1
|
Wang Z, Ma D, Liu J, Xu S, Qiu F, Hu L, Liu Y, Ke C, Ruan C. 4D printing polymeric biomaterials for adaptive tissue regeneration. Bioact Mater 2025; 48:370-399. [PMID: 40083775 PMCID: PMC11904411 DOI: 10.1016/j.bioactmat.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 03/16/2025] Open
Abstract
4D printing polymeric biomaterials can change their morphology or performance in response to stimuli from the external environment, compensating for the shortcomings of traditional 3D-printed static structures. This paper provides a systematic overview of 4D printing polymeric biomaterials for tissue regeneration and provides an in-depth discussion of the principles of these materials, including various smart properties, unique deformation mechanisms under stimulation conditions, and so on. A series of typical polymeric biomaterials and their composites are introduced from structural design and preparation methods, and their applications in tissue regeneration are discussed. Finally, the development prospect of 4D printing polymeric biomaterials is envisioned, aiming to provide innovative ideas and new perspectives for their more efficient and convenient application in tissue regeneration.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Duo Ma
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Liqiu Hu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Barahuie F, Dorniani D, Saifullah B, Arulselvan P, Hussein MZ, Jaganathan R, Amin El-Fagaih FM, Pratiwi AR. Impacts of designed vanillic acid-polymer-magnetic iron oxide nanocomposite on breast cancer cells. Heliyon 2024; 10:e32863. [PMID: 38994094 PMCID: PMC11237972 DOI: 10.1016/j.heliyon.2024.e32863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
The engineered nano-vehicle was constructed using magnetic iron oxide nanoparticles (MIONs) and chitosan (CTS) to stabilize anticancer agent vanillic acid (VNA) which was loaded on CTS-coated MIONs nanocarrier, and more importantly, to achieve sustained VNA release and subsequent proper anticancer activity. The new thermally stable VNA-CTS- MIONs nanocomposite was spherical with a middle diameter of 6 nm and had a high drug loading of about 11.8 %. The MIONs and resulting nanocomposite were composed of pure magnetite and therefore, were superparamagnetic with saturation magnetizations of 53.3 and 45.7 emu.g-1, respectively. The release profiles of VNA from VNA-CTS-MIONs nanocomposite in different pH values were sustained and showed controlled pH-responsive delivery of the loaded VNA with 89 % and 74 % percentage release within 2354 and 4046 min at pH 5 and 7.4, respectively, as well as were in accordance with the pseudo-second-order model. The VNA-CTS-MIONs nanocomposite treatment at diverse concentrations remarkably decreased the viability and promoted ROS accumulation and apoptosis in the MDA-MB-231 breast cancer cells. Hence, it can be a propitious candidate for the management of breast cancer in the future.
Collapse
Affiliation(s)
- Farahnaz Barahuie
- Faculty of Industry & Mining (Khash), University of Sistan and Baluchestan, Zahedan, Iran
| | - Dena Dorniani
- Chemistry Department, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Bullo Saifullah
- Department of Human and Rehabilitation Sciences, The Begum Nusrat Bhutto Women University, Sukkur, Sindh, Pakistan
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | | | - Ravindran Jaganathan
- Microbiology Unit, Preclinical Department, Faculty of Medicine, University Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh-30450, Perak, Malaysia
| | - Fawzi Mohamed Amin El-Fagaih
- Department of Chemical and Petrochemical Engineering, The College of Engineering & Architecture, Initial Campus, Birkat Al Mouz Nizwa, Oman
| | | |
Collapse
|
3
|
Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024; 16:674. [PMID: 38794336 PMCID: PMC11124876 DOI: 10.3390/pharmaceutics16050674] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Haoyu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Jingyuan Man
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Ayodele Olaolu Oladejo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201003, Nigeria
| | - Sally Ibrahim
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| |
Collapse
|
4
|
Nazir A, Abbas M, Kainat F, Iqbal DN, Aslam F, Kamal A, Mohammed OA, Zafar K, Alrashidi AA, Alshawwa SZ, Iqbal M. Efficient drug delivery potential and antimicrobial activity of biocompatible hydrogels of dextrin/Na-alginate/PVA. Heliyon 2024; 10:e29854. [PMID: 38707453 PMCID: PMC11066320 DOI: 10.1016/j.heliyon.2024.e29854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Ceftriaxone sodium belongs to the third-generation cephalosporin group and is used intramuscular and intravenous route as a broad-spectrum antibiotic. This research aims to prepare biocompatible hydrogels for targeted delivery of ceftriaxone sodium by parental route. Different proportions of polymers (natural and synthetic) in the presence of cross-linker were synthesized by solvent casting method. Ceftriaxone sodium was loaded in hydrogels in different concentrations and its drug release behavior was evaluated along with swelling and biodegradation analysis. The characterization of hydrogel was done by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) to analyze surface morphology and functional groups involved in the formation of dextrin/Na-alginate/PVA hydrogels loaded with the drug. Thermogravimetric analysis (TGA) was confirmed by thermal stability and degradation pattern of loaded and unloaded hydrogels. The drug-loaded samples presented promising antimicrobial activity against S. aureus and P. multocida and their cytotoxic nature was also studied. Drug release analysis using simulated intestinal fluid (SIF) and phosphate buffer saline(PBS) for the circulatory system shows the consistent release of the drug. The findings unveiled the development of a biocompatible and innovative hydrogel, which has potential advantages for biomedical application, particularly in enhancing the therapeutic efficacy of ceftriaxone sodium drug.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Mazhar Abbas
- Department of Basic Sciences, University of Veterinary and Animal Sciences, Lahore, (Jhang-Campus), Pakistan
| | - Faiza Kainat
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Farheen Aslam
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Abida Kamal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Kinza Zafar
- Medical Unit#2, Lahore General Hospital, 54000, Lahore, Pakistan
| | - Amal Abdullah Alrashidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
5
|
Mali KK, Gavhane YN, Chakole RD. Natural Polymer-Based Nanogel for pH-Responsive Delivery of Sorafenib Tosylate in Hemangiosarcoma. AAPS PharmSciTech 2024; 25:83. [PMID: 38605211 DOI: 10.1208/s12249-024-02797-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Smart nanomedicinal treatment for cancer manifests a solubility challenge with inherent nanoscale size and nonspecific release with stimuli-responsive potential. This is the limelight in novel chemotherapy to pursue physiochemical differences between the tumor microenvironment (TME) and normal cells, which introduces active groups of nanocarriers responding to various stimuli, endowing them with concise responses to various tumor-related signals. The nanogels were successfully prepared by a modified solvent evaporation technique. Nine batches were formulated by changing the chitosan concentration (12, 14, 16 mg/ml) and sonication time (5, 10, 15 min). The formulations were optimized for particle size and zeta potential with high percent entrapment efficiency (%EE) through Central Composite Design software. The optimized batch F7 had a 182-nm size and high zeta potential (64.5 mV) with 98% EE. The drug release of F7 was higher at pH 6 (97.556%) than at pH 7.4 (45.113%). The pharmacokinetic study shows that the release follows the Hixon plot model (R2 = 0.9334) that shifts to zero order (R2 = 0.9149). The nanogel F7 was observed for stability and showed an absence of color change, phase separation, and opacity for 6 months. In the present study, the pH difference between cancer cells and normal cells is the key point of the smart nanogel. This study is promising but challenging depending on the in vivo study. The nanogel was successfully prepared and evaluated for pH-responsive release. As hemangiosarcoma commonly occurs in dogs, this formulation helps to limit the difficulties with administration.
Collapse
Affiliation(s)
- Kiran K Mali
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Kolhapur, Maharashtra, 415124, India.
- Department of Pharmaceutics, Krishna Foundation's, Jaywant Institute of Pharmacy, Wathar, DBATU, Lonere, Karad, Maharashtra, 415139, India.
| | - Yogeshkumar N Gavhane
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Kolhapur, Maharashtra, 415124, India
| | - Rita D Chakole
- Department of Pharmacy, Government College of Pharmacy, Karad, Shivaji University, Kolhapur, Maharashtra, 415124, India
| |
Collapse
|
6
|
Jiang Y, Li W, Wang Z, Lu J. Lipid-Based Nanotechnology: Liposome. Pharmaceutics 2023; 16:34. [PMID: 38258045 PMCID: PMC10820119 DOI: 10.3390/pharmaceutics16010034] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Over the past several decades, liposomes have been extensively developed and used for various clinical applications such as in pharmaceutical, cosmetic, and dietetic fields, due to its versatility, biocompatibility, and biodegradability, as well as the ability to enhance the therapeutic index of free drugs. However, some challenges remain unsolved, including liposome premature leakage, manufacturing irreproducibility, and limited translation success. This article reviews various aspects of liposomes, including its advantages, major compositions, and common preparation techniques, and discusses present U.S. FDA-approved, clinical, and preclinical liposomal nanotherapeutics for treating and preventing a variety of human diseases. In addition, we summarize the significance of and challenges in liposome-enabled nanotherapeutic development and hope it provides the fundamental knowledge and concepts about liposomes and their applications and contributions in contemporary pharmaceutical advancement.
Collapse
Affiliation(s)
- Yanhao Jiang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Wenpan Li
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Zhiren Wang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Jianqin Lu
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
- Clinical and Translational Oncology Program, NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|