1
|
He M, Zhang H, Luo Z, Duan X, Zhao F, Su P, Zeng Z, Zhou L, Chen C, Qiu J. Causal link between gut microbiota and obsessive-compulsive disorder: A two-sample Mendelian randomization analysis. J Affect Disord 2025; 379:852-860. [PMID: 40056996 DOI: 10.1016/j.jad.2025.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Previous studies have indicated a potential link between the gut microbiota and obsessive-compulsive disorder (OCD). However, the exact causal relationship remains uncertain. In this study, we employed a two-sample Mendelian randomization (MR) analysis to evaluate the causal connection between gut microbiota and OCD. METHODS We collected Genome-Wide Association Study (GWAS) summary data on gut microbiota (n = 18, 340) and OCD (n = 199, 169), using single nucleotide polymorphisms (SNPs) as the instrumental variable. SNPs with an F-statistic of <10 were deemed weak instrumental variables and subsequently excluded. The MR analysis was conducted using five methods: inverse variance weighting (IVW), MR Egger, weighted median, weighted mode, and simple mode. Heterogeneity and pleiotropy were assessed using Cochran's Q-test and MR Egger intercept test, while sensitivity analysis was performed using a leave-one-out approach. RESULTS The IVW analysis revealed that at the phylum level, Proteobacteria (OR = 0.545, 95%CI: 0.347-0.855, P = 0.008) served as a protective factor for OCD, whereas at the order level, Bacillales (OR = 1.327, 95%CI: 1.032-1.707, P = 0.027) was identified as a risk factor. At the family level, Ruminococcaceae (OR = 0.570, 95%CI: 0.354-0.918, P = 0.021) also acted as a protective factor. At the genus level, Bilophila (OR = 0.623, 95%CI: 0.425-0.911, P = 0.015) was a protective factor, while Eubacterium ruminantium group (OR = 1.347, 95%CI: 1.012-1.794, P = 0.041) and Lachnospiraceae UCG001 (OR = 1.384, 95%CI: 1.003-1.910, P = 0.048) were identified risk factors. Reverse MR analysis showed no significant causal relationship between OCD and the gut microbiota, with no significant heterogeneity or horizontal pleiotropy observed. CONCLUSION Our analysis suggested that specific gut microbiota might have a causal relationship with OCD, revealing potential intervention strategies for the prevention and treatment of this disorder.
Collapse
Affiliation(s)
- Mingjie He
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zheng Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Peng Su
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhijun Zeng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
2
|
Fabiano GA, Oliveira RPS, Rodrigues S, Santos BN, Venema K, Antunes AEC. Evidence of synbiotic potential of oat beverage enriched with inulin and fermented by L. rhamnosus LR B in a dynamic in vitro model of human colon. Food Res Int 2025; 211:116489. [PMID: 40356187 DOI: 10.1016/j.foodres.2025.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Fermented dairy products are known for their efficiency in delivering and protecting probiotic microorganisms. However, there is a growing demand for diversification of the market with plant-based products. The aim of this study was to develop an oat beverage enriched with inulin and fermented with Lacticaseibacillus rhamnosus LR B and evaluate its synbiotic effects in vitro. For this purpose, the validated dynamic colon model (the TNO Intestinal Model TIM-2) was used with focus on the composition of the gut microbiota and its production of metabolites to evaluate the functionality. The fermentation kinetics, sugars, organic acids and inulin dosage in the fermented oat beverage were also evaluated. The acidification rate was 16.91 10-3 pH units.min-1, reaching the final pH of 4.5 in 2.38 ± 0.05 h. Dosages of sucrose, glucose and lactic acid were 23.35 ± 0.45 g.L-1, 21.37 ± 0.77 g.L-1, 0.94 ± 0.05 g.L-1, respectively. After simulated in vitro digestion, the inulin concentration was partially preserved with 20.11 ± 0.21 maltose equivalent (μg.mL-1). The fermented and pre-digested oat beverage (with 7.71 ± 0.44 log CFU.mL-1) was fed into TIM-2, which was previously inoculated with feces from healthy adults. The analysis identified nine bacterial taxa that were significantly modulated compared to the standard ileal effluent medium (SIEM) control. An increase in relative abundance of Lactobacillus and Catenibacterium, and reduction in Citrobacter, Escherichia-Shigella, and Klebsiella was observed. In addition, the cumulative means of short-chain fatty acids (SCFAs) increased, especially for acetate and butyrate. These findings suggest that the developed oat beverage can positively influence the gut microbiota and its activity, highlighting possible health benefits.
Collapse
Affiliation(s)
- G A Fabiano
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - R P S Oliveira
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - S Rodrigues
- Department of Food Engineering, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - B N Santos
- Department of Chemical Engineering, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - K Venema
- Maastricht University, Centre for Healthy Eating & Food Innovation (HEFI), Venlo, the Netherlands
| | - A E C Antunes
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
3
|
Yang F, Wen J. Association between bone mineral density and scoliosis: a two-sample mendelian randomization study in european populations. Hereditas 2024; 161:57. [PMID: 39736789 DOI: 10.1186/s41065-024-00352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Previous studies have shown that bone mineral density (BMD) has a certain impact on scoliosis. However, up to now, there is no clear evidence that there is a causal association between the two. The aim of this study is to investigate whether there is a causal association between BMD at different body positions and scoliosis by two-sample Mendelian randomization (MR). METHODS Genetic variants (SNPS) strongly associated with BMD (total body BMD (TB-BMD), lumbar spine BMD (LS-BMD), femoral neck BMD (FN-BMD), heel BMD (HE-BMD), and forearm BMD (FA-BMD)) were extracted from GEFOS and genome-wide association analysis (GWAS) databases SNPs) were used as instrumental variables (IVs). Scoliosis was also selected from the Finnish database as the outcome. Inverse variance weighting (IVW) method was used as the main analysis method, and multiple sensitivity analysis was performed by combining weighted median, MR-Egger, MR Multi-effect residuals and outliers. RESULTS IVW results showed that TB-BMD (OR = 0.83, 95%CI: 0.66-1.55 P = 0.13), LS-BMD (OR = 0.72, 95%CI: 0.52-0.99, P = 0.04), FN-BMD (OR = 0.74, 95%CI: 0.50-1.09, P = 0.13), FA-BMD (OR = 0.95,95%CI: 0.70-1.28, P = 0.75), HE-BMD (OR = 0.91, 95%CI: 0.77-1.08, P = 0.29). Sensitivity analyses showed no evidence of pleiotropy or heterogeneity (p > 0.05) (MR-PRESSO and Cochrane). The results were further validated by leave-one-out test and MR-Egger intercept, which confirmed the robustness of the study results. CONCLUSION In conclusion, the present study demonstrates that the causal role of genetic prediction of scoliosis increases with decreasing lumbar BMD. There was no evidence that BMD at the remaining sites has a significant causal effect on scoliosis. Our results suggest that the lumbar spine BMD should be routinely measured in the population at high risk of scoliosis. If osteoporosis occurs, appropriate treatment should be given to reduce the incidence of scoliosis. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Fangjun Yang
- Department of orthopedic, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jiantao Wen
- Department of Pediatric Spine Surgery, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China.
| |
Collapse
|
4
|
Nuankham K, Sitdhipol J, Chonpathompikunlert P, Khongrum J, Kittichaiworakul R, Noisagul P, Thongkumkoon P, Kampoun T, Dissook S. Impact of Lactocaseibacillus ( Lactobacillus) paracasei sup. paracasei TISTR 2593 Probiotic Supplementation on the Gut Microbiome of Hypercholesterolemia Patients: A Randomized Controlled Trial. Nutrients 2024; 16:2916. [PMID: 39275232 PMCID: PMC11397238 DOI: 10.3390/nu16172916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Probiotics have shown potential in managing hypercholesterolemia and related metabolic conditions. This study evaluated the effects of Lactocaseibacillus (Lactobacillus) paracasei sup. paracasei TISTR 2593 on the gut microbiome and metabolic health in patients with hypercholesterolemia, and was registered in the Thai Clinical Trial Registry (TCTR 20220917002). In a randomized, double-blind, placebo-controlled trial, 22 hypercholesterolemic participants received either the probiotic or a placebo daily for 90 days. Fecal samples collected before and after the intervention revealed significant microbiome changes, including a decrease in Subdoligranulum, linked to rheumatoid arthritis, and an increase in Flavonifractor, known for its anti-inflammatory properties. Additionally, the probiotic group exhibited a significant reduction in low-density lipoprotein cholesterol (LDL-C) levels. These findings suggest that L. paracasei TISTR 2593 can modulate the gut microbiome and improve metabolic health, warranting further investigation into its mechanisms and long-term benefits.
Collapse
Affiliation(s)
- Kamonsri Nuankham
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathum Thani 12120, Thailand
- Master of Biomedical Data Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jaruwan Sitdhipol
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathum Thani 12120, Thailand
| | - Pennapa Chonpathompikunlert
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathum Thani 12120, Thailand
| | - Jurairat Khongrum
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Pitiporn Noisagul
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanyaluck Kampoun
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sivamoke Dissook
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Huang P, Liu Q, Zhang T, Yang J. Gut microbiota influence acute pancreatitis through inflammatory proteins: a Mendelian randomization analysis. Front Cell Infect Microbiol 2024; 14:1380998. [PMID: 38881734 PMCID: PMC11176513 DOI: 10.3389/fcimb.2024.1380998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Background/Aim We employed Mendelian randomization (MR) analysis to investigate the causal relationship between the gut microbiota, acute pancreatitis, and potential inflammatory proteins. Methods The data for gut microbiota, acute pancreatitis, and inflammatory proteins are sourced from public databases. We conducted a bidirectional MR analysis to explore the causal relationship between gut microbiota and acute pancreatitis, and employed a two-step MR analysis to identify potential mediating inflammatory proteins. IVW is the primary analysis method, heterogeneity, pleiotropy, and sensitivity analyses were also conducted simultaneously. Results We identified five bacterial genera associated with the risk of acute pancreatitis, namely genus.Coprococcus3, genus.Eubacterium fissicatena group, genus.Erysipelotrichaceae UCG-003, genus.Fusicatenibacter, and genus.Ruminiclostridium6. Additionally, we have discovered three inflammatory proteins that are also associated with the occurrence of acute pancreatitis, namely interleukin-15 receptor subunit alpha (IL-15RA), monocyte chemoattractant protein-4 (CCL13), and tumor necrosis factor receptor superfamily member 9 (TNFRSF9). Following a two-step MR analysis, we ultimately identified IL-15RA as a potential intermediate factor, with a mediated effect of 0.018 (95% CI: 0.005 - 0.032). Conclusion Our results support the idea that genus.Coprococcus3 promotes the occurrence of acute pancreatitis through IL-15RA. Furthermore, there is a potential causal relationship between the gut microbiota, inflammatory proteins, and acute pancreatitis. These findings provide new insights for subsequent acute pancreatitis prevention.
Collapse
Affiliation(s)
- Peiyao Huang
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qiang Liu
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianfeng Yang
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Li J, Liu C, Xu Y, Ling C, Tang Z, Kiram A, Hu Z, Zhu Z, Qiu Y, Liu Z. Gut Microbiota Alterations in Adolescent Idiopathic Scoliosis Are Associated with Aberrant Bone Homeostasis. Orthop Surg 2024; 16:965-975. [PMID: 38389213 PMCID: PMC10984819 DOI: 10.1111/os.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Low bone mineral density is the major prognostic factor for adolescent idiopathic scoliosis (AIS), but the underlying mechanisms remain unclear. Accumulating evidence suggests that gut microbiota (GM) have the potential to affect bone development, and the GM signatures are altered in AIS patients. However, the effect of GM alterations on aberrant bone homeostasis in AIS remains unclear. This study aims to investigate the GM profile in AIS patients with different bone mineral density (BMD) and explore the association between GM, osteopenia, and aberrant bone turnover. METHODS A total of 126 patients with AIS who received surgical treatment were retrospectively included in this study. We analyzed the composition of the GM by 16S rRNA sequencing and BMD by dual X-ray absorptiometry. Based on the BMD of the femur neck, the patients were divided into the osteopenia group (OPN) if the Z score < -1, and the normal (NOR) group if the Z score ≥ -1 SD compared to the healthy control. For the 16S rRNA sequencing, the raw reads were filtered to remove low-quality reads, and operational taxonomic units were identified with the Uparse program. Weighted UniFrac distance matrix for the beta-diversity metrics and principal coordinate analysis (PCoA) was performed, and the statistical comparisons were made with permutational multivariate analysis of variance (PERMANOVA) and analysis of similarity (ANONISM). Linear discriminant analysis effect size (LEfSe) was used to identify the enriched species in two groups. The "Random forest" was applied to determine the optimal biomarker for OPN according to the mean decrease in Gini value. The metabolic function was predicted by the Tax4Fun analysis. The Pearson correlation coefficient was used to evaluate the associations between GM species, bone turnover markers, and BMD. RESULTS The serum β-CTX was increased in the OPN group (n = 67) compared to the NOR group (n = 59). Patients in OPN groups showed significantly decreased α diversity indicated by the Shannon index. Principal coordinate analysis (PCoA) analysis showed significant clustering of GM between OPN and NOR groups. At genus level, the Escherichia-Shigella and Faecalibacterium were significantly enriched in the OPN group compared to that in the NOR group (p < 0.05), whereas the abundance of Prevotella was significantly decreased (p = 0.0012). The relative abundance of Megamonas and Prevotella was positively correlated with the femur BMD. The abundance of Escherichia-Shigella was negatively correlated with femur BMD and positively correlated with serum β-CTX levels. Functional analysis revealed significant differences in starch and sucrose metabolism, pyruvate and cysteine, and methionine metabolism between NOR and OPN groups. CONCLUSION The alterations of GM in AIS patients are correlated with osteopenia. The association between enriched species, BMD, and bone turnover markers provides novel diagnostic and therapeutic targets for the clinical management of AIS.
Collapse
Affiliation(s)
- Jie Li
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Changwei Liu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Yanjie Xu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chen Ling
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Ziyang Tang
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Abdukahar Kiram
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zongshan Hu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Liu W, Yan H, Jia W, Huang J, Fu Z, Xu W, Yu H, Yang W, Pan W, Zheng B, Liu Y, Chen X, Gao Y, Tian D. Association between gut microbiota and Hirschsprung disease: a bidirectional two-sample Mendelian randomization study. Front Microbiol 2024; 15:1366181. [PMID: 38516012 PMCID: PMC10956417 DOI: 10.3389/fmicb.2024.1366181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Background Several studies have pointed to the critical role of gut microbiota (GM) and their metabolites in Hirschsprung disease (HSCR) pathogenesis. However, the detailed causal relationship between GM and HSCR remains unknown. Methods In this study, we used two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between GM and HSCR, based on the MiBioGen Consortium's genome-wide association study (GWAS) and the GWAS Catalog's HSCR data. Reverse MR analysis was performed subsequently, and the sensitivity analysis, Cochran's Q-test, MR pleiotropy residual sum, outlier (MR-PRESSO), and the MR-Egger intercept were used to analyze heterogeneity or horizontal pleiotropy. 16S rDNA sequencing and targeted mass spectrometry were developed for initial validation. Results In the forward MR analysis, inverse-variance weighted (IVW) estimates suggested that Eggerthella (OR: 2.66, 95%CI: 1.23-5.74, p = 0.01) was a risk factor for HSCR, while Peptococcus (OR: 0.37, 95%CI: 0.18-0.73, p = 0.004), Ruminococcus2 (OR: 0.32, 95%CI: 0.11-0.91, p = 0.03), Clostridiaceae1 (OR: 0.22, 95%CI: 0.06-0.78, p = 0.02), Mollicutes RF9 (OR: 0.27, 95%CI: 0.09-0.8, p = 0.02), Ruminococcaceae (OR: 0.16, 95%CI: 0.04-0.66, p = 0.01), and Paraprevotella (OR: 0.45, 95%CI: 0.21-0.98, p = 0.04) were protective factors for HSCR, which had no heterogeneity or horizontal pleiotropy. However, reverse MR analysis showed that HSCR (OR: 1.02, 95%CI: 1-1.03, p = 0.049) is the risk factor for Eggerthella. Furthermore, some of the above microbiota and short-chain fatty acids (SCFAs) were altered in HSCR, showing a correlation. Conclusion Our analysis established the relationship between specific GM and HSCR, identifying specific bacteria as protective or risk factors. Significant microbiota and SCFAs were altered in HSCR, underlining the importance of further study and providing new insights into the pathogenesis and treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Hanlei Yan
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Wanying Jia
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Zihao Fu
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Wenyao Xu
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Hui Yu
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Weili Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weikang Pan
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Baijun Zheng
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Donghao Tian
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Li H, Hu Y, Huang Y, Ding S, Zhu L, Li X, Lan M, Huang W, Lin X. The mutual interactions among Helicobacter pylori, chronic gastritis, and the gut microbiota: a population-based study in Jinjiang, Fujian. Front Microbiol 2024; 15:1365043. [PMID: 38419635 PMCID: PMC10899393 DOI: 10.3389/fmicb.2024.1365043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Objectives Helicobacter pylori (H. pylori) is a type of bacteria that infects the stomach lining, and it is a major cause of chronic gastritis (CG). H. pylori infection can influence the composition of the gastric microbiota. Additionally, alterations in the gut microbiome have been associated with various health conditions, including gastrointestinal disorders. The dysbiosis in gut microbiota of human is associated with the decreased secretion of gastric acid. Chronic atrophic gastritis (CAG) and H. pylori infection are also causes of reduced gastric acid secretion. However, the specific details of how H. pylori infection and CG, especially for CAG, influence the gut microbiome can vary and are still an area of ongoing investigation. The incidence of CAG and infection rate of H. pylori has obvious regional characteristics, and Fujian Province in China is a high incidence area of CAG as well as H. pylori infection. We aimed to characterize the microbial changes and find potential diagnostic markers associated with infection of H. pylori as well as CG of subjects in Jinjiang City, Fujian Province, China. Participants Enrollment involved sequencing the 16S rRNA gene in fecal samples from 176 cases, adhering to stringent inclusion and exclusion criteria. For our study, we included healthy volunteers (Normal), individuals with chronic non-atrophic gastritis (CNAG), and those with CAG from Fujian, China. The aim was to assess gut microbiome dysbiosis based on various histopathological features. QIIME and LEfSe analyses were performed. There were 176 cases, comprising 126 individuals who tested negative for H. pylori and 50 who tested positive defined by C14 urea breath tests and histopathological findings in biopsies obtained through endoscopy. CAG was also staged by applying OLGIM system. Results When merging the outcomes from 16S rRNA gene sequencing results, there were no notable variations in alpha diversity among the following groups: Normal, CNAG, and CAG; OLGIM I and OLGIM II; and H. pylori positive [Hp (+)] and H. pylori negative [Hp (-)] groups. Beta diversity among different groups show significant separation through the NMDS diagrams. LEfSe analyses confirmed 2, 3, and 6 bacterial species were in abundance in the Normal, CNAG, and CAG groups; 26 and 2 species in the OLGIM I and OLGIM II group; 22 significant phylotypes were identified in Hp (+) and Hp (-) group, 21 and 1, respectively; 9 bacterial species exhibited significant differences between individuals with CG who were Hp (+) and those who were Hp (-). Conclusion The study uncovered notable distinctions in the characteristics of gut microbiota among the following groups: Normal, CNAG, and CAG; OLGIM I and OLGIM II; and Hp (+) and Hp (-) groups. Through the analysis of H. pylori infection in CNAG and CAG groups, we found the gut microbiota characteristics of different group show significant difference because of H. pylori infection. Several bacterial genera could potentially serve as diagnostic markers for H. pylori infection and the progression of CG.
Collapse
Affiliation(s)
- Hanjing Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Yingying Hu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Yanyu Huang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Shanshan Ding
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Long Zhu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Xinghui Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Meng Lan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Weirong Huang
- Jinjiang Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Jinjiang, China
| | - Xuejuan Lin
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| |
Collapse
|