1
|
Lomadze E, Schneider G, Papp S, Bali D, Princz-Tóth R, Kovács T. Characterizations of Newly Isolated Erwinia amylovora Loessnervirus-like Bacteriophages from Hungary. Viruses 2025; 17:677. [PMID: 40431689 PMCID: PMC12116044 DOI: 10.3390/v17050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
This study explores alternative methods to combat bacterial infections like fire blight caused by Erwinia amylovora (Ea) using bacteriophages as potential antimicrobial agents. Two lytic phages, Ea PF 7 and Ea PF 9, were isolated from apple samples and classified as Loessnervirus-like based on their genomes. Both phages showed strong efficacy, lysing 95% of the tested 37 Ea strains. They inhibited bacterial growth for up to 10 h, even at low infection rates. The phages had a short latent period of 10 min and produced high burst sizes of 108 and 125 phage particles per infected cell. Stability tests revealed that both phages were stable at moderate temperatures (37-45 °C) and within a pH range of 4-10. However, their viability decreased at higher temperatures and extreme pH levels. Both phages exhibited notable desiccation tolerance and moderate resistance to UV-B radiation during UV testing. The phages were exposed to carefully controlled irradiation, considering factors like lamp type, radiation intensity, exposure time, and object distance. This method introduces a complex approach to research, ensuring repeatable and comparable results. These findings suggest that Ea PF 7 and Ea PF 9 hold promise as antimicrobial agents for therapeutic and biotechnological applications, potentially helping to combat antibiotic resistance in the future.
Collapse
Affiliation(s)
- Elene Lomadze
- Enviroinvest Corp., Kertvaros St. 2, H-7632 Pecs, Hungary; (E.L.); (S.P.)
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pecs, Hungary;
| | - Szilvia Papp
- Enviroinvest Corp., Kertvaros St. 2, H-7632 Pecs, Hungary; (E.L.); (S.P.)
| | - Dominika Bali
- Biopesticide Ltd., Kertvaros St. 2, H-7632 Pecs, Hungary; (D.B.); (R.P.-T.)
| | | | - Tamás Kovács
- Enviroinvest Corp., Kertvaros St. 2, H-7632 Pecs, Hungary; (E.L.); (S.P.)
- Biopesticide Ltd., Kertvaros St. 2, H-7632 Pecs, Hungary; (D.B.); (R.P.-T.)
| |
Collapse
|
2
|
Kim H, Vu NT, Thapa Magar R, Oh EJ, Oh KH, Lee J, Kim L, Hwang IS, Oh CS. Characterization of novel Erwinia amylovora-specific phiEaSP1 phage and its application as phage cocktail for managing fire blight in apples. Microbiol Res 2025; 293:128087. [PMID: 39892321 DOI: 10.1016/j.micres.2025.128087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Erwinia amylovora (Ea) is a devastating bacterial pathogen that causes fire blight disease in Rosaceae family plants, including apples and pears. The use of bacteriophages is an alternative strategy to antibiotics for managing bacterial pathogens. In this study, the Ea-specific virulent phiEaSP1 phage was characterized, and its biocontrol efficacy against Ea was evaluated in apple seedlings. Genomic analyses revealed that phiEaSP1 belongs to the family Chaseviridae, subfamily Cleopatravirinae, and genus Loessnervirus. Most phiEaSP1 particles bound to the host cell surface within 5 min, and one virion made 68 progenies within 20 min of infection. The phage rapidly lysed Ea cells in vitro and maintained its lytic activity after incubation under different environmental conditions, including temperature, pH, and UV-A, as well as in the soil, with surfactants, and on apple seedlings. Receptor analysis using the Tn5 random mutant library of Ea TS3128 demonstrated that phiEaSP1 recognizes lipopolysaccharide as a receptor, whereas phiEaP-8 and phiEaP-21 recognize cellulose as a receptor. Protective efficacy against fire blight was tested on apple seedlings pretreated with the single phiEaSP1 or a phage cocktail containing phiEaSP1, phiEaP-8, and phiEaP-21. No or only weak symptoms were observed in the phage-treated seedlings. The application of a phage cocktail showed better control efficacy, indicating the potential of the phage cocktail, including phiEaSP1, as a preventive agent. Taken together, these results suggest that the use of a phage cocktail containing phiEaSP1 could be a potential strategy for the biocontrol of fire blight disease in apples.
Collapse
Affiliation(s)
- Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Nguyen Trung Vu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Roniya Thapa Magar
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eom-Ji Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Hoon Oh
- Crop Protection R&D Center, FarmHannong Co., Ltd, 39-23, Nonsan 33010, Republic of Korea
| | - Jiwon Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - LeeSeul Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Programs in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Tarighi S, Nejad MS. Application of phytosynthesized silver nanoparticles (SNPs) against Erwinia amylovora causing fire blight disease. Heliyon 2025; 11:e42567. [PMID: 40028565 PMCID: PMC11869021 DOI: 10.1016/j.heliyon.2025.e42567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
The bacterium Erwinia amylovora is responsible for the destructive disease known as fire blight in pear trees. This highly detrimental condition poses a significant threat to the health and vitality of these trees. The existing strategies for managing fire blight disease involve the regular use of copper compounds and streptomycin, particularly during periods when environmental factors are conducive to the spread of the infection. Silver nanoparticles, also known as SNPs, are tiny specks of silver ranging in size from 10 to 100 nm. These particles are created through various chemical and biological processes. Numerous studies have demonstrated their ability to exhibit antibacterial properties against a wide range of human and animal pathogens. In this investigation, the dimensions of SNPs were ascertained by employing aqueous extracts derived from apple, pear, and quince leaves. The average sizes of the SNPs were found to be approximately 30 nm, 38 nm, and 55 nm, apple, quince and pear respectively. The pear mature fruits successfully managed to control the rot caused by the disease-causing E. amylovora. This study shows the viability of utilizing leaves extract from apple, pear, and quince as a suitable medium for the production of silver nanoparticles. These nanoparticles hold potential for effectively managing fire blight disease.
Collapse
Affiliation(s)
- Saeed Tarighi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Meysam Soltani Nejad
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Ke D, Luo J, Liu P, Shou L, Ijaz M, Ahmed T, Shahid MS, An Q, Mustać I, Ondrasek G, Wang Y, Li B, Lou B. Advancements in Bacteriophages for the Fire Blight Pathogen Erwinia amylovora. Viruses 2024; 16:1619. [PMID: 39459951 PMCID: PMC11512310 DOI: 10.3390/v16101619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Erwinia amylovora, the causative agent of fire blight, causes significant economic losses for farmers worldwide by inflicting severe damage to the production and quality of plants in the Rosaceae family. Historically, fire blight control has primarily relied on the application of copper compounds and antibiotics, such as streptomycin. However, the emergence of antibiotic-resistant strains and growing environmental concerns have highlighted the need for alternative control methods. Recently, there has been a growing interest in adopting bacteriophages (phages) as a biological control strategy. Phages have demonstrated efficacy against the bacterial plant pathogen E. amylovora, including strains that have developed antibiotic resistance. The advantages of phage therapy includes its minimal impact on microbial community equilibrium, the lack of a detrimental impact on plants and beneficial microorganisms, and its capacity to eradicate drug-resistant bacteria. This review addresses recent advances in the isolation and characterization of E. amylovora phages, including their morphology, host range, lysis exertion, genomic characterization, and lysis mechanisms. Furthermore, this review evaluates the environmental tolerance of E. amylovora phages. Despite their potential, E. amylovora phages face certain challenges in practical applications, including stability issues and the risk of lysogenic conversion. This comprehensive review examines the latest developments in the application of phages for controlling fire blight and highlights the potential of E. amylovora phages in plant protection strategies.
Collapse
Affiliation(s)
- Dufang Ke
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Pengfei Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Linfei Shou
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou 310004, China;
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
- Department of Life Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman;
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Ivan Mustać
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (I.M.); (G.O.)
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (I.M.); (G.O.)
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Binggan Lou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| |
Collapse
|
5
|
León M, Araya J, Nuñez M, Arce M, Guzmán F, Yáñez C, Besoain X, Bastías R. Evaluation of Different Formulations on the Viability of Phages for Use in Agriculture. Viruses 2024; 16:1430. [PMID: 39339906 PMCID: PMC11437505 DOI: 10.3390/v16091430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Bacteriophages have been proposed as biological controllers to protect plants against different bacterial pathogens. In this scenario, one of the main challenges is the low viability of phages in plants and under adverse environmental conditions. This work explores the use of 12 compounds and 14 different formulations to increase the viability of a phage mixture that demonstrated biocontrol capacity against Pseudomonas syringae pv. actinidiae (Psa) in kiwi plants. The results showed that the viability of the phage mixture decreases at 44 °C, at a pH lower than 4, and under UV radiation. However, using excipients such as skim milk, casein, and glutamic acid can prevent the viability loss of the phages under these conditions. Likewise, it was demonstrated that the use of these compounds prolongs the presence of phages in kiwi plants from 48 h to at least 96 h. In addition, it was observed that phages remained stable for seven weeks when stored in powder with skim milk, casein, or sucrose after lyophilization and at 4 °C. Finally, the phages with glutamic acid, sucrose, or skim milk maintained their antimicrobial activity against Psa on kiwi leaves and persisted within kiwi plants when added through roots. This study contributes to overcoming the challenges associated with the use of phages as biological controllers in agriculture.
Collapse
Affiliation(s)
- Marcela León
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; (M.L.); (M.N.)
| | - Jorge Araya
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; (M.L.); (M.N.)
| | - Mauricio Nuñez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; (M.L.); (M.N.)
| | - Manuel Arce
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; (M.L.); (M.N.)
| | - Fanny Guzmán
- Núcleo de Biotecnología de Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Carolina Yáñez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; (M.L.); (M.N.)
| | - Ximena Besoain
- Laboratorio de Fitopatología, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Roberto Bastías
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; (M.L.); (M.N.)
| |
Collapse
|
6
|
Haq IU, Rahim K, Paker NP. Exploring the historical roots, advantages and efficacy of phage therapy in plant diseases management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112164. [PMID: 38908799 DOI: 10.1016/j.plantsci.2024.112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In the drug-resistance era, phage therapy has received considerable attention from worldwide researchers. Phage therapy has been given much attention in public health but is rarely applied to control plant diseases. Herein, we discuss phage therapy as a biocontrol approach against several plant diseases. The emergence of antibiotic resistance in agriculturally important pathogenic bacteria and the toxic nature of different synthetic compounds used to control microbes has driven researchers to rethink the century-old strategy of phage therapy''. Compared to other treatment strategies, phage therapy offers remarkable advantages such as high specificity, less chances of drug resistance, non-harmful nature, and benefit to soil microbial flora. The optimizations and protective formulations of phages are significant accomplishments; however, steps towards a better understanding of the physiologic characteristics of phages need to be preceded to commercialize their use. The future of phage therapy in the context of plant disease management is promising and could play a significant role in sustainable agriculture. Ongoing research will likely affirm the safety of phage therapy, ensuring that it does not harm non-target organisms, including beneficial soil microbes. Phage therapy could become vital in addressing global food security challenges, particularly in regions heavily impacted by plant bacterial diseases. Efforts to create formulations that enhance the stability and shelf-life of phages will be crucial, especially for their use in varied environmental conditions.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice 44-100, Poland; Programa de Pos-graduacao em Invacao Tecnologia, Universidade de Minas Gerais, Belo Horizonte, Brazil.
| | - Kashif Rahim
- School of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|