure of MLT included in its cavity. Spray dried MCCMPs showed dense structure with high density, while the spray freeze dried counterpart showed the brittle and porous structure with low density. Despite the porous structure may promote the release rate of spray freeze dried samples, the high hydrophilicity of the CD derivative overshadows this advantage. Samples prepared by spray drying not only exhibited rapid release rates but also could deposit more effectively in the olfactory region, as they avoid breakage due to their higher mechanical strength. The optimal sample showed ~ 86.70% of the MLT released at 20 min and ~ 10.57% of the deposition fraction in the olfactory region. CONCLUSIONS This work compares MCCMPs fabricated by spray drying and spray freeze drying, providing the optimal formulation and process combinations.
Collapse
Affiliation(s)
- Chengzhi You
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, PR China
| | - Shen Yan
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, PR China
| | - Mengyuan Li
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, PR China
| | - Shuaiyu Xie
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, PR China
| | - Shengyu Zhang
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, PR China.
| | - Xiao Dong Chen
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, PR China
| | - Winston Duo Wu
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, PR China.
| |
Collapse
|
6
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
7
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
8
|
Din FU, Kim JS, Lee HC, Cheon S, Woo MR, Woo S, Ku SK, Yoo HH, Kim JO, Jin SG, Choi HG. Injectable dual thermoreversible hydrogel for sustained intramuscular drug delivery. J Control Release 2024; 374:590-605. [PMID: 39208936 DOI: 10.1016/j.jconrel.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Herein, we reported novel docetaxel-decorated solid lipid nanoparticle (DCT-SLN)-loaded dual thermoreversible system (DCT-DRTS) for intramuscular administration with reduced burst effect, sustained release and improved antitumor efficacy. The optimized DCT-DRTs was subjected to in-vitro and in-vivo analyses. Antitumor evaluation of the DCT-DRTS was executed and compared with DCT-hydrogel, and DCT-suspension trailed by the histopathological and immune-histochemical analyses. The DCT-SLN gave a mean particle size of 157 nm and entrapment efficiency of 93 %. It was a solid at room temperature, and changed to liquid at physiological temperature due to its melting point of about 32 °C. Unlikely, poloxamer mixture remained liquefied at 25-27 °C, however converted to gel at physiological temperature. This behavior demonstrated opposed reversible property of the DCT-SLN and poloxamer hydrogel in DCT-DRTS system, making it ideal for intramuscular administration and quick gelation inside the body. The DCT-DRTS sustained the drugs release and unlike DCT-hydrogel, the preliminary plasma concentration of DCT-DRTS was significantly reduced, overcoming the burst release. A meaningfully enhanced antitumor efficacy and improved survival rate was observed from DCT-DRTS in tumor cell xenograft athymic nude mice. Additionally, increased apoptotic and reduced proliferation markers were observed in DCT-DRTS treated tumor masses. It was concluded that DCT-DRTS may be a suitable choice for intramuscular administration of DCT with sustained release, improved bioavailability, reduced toxicity and enhanced antitumor effects.
Collapse
Affiliation(s)
- Fakhar Ud Din
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea; Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Ho Cheol Lee
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sanghyun Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sae Kwang Ku
- College of Oriental Medicine, Daegu Haany University, Gyongsan 712-715, South Korea
| | - Hye Hyun Yoo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea.
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
9
|
Raja HN, Din FU, Shabbir K, Khan S, Alamri AH, Al Awadh AA, Lahiq AA, Alasiri A. Sodium alginate-based smart gastro-retentive drug delivery system of revaprazan loaded SLNs; Formulation and characterization. Int J Biol Macromol 2023; 253:127402. [PMID: 37832620 DOI: 10.1016/j.ijbiomac.2023.127402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Revaprazan (REV), a novel reversible Proton Pump Inhibitor (PPI) used to treat peptic ulcers, faces challenges in therapeutic efficacy due to its poor dissolution properties and a short half-life. Solid lipid nanoparticles (SLNs) have emerged as a drug delivery system capable of enhancing dissolution and bioavailability of lipid soluble drugs. Here, we report on the development and optimization of a smart gastro-retentive raft system of REV-loaded SLNs (GRS/REV-SLNs) to enhance drug bioavailability and gastric retention. The optimized REV-SLNs had a particle size of 120 nm, a Polydispersity Index (PDI) of 0.313, a zeta potential of -20.7 mV, and efficient drug incorporation of 88 %. Transmission Electron Microscopy (TEM) affirmed the spherical morphology of these REV-SLNs, while Fourier Transform Infrared Spectroscopy (FTIR) revealed no chemical interactions among components. In-vitro assessment of the final GRS/REV-SLNs demonstrated sustained gelation and buoyancy for over 12 h, which would significantly enhance REV retention and its release within the stomach. Further assessments in rats confirmed successful gel transformation within the stomach, resulting in the improved bioavailability of REV. Thus, the development of GRS/REV-SLNs significantly improved the delivery and bioavailability of REV within the stomach, and offers a potentially improved method of treating peptic ulcers.
Collapse
Affiliation(s)
- Hadiqa Nazish Raja
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Kanwal Shabbir
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed A Lahiq
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66262, Saudi Arabia
| | - Ali Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| |
Collapse
|
10
|
Nayab DE, Din FU, Ali H, Kausar WA, Urooj S, Zafar M, Khan I, Shabbir K, Khan GM. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective. J Nanobiotechnology 2023; 21:477. [PMID: 38087359 PMCID: PMC10716964 DOI: 10.1186/s12951-023-02250-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.
Collapse
Affiliation(s)
- Dur E Nayab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Warda Arooj Kausar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shaiza Urooj
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrahim Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kanwal Shabbir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
11
|
Wang B, Wu K, Liu R, Huang Y, Chang Z, Gao Y, Liu Y, Chen H, Wang Z, Cui Y, Wang L, Ma P, Zhang L. Phyllanthi Tannin Loaded Solid Lipid Nanoparticles for Lung Cancer Therapy: Preparation, Characterization, Pharmacodynamics and Safety Evaluation. Molecules 2023; 28:7399. [PMID: 37959818 PMCID: PMC10647271 DOI: 10.3390/molecules28217399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The objective of the present study was to develop PTF-loaded solid lipid nanoparticles (PTF-SLNs) and investigate their efficacy in treating lung cancer. The PTF-SLNs were prepared by the thin film hydration method and verified by FTIR and TEM. Their physicochemical properties were characterized by particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE), drug loading (DL), etc. Then, the pharmacodynamic studies of PTF-SLNs were performed on Lewis lung cancer cells and tumor-bearing mice. Finally, the safety studies were assessed by organ index, serum biochemical indicators, and histopathological changes. The PTF-SLNs were characterized by around 50 nm sphere nanoparticles, sustained ideal stability, and controlled drug release effects. The pharmacodynamic evaluation results showed that PTF-SLNs had stronger anti-tumor efficacy than PTF. An in vitro study revealed a more obvious cytotoxicity and apoptosis effect. The IC 50 values of PTF and PTF-SLNs were 67.43 μg/mL and 20.74 μg/mL, respectively. An in vivo study showed that the tumor inhibition rates of 2 g/kg PTF and 0.4 g/kg PTF-SLNs were 59.97% and 64.55%, respectively. The safety preliminary study indicated that PTF-SLNs improve the damage of PTF to normal organs to a certain extent. This study provides a nanoparticle delivery system with phenolic herbal extract to improve anti-tumor efficacy in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Pengkai Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (B.W.); (K.W.); (R.L.); (Y.H.); (Z.C.); (Y.G.); (Y.L.); (H.C.); (Z.W.); (Y.C.); (L.W.)
| | - Lanzhen Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (B.W.); (K.W.); (R.L.); (Y.H.); (Z.C.); (Y.G.); (Y.L.); (H.C.); (Z.W.); (Y.C.); (L.W.)
| |
Collapse
|