1
|
Yang J. Unveiling the multifaceted roles of long non-coding RNA CTBP1-DT in human diseases: Special attention to its microprotein-encoding potential. Pathol Res Pract 2025; 268:155870. [PMID: 40020329 DOI: 10.1016/j.prp.2025.155870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/30/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
C-terminal binding protein 1 divergent transcript (CTBP1-DT) is a novel long non-coding RNA (lncRNA) located on human chromosome 4p16.3. Numerous studies have shown that CTBP1-DT plays a critical regulatory role in various human malignancies and non-malignant diseases. In several cancers, the expression of CTBP1-DT is upregulated, closely associated with the risk of 12 types of cancer, and strongly correlated with the clinical pathological features and poor prognosis of 10 of these cancers. Mechanistically, CTBP1-DT is stimulated by the transcription factors ETV5 and Sp1, or methylated by YTHDC1. By competitively inhibiting 12 microRNAs, it activates 3 signaling pathways that influence malignant behaviors of tumor cells, including proliferation, apoptosis, cell cycle arrest, migration, invasion, immune evasion, and chemoresistance. Importantly, it also encodes the microprotein DNA damage up-regulated protein (DDUP), which mediates cisplatin resistance through sustained response to DNA damage signals. Furthermore, CTBP1-DT has been implicated in the progression of non-malignant diseases such as diabetes and related conditions, cardiovascular diseases, and osteoarthritis. This review summarizes the latest research on the RNA and protein functions of CTBP1-DT in human diseases, outlines various molecular regulatory networks centered around CTBP1-DT, and discusses the opportunities and challenges of its clinical applications.
Collapse
Affiliation(s)
- Jingjie Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
| |
Collapse
|
2
|
Zhang S, Wu Q, Cheng W, Dong W, Kou B. YTHDC1-Mediated lncRNA MSC-AS1 m6A Modification Potentiates Laryngeal Squamous Cell Carcinoma Development via Repressing ATXN7 Transcription. Mol Biotechnol 2025; 67:1659-1673. [PMID: 38637450 DOI: 10.1007/s12033-024-01150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Laryngeal squamous cell carcinoma (LSCC) has the highest mortality rate among head and neck squamous cell carcinoma. This study was designed to investigate the biological effect of long noncoding RNA (lncRNA) MSC antisense RNA 1 (MSC-AS1) on LSCC development and the underlying mechanism. The expression and prognostic value of lncRNAs in head and neck squamous cell carcinoma were predicted in the bioinformatics tools. The overexpression of MSC-AS1 in LSCC patients predicted a poor prognosis. Depletion of MSC-AS1 using shRNA repressed the malignant phenotype of AMC-HN-8 and TU-177 cells. MSC-AS1, mainly localized in the nucleus, interacted closely with the transcription factor CCCTC-binding factor (CTCF). CTCF played anti-tumor effects in vitro and in vivo. Ataxin-7 (ATXN7) was predicted to be a downstream target of CTCF, whose expression was negatively controlled by MSC-AS1. MSC-AS1 was found to block the expression of CTCF, thereby repressing ATXN7. Finally, MSC-AS1 overexpression in LSCC was governed by YTH domain-containing protein 1 (YTHDC1)-mediated m6A modification. In summary, our research identified the YTHDC1/MSC-AS1/CTCF/ATXN7 axis in LSCC development, which indicated that MSC-AS1 is an attractive biomarker in the LSCC treatment.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Qun Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Wei Cheng
- Department of General Surgery, Danfeng County Hospital, Shangluo, 726200, Shaanxi, People's Republic of China
| | - Weijiang Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Bo Kou
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Song GY, Yu QH, Xing XK, Fan XM, Xu SG, Zhang WB, Wu YY, Zhang N, Chao TZ, Wang F, Ding CS, Guo CY, Ma L, Sun CY, Duan SY, Xu P. The YTHDC1 reader protein recognizes and regulates the lncRNA MEG3 following its METTL3-mediated m 6A methylation: a novel mechanism early during radiation-induced liver injury. Cell Death Dis 2025; 16:127. [PMID: 39994235 PMCID: PMC11850776 DOI: 10.1038/s41419-025-07417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/20/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
While apoptotic cell death is known to be central to the pathogenesis of radiation-induced liver injury (RILI), the mechanistic basis for this apoptotic activity remains poorly understood. N6-methyladenosine (m6A) modifications are the most common form of reversible methylation observed on lncRNAs in eukaryotic cells, with their presence leading to pronounced changes in the activity of a range of biological processes. The degree to which m6A modification plays a role in the induction of apoptotic cell death in response to ionizing radiation (IR) in the context of RILI remains to be established. Here, IR-induced apoptosis was found to significantly decrease the levels of m6A present, with a pronounced decrease in the expression of methyltransferase-like 3 (METTL3) at 2 d post radiation in vitro. From a mechanistic perspective, a methylated RNA immunoprecipitation assay found that lncRNA MEG3 was a major METTL3 target. The expression of MEG3 was upregulated via METTL3-mediated m6A in a process that was dependent on YTHDC1, ultimately reversing the miR-20b-mediated inhibition of BNIP2 expression. Together, these findings demonstrate that the responsivity of METTL3 activity to IR plays a role in IR-induced apoptotic cell death, leading to the reverse of miR-20b-mediated BNIP2 inhibition through the YTHDC1-dependent m6A modification of MEG3, suggesting that this process may play a central role in RILI incidence.
Collapse
Affiliation(s)
- Gui-Yuan Song
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Xue-Kun Xing
- School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Xin-Ming Fan
- Department of Radiotherapy, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, China
| | - Si-Guang Xu
- Key Laboratory of Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wen-Bo Zhang
- Key Laboratory of Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yao-Yao Wu
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Nan Zhang
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Tian-Zhu Chao
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Cheng-Shi Ding
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Cun-Yang Guo
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Binzhou Medical University, Yantai, Shandong, China
| | - Li Ma
- Department of Radiotherapy, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, China
| | - Chang-Ye Sun
- Key Laboratory of Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shu-Yan Duan
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China.
| |
Collapse
|
4
|
Deng W, Zhong L, Ye S, Luo J, Ren G, Huang J, Zhuang X. Mir22hg facilitates ferritinophagy-mediated ferroptosis in sepsis by recruiting the m6A reader YTHDC1 and enhancing Angptl4 mRNA stability. J Bioenerg Biomembr 2024; 56:405-418. [PMID: 38842666 PMCID: PMC11217081 DOI: 10.1007/s10863-024-10022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Ferritinophagy-mediated ferroptosis plays a crucial role in fighting pathogen aggression. The long non-coding RNA Mir22hg is involved in the regulation of ferroptosis and aberrantly overexpression in lipopolysaccharide (LPS)-induced sepsis mice, but whether it regulates sepsis through ferritinophagy-mediated ferroptosis is unclear. METHODS Mir22hg was screened by bioinformatics analysis. Ferroptosis was assessed by assaying malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ levels, glutathione (GSH) activity, as well as ferroptosis-related proteins GPX4 and SLC3A2 by using matched kits and performing western blot. Ferritinophagy was assessed by Lyso tracker staining and FerroOrange staining, immunofluorescence analysis of Ferritin and LC-3, and western blot analysis of LC-3II/I, p62, FTH1, and NCOA4. The bind of YTH domain containing 1 (YTHDC1) to Mir22hg or angiopoietin-like-4 (Angptl4) was verified by RNA pull-down and/or immunoprecipitation (RIP) assays. RESULTS Mir22hg silencing lightened ferroptosis and ferritinophagy in LPS-induced MLE-12 cells and sepsis mouse models, as presented by the downregulated MDA, ROS, Fe2+, NCOA4, and SLC3A2 levels, upregulated GPX4, GSH, and FTH1 levels, along with a decrease in autophagy. Mir22hg could bind to the m6A reader YTHDC1 without affecting its expression. Mechanistically, Mir22hg enhanced Angptl4 mRNA stability through recruiting the m6A reader YTHDC1. Furthermore, Angptl4 overexpression partly overturned Mir22hg inhibition-mediated effects on ferroptosis and ferritinophagy in LPS-induced MLE-12 cells. CONCLUSION Mir22hg contributed to in ferritinophagy-mediated ferroptosis in sepsis via recruiting the m6A reader YTHDC1 and strengthening Angptl4 mRNA stability, highlighting that Mir22hg may be a potential target for sepsis treatment based on ferroptosis.
Collapse
Affiliation(s)
- Wenlong Deng
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China.
| | - Liang Zhong
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Shupei Ye
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Jiajing Luo
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Guobin Ren
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Junhao Huang
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Xiaolei Zhuang
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| |
Collapse
|
5
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
6
|
Ng MY, Yu CC, Chen SH, Liao YW, Lin T. Er:YAG Laser Alleviates Inflammaging in Diabetes-Associated Periodontitis via Activation CTBP1-AS2/miR-155/SIRT1 Axis. Int J Mol Sci 2024; 25:2116. [PMID: 38396793 PMCID: PMC10888604 DOI: 10.3390/ijms25042116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Periodontitis is a significant health concern for individuals with diabetes mellitus (DM), characterized by inflammation and periodontium loss. Hyperglycaemia in DM exacerbates susceptibility to periodontitis by inducing inflammaging in the host immune system. The use of erbium-doped yttrium-aluminum-garnet laser (ErL) in periodontitis treatment has gained attention, but its impact on diabetic-associated periodontitis (DP) and underlying mechanisms remain unclear. In this study, we simulated DP by exposing human periodontal ligament fibroblasts (PDLFs) to advanced glycation end products (AGEs) and lipopolysaccharides from P. gingivalis (Pg-LPS). Subsequently, we evaluated the impact of ErL on the cells' wound healing and assessed their inflammaging markers. ErL treatment promoted wound healing and suppressed inflammaging activities, including cell senescence, IL-6 secretion, and p65 phosphorylation. Moreover, the laser-targeted cells were observed to have upregulated expression of CTBP1-AS2, which, when overexpressed, enhanced wound healing ability and repressed inflammaging. Moreover, bioinformatic analysis revealed that CTBP1-AS2 acted as a sponge for miR155 and upregulated SIRT1. In conclusion, ErL demonstrated the ability to improve wound healing and mitigate inflammaging in diabetic periodontal tissue through the CTBP1-AS2/miR-155/SIRT1 axis. Targeting this axis could represent a promising therapeutic approach for preventing periodontitis in individuals with DM.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Szu-Han Chen
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|