1
|
Jabbarzadeh M, Zaboli P, Chekin F, Saleh N. Anticancer effects of doxorubicin-conjugated magnetite MXene/Callicarpa extract on MCF-7 breast cancer cell line. Talanta 2025; 295:128380. [PMID: 40424790 DOI: 10.1016/j.talanta.2025.128380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/20/2025] [Accepted: 05/24/2025] [Indexed: 05/29/2025]
Abstract
Cancer is the most dangerous disease and second leading cause of death worldwide. Doxorubicin (DOX) is the most effective chemotherapeutic agent used for treating cancers. DOX possesses the side effects and strong cytotoxicity. Thus, it is urgent to develop the bio-carriers for loading this drug. In this work, we reported a novel platform based on MXene functionalized with Callicarpa extract and iron oxide nanoparticles (EX-Fe3O4-MX) for loading and release of DOX at different times and pHs and revealing the cytotoxicity of DOX@EX-Fe3O4-MX on breast cancer cell line (MCF-7) by MTT assay. The Raman, UV-Vis, XRD and FT-IR spectroscopy and FE-SEM images revealed DOX onto EX-Fe3O4-MX hybrid. FE-SEM images showed Fe3O4 nanoparticles with main particle size of 34.7 ± 2.6 nm on MXene layers. The 100 ppm of EX-Fe3O4-MX and DOX@EX-Fe3O4-MX showed 0.91 ppm and 0.84 ppm phenols with DPPH radical scavenging of 86.84 % and 75.93 %, respectively. The DOX-efficient loading, 88 % (at pH 7.0 for 4 h), was seen on EX-Fe3O4-MX in comparison to MX and Fe3O4-MX due to the presence of extract phenolic groups. The behavior of DOX@EX-Fe3O4-MX hybrid provided a biphasic release pattern consisting of an initial burst release, followed by a sustained drug release. Upon the normal physiological pH 7.0, the DOX-release content was 24.6 % from the DOX@EX-Fe3O4-MX at 12 h, while 72.1 % of DOX was released at pH 4.0. The 30.5 % and 73.6 % contents of DOX could be released after 25 h at pH 7.0 and 4.0, respectively. Cytotoxicity tests assessed significant viability loss, 41 % and 22 % after 24 and 48 h exposure, respectively for 4 μg/mL of DOX@EX-Fe3O4-MX. The viability loss of DOX@EX-Fe3O4-MX was comparable to free DOX with IC50 of ∼1 μg/mL after 48 h. All these findings imply that EX-Fe3O4-MX carrier offers significant benefits for biomedical applications and the design DOX@EX-Fe3O4-MX based-hybrid exhibits strong anticancer effect because of its remarkable properties, large surface area, and synergistic effects.
Collapse
Affiliation(s)
- Mehdi Jabbarzadeh
- Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Pardis Zaboli
- Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Fereshteh Chekin
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
2
|
Nurjis F, Sarwar U, Sarfraz Ali J, Fayyaz M, Munir F, Shahzad S. Synergistic combinatorial delivery system based on nanoliposome encapsulating doxorubicin and sorafenib for broad-spectrum cancer treatment. J Microencapsul 2025; 42:300-312. [PMID: 40126990 DOI: 10.1080/02652048.2025.2480597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
A novel combination delivery approach entrapping Sorafenib inside a nanoliposome bilayer and Doxorubicin within the aqueous core to achieve the broad-spectrum synergistic chemotherapeutic effect. DOX-SOR liposomes were synthesized by thin film hydration and characterized using UV-visible spectroscopy, Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Fluorescence, and Scanning Electron Microscopy, followed by cytotoxicity assessments. Nanoliposomes demonstrated effective loading and encapsulation of Doxorubicin (10.23% ± 0.65 and 89.65% ± 0.52) and Sorafenib (10.42% ± 0.50 and 85.35% ± 0.72) with a 165 nm ± 1.34 mean diameter, -15.2 ± 1.78 zeta potential, and 75% ± 1.92 of cumulative release. In vitro analysis of nanoliposomes demonstrated biocompatibility up to 250 µg/mL concentration (p < 0.05), enhanced intracellular localization in Hep2c cell lines, 91% ± 1.72 cytotoxic effects (p < 0.0001) with IC50 up to 127µg/mL, 21% ± 0.89 cell viability with 85% apoptosis (p < 0.0001) using flow cytometer. This study presents a promising treatment approach using a multidrug-loaded nanoliposomes for broad-spectrum synergistic chemotherapy.
Collapse
Affiliation(s)
- Farwa Nurjis
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics College (NILOP-C), Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Usama Sarwar
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Joham Sarfraz Ali
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Mahnoor Fayyaz
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Faiza Munir
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Shaheen Shahzad
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
3
|
Kubrak TP, Makuch-Kocka A, Aebisher D. Coumarins in Anticancer Therapy: Mechanisms of Action, Potential Applications and Research Perspectives. Pharmaceutics 2025; 17:595. [PMID: 40430886 PMCID: PMC12115119 DOI: 10.3390/pharmaceutics17050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Coumarins are natural organic compounds widely found in plants that show promising anticancer properties. This article reviews the current research on the mechanisms of action of coumarins in cancer therapy, including the induction of apoptosis, inhibition of tumor cell proliferation, modulation of oxidative stress, and inhibition of angiogenesis and metastasis. Examples of coumarins with demonstrated anticancer activity, such as scopoletin, umbeliferon, esculetin and their synthetic derivatives, are also presented. The results of preclinical studies, the potential use of coumarins as stand-alone drugs and their role in combination therapy with chemotherapy are discussed. In addition, challenges related to bioavailability, safety and potential interactions with other drugs are highlighted. This review concludes by pointing out future research directions, such as the design of new coumarin analogs and the use of nanotechnology to enhance their efficacy in cancer treatment.
Collapse
Affiliation(s)
- Tomasz Piotr Kubrak
- Department of Biochemistry and General Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-310 Rzeszów, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 Street, 20-080 Lublin, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-310 Rzeszów, Poland;
| |
Collapse
|
4
|
Beigrezaei A, Rafipour R. Design of casein-based nanocarriers for targeted delivery of daunorubicin to leukemia cells. Biotechnol Appl Biochem 2025; 72:287-294. [PMID: 39324205 DOI: 10.1002/bab.2662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/24/2024] [Indexed: 09/27/2024]
Abstract
Daunorubicin (DAU) is a chemotherapy drug approved for the treatment of some cancers. However, the clinical compatibility of DAU is limited due to its lack of specificity and its highly toxic effects, which interfere with normal cells. This toxicity can be reduced with nanocarriers and targeted drug delivery systems. In this study, to develop the drug delivery of DAU, the surface of synthesized nanoparticles was modified by folic acid to target cancer cells optimally. Encapsulation of DAU in protein sodium caseinate (NaCAS) was done by adding calcium ions to bring the casein (CAS) in the solution to a micellar structure to synthesize dense nanoparticles. Fourier-transform infrared spectroscopy transmission, fluorescence spectroscopy, UV-Vis spectroscopy, field emission scanning electron microscopy, and zeta potential studies designed and distinguished the synthesized nanocomplexes. The results showed that CAS nanoparticles successfully encapsulated DAU, and the protein surface was targeted by folic acid. Light scattering analysis determined that the particles with a scattering index number of 306.0 and an average size of 8.117 nm were synthesized. The zeta potential of CAS micelles is more harmful than CAS nanoparticles. This is because calcium ions are added during the formation of CAS nanoparticles during the drug-loading stages. These studies prove that the synthesized "NaCAS-DAU" and "NaCAS-DAU-folic acid" complexes can be favorable carriers in the targeted drug delivery of cancer drugs.
Collapse
Affiliation(s)
- Ali Beigrezaei
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| |
Collapse
|
5
|
Zhong X, Zhang Y, Wei J. Recent advances in ruthenium (III) complex-loaded nanomaterial for enhanced cancer therapy efficacy. Drug Dev Ind Pharm 2025; 51:169-179. [PMID: 39836522 DOI: 10.1080/03639045.2025.2455428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
OBJECTIVE Amid the escalating global cancer incidence, the development of effective and safe anticancer drugs is a critical priority in medical research. Addressing the clinical shortcomings of ruthenium-based anticancer drugs are currently a prominent focus of research. SIGNIFICANCE AND METHODS Since the pioneering work with platinum derivatives, significant progress has been made in the fundamental studies of metal complexes for the treatment of a wide range of cancers, and there has been a growing interest in their properties and biomedical applications. Although chemotherapy is crucial in clinical tumor management, platinum(II) anticancer drugs like cisplatin and carboplatin suffer from severe toxicity and drug resistance issues. Among various metal-based drugs, ruthenium(III) complexes are notable for their selectivity, cytotoxic activity in vitro, and effective anticancer properties in vivo. Despite some drug candidates reaching late-stage clinical trials, their clinical application remains constrained by problems such as low solubility, poor stability, and inadequate cellular uptake. RESULTS The development of efficient and stable nanocarrier-based drug delivery systems for ruthenium(III) complexes, enhancing pharmacokinetic properties, and enabling slow, controlled release and targeted drug delivery, offers potential solutions to these limitations. CONCLUSIONS This review delves into the recent strides in nanomaterial-based drug delivery for ruthenium complexes, encompassing research on platinum (II) and ruthenium (III) metal complexes, nano-delivery system designs, and addresses pivotal challenges and future trajectories in this domain.
Collapse
Affiliation(s)
- Xuemei Zhong
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, China
| | - Jianhua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
6
|
Sun D, Okosun BO, Xue Y, Tayutivutikul K, Smith KH, Darland DC, Zhao JX. Multi-functional near-infrared fluorescent polymer dot-siRNA for gene expression regulation. J Mater Chem B 2025; 13:2124-2139. [PMID: 39784355 PMCID: PMC11806943 DOI: 10.1039/d4tb01954g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Regulation of gene expression in eukaryotic cells is critical for cell survival, proliferation, and cell fate determination. Misregulation of gene expression can have substantial, negative consequences that result in disease or tissue dysfunction that can be targeted for therapeutic intervention. Several strategies to inhibit gene expression at the level of mRNA transcription and translation have been developed, such as anti-sense inhibition and CRISPR-Cas9 gene editing. However, these strategies have some limitations in terms of specificity, toxicity, and ease of use. We have designed a nanomaterials-based tool to inhibit gene expression in eukaryotic cells with a potential application in basic and biomedical research. At the heart of our rational design approach is a polymer dots (Pdots)-based nanoplatform that can provide a means to deliver gene-specific small interfering (siRNA) into cells while at the same time providing a visualization mechanism to determine which cells have taken up the siRNA. The Pdots that we designed and synthesized had an average size 64.25 ± 0.60 nm and a zeta potential that was +37.40 ± 8.28 mV. The Pdot-1 nmole Gapdh siRNA showed an average size of 82.27 ± 9.83 nm, with the zeta potential values determined to be -52.00 ± 6.05 mV in the HEPES buffer. Both Pdots and Pdot-siRNA displayed two emission peaks in the visible (588 nm) and near-infrared (NIR) emission range (775 nm). We treated primary cultures of mouse brain-derived microvascular cells with Pdot-Gapdh siRNA and observed uniform cellular uptake of the nanomaterial in the cells and reduced intensity of Gapdh immunolabeling. Our results highlight the potential application of Pdot-siRNA for gene expression targeting with simultaneous visual monitoring of Pdot-siRNA delivery. The simple design offers a flexible and novel strategy to inhibit a wide range of mRNA targets with minimal toxicity, high efficiency, and focused cell visualization.
Collapse
Affiliation(s)
- Di Sun
- Department of Chemistry, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Blessing O Okosun
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Yujie Xue
- Department of Chemistry, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Kirati Tayutivutikul
- Department of Chemistry, University of North Dakota, Grand Forks, ND, 58202, USA.
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Kaitlyn H Smith
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Julia X Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, ND, 58202, USA.
| |
Collapse
|
7
|
Singh V, Panda SP. Nexus of NFκB/VEGF/MMP9 signaling in diabetic retinopathy-linked dementia: Management by phenolic acid-enabled nanotherapeutics. Life Sci 2024; 358:123123. [PMID: 39419266 DOI: 10.1016/j.lfs.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
AIMS The purpose of this review is to highlight the therapeutic effectiveness of phenolic acids in slowing the progression of diabetic retinopathy (DR)-linked dementia by addressing the nuclear factor kappa B (NFκB)/matrix metalloproteinase-9 (MMP9)/vascular endothelial growth factor (VEGF) interconnected pathway. MATERIALS AND METHODS We searched 80 papers published in the last 20 years using terms like DR, dementia, phenolic acids, NFkB/VEFG/MMP9 signaling, and microRNAs (miRs) in databases including Pub-Med, WOS, and Google Scholar. By encasing phenolic acid in nanoparticles and then controlling its release into the targeted tissues, nanotherapeutics can increase their effectiveness. Results were summarized, and compared, and research gaps were identified throughout the data collection and interpretation. KEY FINDINGS Amyloid beta (Aβ) deposition in neuronal cells and drusen sites of the eye leads to the activation of NFkB/VEGF/MMP9 signaling and microRNAs (miR146a and miR155), which in turn energizes the accumulation of pro-inflammatory and pro-angiogenic microenvironments in the brain and retina leading to DR-linked dementia. This study demonstrates the potential of phenolic acid-enabled nanotherapeutics as a functional food or supplement for preventing and treating DR-linked dementia, and oxidative stress-related diseases. SIGNIFICANCE The retina has mechanisms to clear metabolic waste including Aβ, but the activation of NFkB/ MMP9/ VEGF signaling leads to fatal pathological consequences. Understanding the role of miR146a and miR155 provides potential therapeutic avenues for managing the complex pathology shared between DR and dementia. In particular, phenolic acid nanotherapeutics offer a dual benefit in retinal regeneration and dementia management.
Collapse
Affiliation(s)
- Vikrant Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
8
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024; 189:25-56. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
10
|
Martín‐Morales C, Caspani S, Desco M, Tavares de Sousa C, Gómez‐Gaviro MV. Controlled Drug Release Systems for Cerebrovascular Diseases. ADVANCED THERAPEUTICS 2024. [DOI: 10.1002/adtp.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 01/06/2025]
Abstract
AbstractThis review offers a comprehensive exploration of optimized drug delivery systems tailored for controlled release and their crucial role in addressing cerebrovascular diseases. Through an in‐depth analysis, various controlled release methods, including nanoparticles, liposomes, hydrogels, and other emerging technologies are examined. Highlighting the importance of precise drug targeting, it is delved into the underlying mechanisms of these delivery systems and their potential to improve therapeutic outcomes while minimizing adverse effects. Additionally, the specific applications of these optimized drug delivery systems in treating cerebrovascular disorders such as ischemic stroke, cerebral aneurysms, and intracranial hemorrhage are discussed. By shedding light on the advancements in drug delivery techniques and their implications in cerebrovascular medicine, this review offers valuable insights into the future of therapeutic interventions in neurology.
Collapse
Affiliation(s)
- Celia Martín‐Morales
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Doctor Esquerdo 46 Madrid 28007 Spain
| | - Sofia Caspani
- IFIMUP – Institute of Physics for Advanced Materials Departamento de Física e Astronomia, Nanotechnology and Photonics of University of Porto Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre s/n Porto 4169‐007 Portugal
| | - Manuel Desco
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Doctor Esquerdo 46 Madrid 28007 Spain
- Departamento de Bioingeniería Universidad Carlos III de Madrid Leganés 28911 Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid 28029 Spain
- Centro de Investigaciones Cardiovasculares (CNIC) Melchor Fernández Almagro Madrid 28029 Spain
| | - Célia Tavares de Sousa
- Departamento de Física Aplicada and IAdChem Facultad de Ciencias Universidad Autonoma de Madrid (UAM) Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7 Madrid 28049 Spain
| | - María Victoria Gómez‐Gaviro
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Doctor Esquerdo 46 Madrid 28007 Spain
- Departamento de Bioingeniería Universidad Carlos III de Madrid Leganés 28911 Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid 28029 Spain
| |
Collapse
|
11
|
Nagase K, Suzuki S, Kanazawa H. Temperature-modulated interactions between thermoresponsive strong cationic copolymer-brush-grafted silica beads and biomolecules. Heliyon 2024; 10:e34668. [PMID: 39161811 PMCID: PMC11332852 DOI: 10.1016/j.heliyon.2024.e34668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Thermoresponsive polymer brushes have attracted considerable research attention owing to their unique properties. Herein, we developed silica beads grafted with poly(N-isopropylacrylamide (NIPAAm)-co-3-acrylamidopropyl trimethylammonium chloride (APTAC)-co-tert-butyl acrylamide (tBAAm) and P(NIPAAm-co-APTAC-co-n-butyl methacrylate(nBMA)) brushes. The carbon, hydrogen, and nitrogen elemental analysis of the copolymer-grated silica beads revealed the presence of a large amount of the grafted copolymer on the silica beads. The electrostatic and hydrophobic interactions between biomolecules and prepared copolymer brushes were analyzed by observing their elution behaviors via high-performance liquid chromatography using the copolymer-brush-modified beads as the stationary phase. Adenosine nucleotides were retained in the bead-packed columns, which was attributed to the electrostatic interaction between the copolymers and adenosine nucleotides. Insulin was adsorbed on the copolymer brushes at high temperatures, which was attributed to its electrostatic and hydrophobic interactions with the copolymer. Similar adsorption behavior was observed in case of albumin. Further, at a low concentration of the phosphate buffer solution, albumin was adsorbed onto the copolymer brushes even at relatively low temperatures owing to its enhanced electrostatic interaction with the copolymer. These results indicated that the developed thermoresponsive strong cationic copolymer brushes can interact with peptides and proteins through a combination of electrostatic and temperature-modulated hydrophobic interactions. Thus, the developed copolymer brushes exhibits substantial potential for application in chromatographic matrices for the analysis and purification of peptides and proteins.
Collapse
Affiliation(s)
- Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Sayaka Suzuki
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| |
Collapse
|
12
|
Oehler JB, Rajapaksha W, Albrecht H. Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer. J Pers Med 2024; 14:723. [PMID: 39063977 PMCID: PMC11278299 DOI: 10.3390/jpm14070723] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer remains the most prevalent cancer among women worldwide, driving the urgent need for innovative approaches to diagnosis and treatment. This review highlights the pivotal role of nanoparticles in revolutionizing breast cancer management through advancements of interconnected approaches including targeted therapy, imaging, and personalized medicine. Nanoparticles, with their unique physicochemical properties, have shown significant promise in addressing current treatment limitations such as drug resistance and nonspecific systemic distribution. Applications range from enhancing drug delivery systems for targeted and sustained release to developing innovative diagnostic tools for early and precise detection of metastases. Moreover, the integration of nanoparticles into photothermal therapy and their synergistic use with existing treatments, such as immunotherapy, illustrate their transformative potential in cancer care. However, the journey towards clinical adoption is fraught with challenges, including the chemical feasibility, biodistribution, efficacy, safety concerns, scalability, and regulatory hurdles. This review delves into the current state of nanoparticle research, their applications in breast cancer therapy and diagnosis, and the obstacles that must be overcome for clinical integration.
Collapse
Affiliation(s)
- Josephine B. Oehler
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, QLD 4810, Australia
| | - Weranga Rajapaksha
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
13
|
Barahuie F, Dorniani D, Saifullah B, Arulselvan P, Hussein MZ, Jaganathan R, Amin El-Fagaih FM, Pratiwi AR. Impacts of designed vanillic acid-polymer-magnetic iron oxide nanocomposite on breast cancer cells. Heliyon 2024; 10:e32863. [PMID: 38994094 PMCID: PMC11237972 DOI: 10.1016/j.heliyon.2024.e32863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
The engineered nano-vehicle was constructed using magnetic iron oxide nanoparticles (MIONs) and chitosan (CTS) to stabilize anticancer agent vanillic acid (VNA) which was loaded on CTS-coated MIONs nanocarrier, and more importantly, to achieve sustained VNA release and subsequent proper anticancer activity. The new thermally stable VNA-CTS- MIONs nanocomposite was spherical with a middle diameter of 6 nm and had a high drug loading of about 11.8 %. The MIONs and resulting nanocomposite were composed of pure magnetite and therefore, were superparamagnetic with saturation magnetizations of 53.3 and 45.7 emu.g-1, respectively. The release profiles of VNA from VNA-CTS-MIONs nanocomposite in different pH values were sustained and showed controlled pH-responsive delivery of the loaded VNA with 89 % and 74 % percentage release within 2354 and 4046 min at pH 5 and 7.4, respectively, as well as were in accordance with the pseudo-second-order model. The VNA-CTS-MIONs nanocomposite treatment at diverse concentrations remarkably decreased the viability and promoted ROS accumulation and apoptosis in the MDA-MB-231 breast cancer cells. Hence, it can be a propitious candidate for the management of breast cancer in the future.
Collapse
Affiliation(s)
- Farahnaz Barahuie
- Faculty of Industry & Mining (Khash), University of Sistan and Baluchestan, Zahedan, Iran
| | - Dena Dorniani
- Chemistry Department, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Bullo Saifullah
- Department of Human and Rehabilitation Sciences, The Begum Nusrat Bhutto Women University, Sukkur, Sindh, Pakistan
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | | | - Ravindran Jaganathan
- Microbiology Unit, Preclinical Department, Faculty of Medicine, University Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh-30450, Perak, Malaysia
| | - Fawzi Mohamed Amin El-Fagaih
- Department of Chemical and Petrochemical Engineering, The College of Engineering & Architecture, Initial Campus, Birkat Al Mouz Nizwa, Oman
| | | |
Collapse
|
14
|
Saadh MJ, Mustafa MA, Kumar A, Alamir HTA, Kumar A, Khudair SA, Faisal A, Alubiady MHS, Jalal SS, Shafik SS, Ahmad I, Khry FAF, Abosaoda MK. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications. AAPS PharmSciTech 2024; 25:140. [PMID: 38890191 DOI: 10.1208/s12249-024-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Faeza A F Khry
- Faculty of pharmacy, department of pharmaceutics, Al-Esraa University, Baghdad, Iraq
| | - Munther Kadhim Abosaoda
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
15
|
Lai H, Huang R, Weng X, Huang B, Yao J, Pian Y. Classification and applications of nanomaterials in vitro diagnosis. Heliyon 2024; 10:e32314. [PMID: 38868029 PMCID: PMC11168482 DOI: 10.1016/j.heliyon.2024.e32314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/19/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
With the rapid development of clinical diagnosis and treatment, many traditional and conventional in vitro diagnosis technologies are unable to meet the demands of clinical medicine development. In this situation, nanomaterials are rapidly developing and widely used in the field of in vitro diagnosis. Nanomaterials have distinct size-dependent physical or chemical properties, and their optical, magnetic, electrical, thermal, and biological properties can be modulated at the nanoscale by changing their size, shape, chemical composition, and surface functional groups, particularly because they have a larger specific surface area than macromaterials. They provide an amount of space to modify different molecules on their surface, allowing them to detect small substances, nucleic acids, proteins, and microorganisms. Combining nanomaterials with in vitro diagnosis is expected to result in lower detection limits, higher sensitivity, and stronger selectivity. In this review, we will discuss the classfication and properties of some common nanomaterials, as well as their applications in protein, nucleic acids, and other aspect detection and analysis for in vitro diagnosis, especially on aging-related nanodiagnostics. Finally, it is summarized with guidelines for in vitro diagnosis.
Collapse
Affiliation(s)
- Huiying Lai
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Rongfu Huang
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Xin Weng
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Baoshan Huang
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Jianfeng Yao
- Quanzhou Maternity and Child Healthcare Hospital, Quanzhou, PR China
| | - Yaya Pian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China
| |
Collapse
|
16
|
Fateh ST, Aghaii AH, Aminzade Z, Shahriari E, Roohpour N, Koosha F, Dezfuli AS. Inorganic nanoparticle-cored dendrimers for biomedical applications: A review. Heliyon 2024; 10:e29726. [PMID: 38694058 PMCID: PMC11061704 DOI: 10.1016/j.heliyon.2024.e29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Hybrid nanostructures exhibit a synergistic combination of features derived from their individual components, showcasing novel characteristics resulting from their distinctive structure and chemical/physical properties. Surface modifiers play a pivotal role in shaping INPs' primary attributes, influencing their physicochemical properties, stability, and functional applications. Among these modifiers, dendrimers have gained attention as highly effective multifunctional agents for INPs, owing to their unique structural qualities, dendritic effects, and physicochemical properties. Dendrimers can be seamlessly integrated with diverse inorganic nanostructures, including metal NPs, carbon nanostructures, silica NPs, and QDs. Two viable approaches to achieving this integration involve either growing or grafting dendrimers, resulting in inorganic nanostructure-cored dendrimers. The initial step involves functionalizing the nanostructures' surface, followed by the generation of dendrimers through stepwise growth or attachment of pre-synthesized dendrimer branches. This hybridization imparts superior qualities to the resulting structure, including biocompatibility, solubility, high cargo loading capacity, and substantial functionalization potential. Combining the unique properties of dendrimers with those of the inorganic nanostructure cores creates a multifunctional system suitable for diverse applications such as theranostics, bio-sensing, component isolation, chemotherapy, and cargo-carrying applications. This review summarizes the recent developments, with a specific focus on the last five years, within the realm of dendrimers. It delves into their role as modifiers of INPs and explores the potential applications of INP-cored dendrimers in the biomedical applications.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Zahra Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Fereshteh Koosha
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
17
|
Reshetnyak YK, Andreev OA, Engelman DM. Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides. Front Pharmacol 2024; 15:1355893. [PMID: 38545547 PMCID: PMC10965573 DOI: 10.3389/fphar.2024.1355893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 11/11/2024] Open
Abstract
The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, Yale, New Haven, CT, United States
| |
Collapse
|
18
|
Jiang M, Karsenberg R, Bianchi F, van den Bogaart G. CD36 as a double-edged sword in cancer. Immunol Lett 2024; 265:7-15. [PMID: 38122906 DOI: 10.1016/j.imlet.2023.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The membrane protein CD36 is a lipid transporter, scavenger receptor, and receptor for the antiangiogenic protein thrombospondin 1 (TSP1). CD36 is expressed by cancer cells and by many associated cells including various cancer-infiltrating immune cell types. Thereby, CD36 plays critical roles in cancer, and it has been reported to affect cancer growth, metastasis, angiogenesis, and drug resistance. However, these roles are partly contradictory, as CD36 has been both reported to promote and inhibit cancer progression. Moreover, the mechanisms are also partly contradictory, because CD36 has been shown to exert opposite cellular effects such as cell division, senescence and cell death. This review provides an overview of the diverse effects of CD36 on tumor progression, aiming to shed light on its diverse pro- and anti-cancer roles, and the implications for therapeutic targeting.
Collapse
Affiliation(s)
- Muwei Jiang
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands
| | - Renske Karsenberg
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands.
| |
Collapse
|