1
|
Zhou Q, Yang C, Jia M, Qu Q, Peng X, Ren W, Li G, Xie Y, Li B, Shi X. Gut Microbiota-Targeted Intervention of Hyperlipidemia Using Monascus-Fermented Ginseng. Pharmaceuticals (Basel) 2025; 18:661. [PMID: 40430481 PMCID: PMC12114913 DOI: 10.3390/ph18050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Hyperlipidemia (HLP) encompasses a spectrum of poorly understood lipid metabolism disorders that are frequently overlooked or misdiagnosed, potentially leading to multiple complications. While the gut microbiota has been implicated in HLP pathogenesis, the causal relationships and molecular mechanisms remain elusive. This study aimed to investigate the therapeutic mechanisms of Monascus-fermented ginseng (MFG) on HLP through gut microbiota modulation and explore treatment potential via fecal microbiota transplantation (FMT). Methods: The MFG-modulated gut microbiota was transplanted into HLP mice. Systemic evaluations, including serum biochemical parameter detection, histopathological section analysis, 16S rRNA sequencing, and fecal metabolomics, were conducted to assess therapeutic efficacy and identify associated metabolic pathways. Results: FMT significantly improved lipid profiles, reduced body weight, and attenuated hepatic lipid accumulation in HLP mice. Mechanistically, it enhanced cholesterol excretion and fatty acid β-oxidation while suppressing lipogenic regulators, concurrently promoting primary-to-secondary bile acid conversion. Gut microbiota analysis revealed that the MFG intervention effectively normalized the Firmicutes/Bacteroidetes ratio and enriched beneficial microbiota. Conclusions: These findings demonstrate FMT's therapeutic value in HLP management and provide new perspectives on utilizing fermented herbal medicines for metabolic disorders via gut microbiota reprogramming.
Collapse
Affiliation(s)
- Qing Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (Q.Z.); (Q.Q.); (X.P.); (W.R.); (G.L.); (Y.X.); (B.L.)
| | - Cuiting Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (C.Y.); (M.J.)
| | - Mingyue Jia
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (C.Y.); (M.J.)
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (Q.Z.); (Q.Q.); (X.P.); (W.R.); (G.L.); (Y.X.); (B.L.)
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (Q.Z.); (Q.Q.); (X.P.); (W.R.); (G.L.); (Y.X.); (B.L.)
| | - Weishuo Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (Q.Z.); (Q.Q.); (X.P.); (W.R.); (G.L.); (Y.X.); (B.L.)
| | - Guoqing Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (Q.Z.); (Q.Q.); (X.P.); (W.R.); (G.L.); (Y.X.); (B.L.)
| | - Yueyang Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (Q.Z.); (Q.Q.); (X.P.); (W.R.); (G.L.); (Y.X.); (B.L.)
| | - Bingxuan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (Q.Z.); (Q.Q.); (X.P.); (W.R.); (G.L.); (Y.X.); (B.L.)
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Beijing 102488, China; (Q.Z.); (Q.Q.); (X.P.); (W.R.); (G.L.); (Y.X.); (B.L.)
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science &Technology Commission, Beijing 100029, China
| |
Collapse
|
2
|
Pfleger T, Ortmayr K, Steiner K, Zaher R, Seiser S, Elbe-Bürger A, Heiss E, Klang V. Radical scavenging effect of skin delivery systems using Korean red ginseng extract and assessment of their biocompatibility with human primary dermal fibroblasts and HaCaT keratinocytes. Int J Pharm 2025; 674:125477. [PMID: 40097056 DOI: 10.1016/j.ijpharm.2025.125477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Korean red ginseng (KRG) extract is proposed for cosmetic use, but no data on biological effects of KRG-loaded vehicles exist. The study aimed to optimize new multi- and monophase vehicles for KRG extract delivery, assess their biocompatibility and evaluate their radical scavenging effect in vitro. Storage stability of oil-in-water nanoemulsions (NEs) and hydroalcoholic gels (2 % w/w KRG) was assessed over twelve weeks using dynamic light scattering, rheology and pH measurements. Release profiles of ginsenosides Rb1 (more hydrophilic) and Rg1 (moderately lipophilic) through a cellulose membrane were also investigated employing Franz diffusion cells. Antioxidant potential and biocompatibility were assessed via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and cell viability assays. Vehicles remained stable over twelve weeks at 8 °C (NEs Dh stable, gel viscosity + 3.5 %). Diffusion studies showed higher release of Rg1 vs. Rb1 (7.10 vs. 1.39 µg/cm-2 after 28 h). KRG-formulations demonstrated good biocompatibility with primary human dermal fibroblasts and HaCaT keratinocytes (72-94 % viability). Radical scavenging capacity of KRG extract did not differ between pure and incorporated form and was lower than that of a Hypericum extract or ascorbic acid. Results render KRG-formulations a potentially promising alternative to conventional antioxidants used in daily products.
Collapse
Affiliation(s)
- Tanja Pfleger
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Karin Ortmayr
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacognosy, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Katja Steiner
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Rawan Zaher
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Elke Heiss
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacognosy, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Jahan I, Shuvo AUH, Alimullah M, Rahman ASMN, Siddiqua S, Rafia S, Khan F, Ahmed KS, Hossain H, Akramuddaula K, Alam MA, Subhan N. Purple potato extract modulates fat metabolizing genes expression, prevents oxidative stress, hepatic steatosis, and attenuates high-fat diet-induced obesity in male rats. PLoS One 2025; 20:e0318162. [PMID: 40168333 PMCID: PMC11960900 DOI: 10.1371/journal.pone.0318162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/03/2025] [Indexed: 04/03/2025] Open
Abstract
OBJECTIVE In this investigation, the significance of purple potato (Solanum tuberosum L.) extract treatment was assessed against oxidative stress and fat metabolizing transcription factors in the liver of high-fat (HF) diet-fed rats. METHODS Wistar (male) rats were arranged into several groups and provided with a control and HF diet along with the purple potato extract. Body weights, oral glucose tolerance test (OGTT), insulin, plasma lipids, and oxidative stress-related indicators were analyzed in plasma and tissue samples. Additionally, real-time PCR was performed to evaluate the gene expression for oxidative stress and fat metabolism in the liver. Histological staining was also performed on pancreatic and hepatic tissues. RESULTS Purple potato extract lowered body weights and improved glucose utilization in the OGTT test in HF diet-fed rats. Purple potato extract also suppressed HF-diet-induced oxidative stress in plasma and hepatic tissues. Purple potato extract also restored the Nrf-2 expression in the liver, followed by the improved expression of HO-1, HO-2, and other antioxidant genes in HF diet-fed rats. In addition, genes involved in lipid metabolism were also positively modulated due to purple potato extract treatment. Furthermore, histological examination revealed the reduction of lipid accumulation and amelioration of inflammation due to the consumption of purple potato extract. CONCLUSION This investigation revealed that antioxidant-rich purple potato extract can modulate the antioxidant and fat metabolizing genes expression, ameliorated oxidative stress and glucose intolerance as well as lowered blood lipids in male rats.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Asif Ul Haque Shuvo
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mirza Alimullah
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | | | - Shatil Rafia
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Khondoker Shahin Ahmed
- Chemical Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Hemayet Hossain
- Chemical Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Li Q, Xiang J. METTL3 promotes the progression of non-alcoholic fatty liver disease by mediating m6A methylation of FAS. Sci Rep 2025; 15:6162. [PMID: 39979577 PMCID: PMC11842791 DOI: 10.1038/s41598-025-90419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
N6-methyladenosine (m6A) is involved in the development of non-alcoholic fatty liver disease (NAFLD). Here, we aimed to investigate the effect of m6A methyltransferase METTL3 on liver damage in high-fat diet (HFD)-induced mouse model and hepatocyte damage treated with free fatty acid (FFA). Plasma lipid, lipogenesis, viability, and apoptosis were measured to assess injury. m6A methylation was evaluated using m6A dot blot, methylated RNA immunoprecipitation, dual-luciferase reporter assay, and RNA decay assay. The results indicated that METTL3 was highly expressed in the liver of HFD mice, which knockdown improved plasma lipid and reduced liver lipids. Additionally, silencing of METTL3 promoted cell viability, inhibited apoptosis, reduced lipid concentrations, and downregulated lipogenesis-related marker levels. Moreover, METTL3 promoted the m6A methylation of FAS and enhanced its stability. In conclusion, silencing of METTL3 attenuates the progression of NAFLD by FAS m6A methylation, suggesting that METTL3 may be a promising target for treating NAFLD.
Collapse
Affiliation(s)
- Qunhua Li
- Department of Gastroenterology, Affiliated Hospital of Chengdu University, 2nd N Section of 2nd Ring Rd, Chengdu, 610036, Sichuan, China
| | - Junying Xiang
- Department of Gastroenterology, Affiliated Hospital of Chengdu University, 2nd N Section of 2nd Ring Rd, Chengdu, 610036, Sichuan, China.
| |
Collapse
|
5
|
Shin SW, Shim JH, Nam YH, Kim NW, Seo GJ, Nevedita M, Subha P, Nguyen QH, Jeong YS, Hong BN, Kang TH. Effects of Korean red ginseng on auditory, cognitive, and liver functions in a naturally aged mouse model. J Ginseng Res 2025; 49:71-79. [PMID: 39872287 PMCID: PMC11764134 DOI: 10.1016/j.jgr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 01/30/2025] Open
Abstract
Background Korean Red Ginseng and ginsenosides have been studied for their efficacy against various diseases, including those related to aging. However, most aging studies use D-galactose to induce aging, which often does not accurately represent natural aging. This study aimed to verify improvements in auditory, cognitive, and liver function through administering red ginseng to an 18-month-old naturally aging mouse model. Methods Auditory function was assessed using Auditory Brainstem Response (ABR) and Auditory Middle Latency Response (AMLR). Cognitive function was evaluated electrophysiologically with P300 and mismatch negativity (MMN), and behaviorally using the Y-maze. Additionally, biochemical tests and histological analysis were conducted to assess liver function. The effects of red ginseng on gene expression regulation were also examined in the cochlea, auditory cortex, and liver, focusing on age-related disease processes. Results Red ginseng significantly decreased hearing thresholds and improved central auditory function. It also enhanced cognitive behavior and function in response to external stimulation. Furthermore, red ginseng regulated alkaline phosphatase (ALP), albumin (Alb), and total protein (TP) levels, notably decreasing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Hematoxylin and eosin (H&E) staining of liver tissue showed significant improvement in fat droplets. These effects appear to be mediated by the regulation of aging-related genes Dec, c-Jun, Stat5b, and Lims2. Conclusion These results suggest that red ginseng improves auditory, cognitive, and liver functions in a naturally aged mouse model.
Collapse
Affiliation(s)
- Sung Woo Shin
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Ji Heon Shim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Youn Hee Nam
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Na Woo Kim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Gyeong Jin Seo
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Murughanantham Nevedita
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Pandian Subha
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Quy-Hoai Nguyen
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Yong Su Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Bin Na Hong
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Cheng Z, Wei W, Chen Y, Xu A, Wang Y, Li B. Construction of nanoparticles from blueberry anthocyanins-lecithin/gum Arabic improves lipid droplet accumulation and gut microbiota disturbance in HFD-induced obese mice. Int J Biol Macromol 2024; 264:130595. [PMID: 38437939 DOI: 10.1016/j.ijbiomac.2024.130595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The digestive instability of anthocyanins (ACNs) limits their application in food nutrition, especially precision nutrition. Blueberry ACNs-loaded nanoparticles (Lipo/GA-ACNs NPs) were prepared using gum arabic (GA) as the delivery carrier and liposomal vesicles (Lipo) prepared from soy lecithin as the targeting scaffold. The average particle size of the NPs was 99.4 nm, and the polydispersion index (PDI) was 0.46. The results showed that the presence of the Lipo-GA matrix enhanced the NPs' in vitro stability and antioxidant activity. In addition, the in vitro biocompatibility, uptake ability, lipid-lowering activity, and free-radical scavenging ability were improved to a certain extent. In a high-fat diet (HFD)-induced obese mouse model, oral administration of ACNs-LNP (LNP, liver-targeted nanoparticle) showed better effects on body weight, liver injury, and lipid droplet accumulation in the liver than ACNs. In addition, ACNs-LNP also played a role in regulating HFD-induced gut microbiota imbalance. These results provide a promising ACNs delivery strategy with the potential to be developed into a functional food that targets the liver to prevent fatty liver.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Wenwen Wei
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Yi Chen
- Nanchang Univ, State Key Lab Food Sci & Technol, Nanchang, China
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China.
| |
Collapse
|