1
|
Arshad M, Ashfaq AH, Riaz N, Rehman A, Maqbool S, Jamil AA, Nashwan AJ. Bacteriological profile and antimicrobial susceptibility pattern of pus aspirate in chronic suppurative otitis media patients. THE MICROBE 2025; 7:100336. [DOI: 10.1016/j.microb.2025.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
2
|
Niranjana VS, Ponnan S, Mukundan A, Prabu AA, Wang HC. Emerging Trends in Silane-Modified Nanomaterial-Polymer Nanocomposites for Energy Harvesting Applications. Polymers (Basel) 2025; 17:1416. [PMID: 40430711 PMCID: PMC12114705 DOI: 10.3390/polym17101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Nanomaterials (NMs) have gained tremendous attention in various applications in the modern era. The most significant challenge associated with NMs is their strong propensity to aggregate. The chemical surface modification of NMs has garnered notable attention in managing NM dispersion and aggregation. Among the modification approaches, the silane modification of NMs has generated great interest among researchers as a versatile approach to tailoring the surface characteristics of NMs. This review comprehensively examined the recent advancements in silane modification techniques with a focus on triboelectric nanogenerator (TENG) applications. It provides an overview of silane chemistry and its interaction with diverse NMs, elucidating the underlying mechanisms governing the successful surface functionalization process. This review emphasized the silane modification, such as improved mechanical properties of composites, enhanced electrical and thermal conductivity, functional coatings, water treatment, textile industries, catalysis, membrane applications, and biomedical applications, of various NMs. In particular, the role of silane-modified NMs in advancing energy harvesting technologies was highlighted, showcasing their potential to enhance the performance and stability of next-generation devices.
Collapse
Affiliation(s)
| | - Sathiyanathan Ponnan
- Department of Materials Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations and Research Center for Innovative Research on Aging Society, National Chung Cheng University, Chia Yi County 62102, Taiwan
| | - Arun Anand Prabu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India;
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations and Research Center for Innovative Research on Aging Society, National Chung Cheng University, Chia Yi County 62102, Taiwan
- Technology Development, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung 80661, Taiwan
| |
Collapse
|
3
|
Xu X, Wang P, Tong F, Liu Y, Hu X, Yang J, Guo J. Polydopamine-Coated Magnetic Nanoplatform for Magnetically Guided Penetration and Enhanced Antibacterial Efficacy in Root Canal Biofilm Elimination. Polymers (Basel) 2025; 17:1305. [PMID: 40430601 PMCID: PMC12115043 DOI: 10.3390/polym17101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Clinical root canal therapy which takes place through mechanical and chemical strategies is faced with challenges in eliminating bacteria owing to the intricate and curved nature of the root canal system. Moreover, the plaque biofilm within the root canal hinders drug penetration and limits treatment efficacy. Hence, efficient root canal therapy hinges on penetrating into the root canal and overcoming the barriers presented by the plaque biofilms. To penetrate and eradicate biofilms effectively at the root canal, we designed a novel magnetic nanoparticle (MN)-based nanoplatform which was synthesized by the self-polymerization of dopamine on the surface of Fe3O4 MNs, and then loaded minocycline through the electrostatic interaction. The therapeutic efficacy of minocycline-loaded magnetic nanoparticles (FDM MNs) under a magnetostatic field was observed by various antibacterial experiments. The synthesized FDM MNs exhibited favorable biocompatibility and robust anti-biofilm efficacy. The designed nanoparticles could effectively navigate biofilms to eradicate bacteria residing deep with the assistance of magnetic force. Furthermore, FDM MNs penetrated into dentin tubules under a magnetic field, effectively disrupting biofilms for deep sterilization. The significant results offered valuable experimental evidence to support the potential clinical utility of magnetic nanoparticles for managing pulpitis and periapical inflammation.
Collapse
Affiliation(s)
- Xingchen Xu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.X.); (P.W.); (F.T.); (Y.L.); (X.H.)
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang 330006, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.X.); (P.W.); (F.T.); (Y.L.); (X.H.)
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang 330006, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.X.); (P.W.); (F.T.); (Y.L.); (X.H.)
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang 330006, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.X.); (P.W.); (F.T.); (Y.L.); (X.H.)
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang 330006, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Xinyang Hu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.X.); (P.W.); (F.T.); (Y.L.); (X.H.)
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang 330006, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jian Yang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.X.); (P.W.); (F.T.); (Y.L.); (X.H.)
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang 330006, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.X.); (P.W.); (F.T.); (Y.L.); (X.H.)
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang 330006, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
4
|
Jayaramudu T, Varaprasad K, Govil T, Sani RK. Chitosan-capped TiO 2 hybrid nanomaterials for antibacterial and photocatalytic application of crystal violet. Int J Biol Macromol 2025; 309:142949. [PMID: 40220833 DOI: 10.1016/j.ijbiomac.2025.142949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Antibiotic-resistant bacteria and environmental dye pollutants necessitate the development of multifunctional hybrid nanomaterials (HNs) with antibacterial and photocatalytic properties. Nanotechnology offers advanced solutions through the synthesis of smart and sustainable HNs. This study investigates the development of chitosan-capped titanium dioxide (CHTiO2) that was synthesized using ascorbic acid as a nucleation agent via a facile co-precipitation technique. The resulting HNs were calcinated to obtain advanced bio-physicochemical properties. The prepared HNs were characterized using spectral, morphological and thermal instrumentation techniques. Fourier transform infrared spectroscopy analysis revealed that the chitosan functioned effectively as a capping agent, while X-ray diffraction studies revealed that the synthesized HNs exhibited a TiO2 anatase phase. The calcinated HNs have a bandgap energy of ⁓2.93 eV, indicative of its photocatalytic potential as observed in Ultraviolet-visible spectroscopy. Morphological studies conveyed spherical nanostructures with an average diameter of ~26.9 nm, and the HNs exhibited excellent thermal stability. Finally, the prepared HNs antibacterial activity and photocatalytic studies were evaluated against Escherichia coli, Staphylococcus aureus, and crystal violet dye, respectively. These results indicate that the prepared HNs showed potential as an effective antibacterial agent for various biomedical applications, such as wound dressings, medical device coating, and water purification systems, offering sustainable solutions to pressing global issues.
Collapse
Affiliation(s)
- Tippabattini Jayaramudu
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.
| | - Kokkarachedu Varaprasad
- Facultad de Ingenieria, Arquitectura y Deseno, Universidad San Sebastian, Lientur 1457, Concepción 4080871, Chile
| | - Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States; Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD, United States.
| |
Collapse
|
5
|
Rezaei AR, Ates F, Sulik A, Toczyłowski K. 'Smart', microbiome-sparing antibacterial therapy with a focus on the novel Lolamicin: an overview. Infection 2025:10.1007/s15010-025-02538-4. [PMID: 40220252 DOI: 10.1007/s15010-025-02538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE Antibiotic resistance (AR) is an escalating worldwide health emergency, requiring inventive strategies for antibiotic treatment. This review examines the tactics used in designing smart antibiotics, with a specific emphasis on the mechanism of action of lolamicin, a newly developed microbiome-sparing antibiotic. METHODS We review the recent advances in smart antibiotic development, particularly those aiming to preserve the gut microbiome while effectively targeting pathogens. The study focuses on lolamicin's selective targeting mechanism, its inhibition of the LolCDE complex in Gram-negative bacteria. RESULTS Lolamicin works by blocking the LolCDE complex, which is crucial for transporting lipoproteins in Gramnegative bacteria. It offers a significant improvement compared to conventional antibiotics and other microbiomesparing options by safeguarding the microbiome and reducing the development of resistance. However, its limited range of effectiveness - namely against certain harmful bacteria such as Pseudomonas aeruginosa - and the possibility of bacteria becoming resistant to it, remain areas of concern. CONCLUSION Lolamicin presents a hopeful resolution by selectively attacking Gram-negative bacteria while leaving the beneficial gut flora unharmed. Further investigation and rigorous clinical testing are essential to fully harness its promise and confirm its long-term utility in combating antibiotic resistance.
Collapse
Affiliation(s)
- Ahmad Reza Rezaei
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland
| | - Furkan Ates
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland
| | - Artur Sulik
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland
| | - Kacper Toczyłowski
- 1Department of Pediatric Infectious Diseases, Medical University of Bialystok, Białystok, Poland.
| |
Collapse
|
6
|
Zhang D, Kukkar D, Bhatt P, Kim KH, Kaur K, Wang J. Novel nanomaterials-based combating strategies against drug-resistant bacteria. Colloids Surf B Biointerfaces 2025; 248:114478. [PMID: 39778220 DOI: 10.1016/j.colsurfb.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Numerous types of contemporary antibiotic treatment regimens have become ineffective with the increasing incidence of drug tolerance. As a result, it is pertinent to seek novel and innovative solutions such as antibacterial nanomaterials (NMs) for the prohibition and treatment of hazardous microbial infections. Unlike traditional antibiotics (e.g., penicillin and tetracycline), the unique physicochemical characteristics (e.g., size dependency) of NMs endow them with bacteriostatic and bactericidal potential. However, it is yet difficult to mechanistically predict or decipher the networks of molecular interaction (e.g., between NMs and the biological systems) and the subsequent immune responses. In light of such research gap, this review outlines various mechanisms accountable for the inception of drug tolerance in bacteria. It also delineates the primary factors governing the NMs-induced molecular mechanisms against microbes, specifically drug-resistant bacteria along with the various NM-based mechanisms of antibacterial activity. The review also explores future directions and prospects for NMs in combating drug-resistant bacteria, while addressing challenges to their commercial viability within the healthcare industry.
Collapse
Affiliation(s)
- Daohong Zhang
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Kamalpreet Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab 140406, India
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Karthikeyan A, Tabassum N, Jeong GJ, Javaid A, Mani AK, Kim TH, Kim YM, Jung WK, Khan F. Alleviation of mycobacterial infection by impairing motility and biofilm formation via natural and synthetic molecules. World J Microbiol Biotechnol 2025; 41:113. [PMID: 40148661 DOI: 10.1007/s11274-025-04322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Mycobacterium species show distinctive characteristics with significant medical implications. Mycobacteria, including Mycobacterium tuberculosis and non-tuberculous mycobacteria, can form biofilms that facilitate their survival in hostile environments and contribute to development of antibiotic resistance and responses by the host immune system. Mycobacterial biofilm development is a complex process involving multiple genetic determinants, notably mmpL genes, which regulate lipid transport and support cell wall integrity, and the groEL gene, which is essential for biofilm maturation. Sliding motility, a passive form of surface movement observed across various mycobacterial species, is closely associated with biofilm formation and colony morphology. The unique sliding motility and biofilm-forming capabilities of Mycobacterium spp. are pivotal for their pathogenicity and persistence in diverse environments. A comprehensive understanding of the regulatory mechanisms governing these processes is crucial for the development of novel therapeutic strategies against mycobacterial infections. This review provides a detailed examination of our current knowledge regarding mycobacterial biofilm formation and motility, with a focus on regulation of these processes, their impact on pathogenicity, and potential avenues for therapeutic intervention. To this end, the potential of natural and synthetic compounds, including nanomaterials, in combating mycobacterial biofilms and inhibiting sliding motility are discussed as well. These compounds offer new avenues for the treatment of drug-resistant mycobacterial infections.
Collapse
Affiliation(s)
- Abirami Karthikeyan
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Geum-Jae Jeong
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Aqib Javaid
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Arun Kumar Mani
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed University, Tamil Nadu, Kumbakonam, 612001, India
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, 48513, Republic of Korea.
- International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
8
|
Dias CS, Pinna MH. Leptospira biofilms: implications for survival, transmission, and disease management. Appl Environ Microbiol 2025; 91:e0191424. [PMID: 39791876 PMCID: PMC11837522 DOI: 10.1128/aem.01914-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Leptospirosis is a zoonotic disease caused by Leptospira bacteria, affecting humans and a broad range of wild and domestic animals in diverse epidemiological settings (rural, urban, and wild). The disease's pathogenesis and epidemiology are complex networks not fully elucidated. Epidemiology reflects the One Health integrated approach of environment-animal-human interaction, causing severe illness in humans and animals, with consequent public health burdens. Saprophytic and pathogenic leptospires have been shown to form biofilms in vivo, in vitro, and in environmental samples. Biofilms are characterized by a polymeric matrix that confers protection against hostile environments (both inside and outside of the host), favoring bacterial survival and dissemination. Despite its significance, the role of this bacterial growth mode in leptospiral survival, transmission, and decreased antibiotic susceptibility remains poorly understood and underexplored. Even so, the literature indicates that biofilms might be correlated with lower antimicrobial susceptibility and chronicity in leptospirosis. In this minireview, we discuss the aspects of biofilm formation by Leptospira and their significance for epidemiology and therapeutic management. Understanding the current scenario provides insight into the future prospects for biofilm diagnosis, prevention, and treatment of leptospirosis.
Collapse
Affiliation(s)
- Carla Silva Dias
- Postgraduate Program in Animal Science in the Tropics - Federal University of Bahia, Salvador, Bahia, Brazil
| | - Melissa Hanzen Pinna
- Postgraduate Program in Animal Science in the Tropics - Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
9
|
Vrablova L, Gonec T, Kauerova T, Oravec M, Jendrzejewska I, Kollar P, Cizek A, Jampilek J. Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides. ADMET AND DMPK 2025; 13:2642. [PMID: 40161889 PMCID: PMC11954145 DOI: 10.5599/admet.2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Background and purpose Many new compounds are being prepared to overcome the problem of increasing microbial resistance and the increasing number of infections. Experimental approach This study includes a series of twenty-seven mono-, di- and trisubstituted 2-hydroxynaphthalene-1-carboxanilides designed as multitarget agents. The compounds are substituted with methoxy, methyl, and nitro groups, as well as additionally with chlorine, bromine, and trifluoromethyl at various positions. All the compounds were evaluated for antibacterial activities against Gram-positive and Gram-negative bacteria and mycobacteria. Cytotoxicity on human cells was also tested. Key results Three compounds showed activity comparable to clinically used drugs. N-(3,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (13) showed only antistaphylococcal activity (minimum inhibitory concentration (MIC) = 54.9 μM); 2-hydroxy-N-[2-methyl-5-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (22) and 2-hydroxy-N-[4-nitro-3-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (27) were active across the entire spectrum of tested bacteria/mycobacteria, both against the sensitive set and against resistant isolates (MICs range 0.3 to 92.6 μM). Compound 22 was even active against E. coli (MIC = 23.2 μM). The active agents showed no in vitro cytotoxicity up to a concentration of 30 μM. Conclusion Compounds with trifluoromethyl in the meta-anilide position, experimental lipophilicity expressed as log k (logarithm of the capacity factor) in the range of 0.31 to 0.34 and calculated electron σ parameter for the anilide substituent higher than 0.59 were effective. The investigated compounds meet the definition of Michael acceptors. Based on ADME screening, the investigated compounds 13, 22 and 27 should have suitable physicochemical parameters for good bioavailability in the organism. Therefore, these are promising agents for further study.
Collapse
Affiliation(s)
- Lucia Vrablova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Tereza Kauerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 603 00 Brno, Czech Republic
| | | | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
10
|
Akhter H, Ritu SS, Siddique S, Chowdhury F, Chowdhury RT, Akhter S, Hakim M. In silico molecular docking and ADMET prediction of biogenic zinc oxide nanoparticles: characterization, and in vitro antimicrobial and photocatalytic activity. RSC Adv 2024; 14:36209-36225. [PMID: 39534048 PMCID: PMC11555492 DOI: 10.1039/d4ra06890d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Biogenic synthesis of metal oxide nanoparticles is a rapidly growing research area in the field of nanotechnology owing to their immense potential in multifaceted biomedical and environmental applications. In this study, zinc oxide (ZnO) nanoparticles (NPs) were biosynthesized from the Citrullus lanatus rind extract to elucidate their potential antimicrobial and dye degradation activity. The structural, morphological, and optical properties of the NPs were examined using various analytical techniques. UV-vis spectra showed a λ max at 370 nm and the optical band gap was determined to be 3.2 eV for the ZnO nanocomposite. The FTIR spectrum denoted the functional groups responsible for the reduction of zinc acetate precursor to ZnO NPs. XRD demonstrated that the mean crystalline size of the nanocomposites was 20.36 nm while DLS, ζ-potential, FE-SEM, and EDX analysis of synthesized NPs confirmed their hydrodynamic size distribution, stability, morphological features, and elemental compositions, respectively. Biogenic ZnO NPs unveiled potent antimicrobial activity against S. aureus, L. monocytogenes, E. coli, P. aeruginosa, and C. albicans, showing 13 to 22 mm ZOI. This bactericidal activity of ZnO NPs was further elucidated using molecular docking analysis. The results showed a favorable lowest binding energy between ZnO NPs and microbial proteins (AusA for S. aureus, and CAT III for E. coli), which led to a possible mechanistic approach for ZnO NPs. Furthermore, the remarkable photocatalytic activity of ZnO NPs was revealed by the degradation of 99.02% of methylene blue (MB) dye within 120 min. Therefore, the above findings suggest that green synthesized ZnO NPs can be exploited as an eco-friendly alternative to synthetic substances and a unique promising candidate for therapeutic applications and environmental remediation.
Collapse
Affiliation(s)
- Hajara Akhter
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Susmita Sarker Ritu
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Shahariar Siddique
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Fariha Chowdhury
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Rehnuma Tasmiyah Chowdhury
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Samina Akhter
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Mahmuda Hakim
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
11
|
Liu S, Guo H, Kong Z, Han X, Gao Y, Zhang Y, Daigger GT, Zhang P, Kang J, Yu S, Li G, Song G. Performance improvement and application of copper-based nanomaterials in membrane technology for water treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122755. [PMID: 39378812 DOI: 10.1016/j.jenvman.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Membrane fouling, including organic, inorganic, and biological fouling, poses enormous challenges in membrane water treatment. Incorporation of copper-based nanomaterials in polymeric membranes is highly favored due to their exceptional antibacterial properties and capacity to improve membrane hydrophilicity. This review extensively explores the utilization of copper-based nanomaterials in membrane technology for water treatment, with a specific focus on enhancing anti-fouling performance. It elaborates on how copper-based nanomaterials improve the surface properties of membrane materials (such as porosity, hydrophilicity, surface charge, etc.) through physical and chemical processes. It summarizes the properties and potential antibacterial mechanisms of copper-based nanomaterials, primarily by disrupting microbial cell structures through the generation of reactive oxygen species (ROS). Furthermore, recent efforts to enhance the environmental sustainability, cost-effectiveness, and recyclability of copper-based nanomaterials are outlined. The attempts to offer insights for the advancement of anti-fouling practices in water treatment through the use of copper-modified polymer membranes.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Jia Kang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Shuchun Yu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
12
|
Vadakkan K, Hemapriya J, Ngangbam AK, Sathishkumar K, Mapranathukaran VO. Biofilm inhibition of Staphylococcus aureus by silver nanoparticles derived from Hellenia speciosa rhizome extract. Microb Pathog 2024; 196:106933. [PMID: 39270757 DOI: 10.1016/j.micpath.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Staphylococcus aureus is the most common cause of serious health conditions because of the formation of biofilm, which lowers antibiotic efficacy and enhances infection transmission and tenacious behavior. This bacteria is a major threat to the worldwide healthcare system. Silver nanoparticles have strong antibacterial characteristics and emerged as a possible alternative. This work is most relevant since it investigates the parameters influencing the biogenic nanoparticle-assisted control of bacterial biofilms by Staphylococcus aureus. Nanoparticles were fabricated utilizing Hellenia speciosa rhizome extracts, which largely comprised physiologically active components such as spirost-5-en-3-yl acetate, thymol, stigmasterol, and diosgenin, enhanced with the creation of silver nanocomposites. GC-MS, XRD, DLS, SEM, EDX, FTIR and TEM were used to investigate the characteristics of nanoparticles. The microtiter plate experiment showed that nanoparticles destroyed biofilms by up to 92.41 % at doses that ranged from 0 to 25 μg/ml. Fluorescence microscopy and SEM demonstrated the nanoparticles' capacity to prevent bacterial surface adhesion. EDX research revealed that the organic extract efficiently formed silver nanoparticles with considerable oxygen incorporation, which was attributed to phytochemicals that stabilize AgNPs and prevent accumulation. FTIR spectroscopy indicated the existence of hydroxyl, carbonyl, and carboxylate groups, which are essential for nanoparticle stability. TEM revealed that the AgNPs were spheroidal, with diameters ranging from 40 to 60 nm and an average of 46 nm. These results demonstrate the efficacy of H. speciosa extract in creating stable, well-defined AgNPs suited for a variety of applications. This work underlines the potential of green-synthesized AgNPs in biomedical applications, notably in the treatment of S. aureus biofilm-associated illnesses. The thorough characterization gives important information on the stability and efficiency of these biogenic nanoparticles.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala, 680020, India; Manipur International University, Imphal, Manipur, 795140, India.
| | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu, 632001, India
| | | | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | | |
Collapse
|
13
|
Moradi F, Akbari M, Vakili-Ghartavol R, Ostovari M, Hadi N. Molecular characterization of superbugs K. pneumoniae harboring extended-spectrum β-lactamase (ESBL) and carbapenemase resistance genes among hospitalized patients in southwestern Iran, Western Asia. Heliyon 2024; 10:e36858. [PMID: 39263100 PMCID: PMC11388783 DOI: 10.1016/j.heliyon.2024.e36858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Background Detection of K. pneumoniae superbugs carrying Extended-spectrum β-lactamase (ESBL) and Carbapenemase resistance genes among hospitalized patients is crucial for infection control and prevention. The aim of this molecular study was to investigate the spread of ESBL and Carbapenemase-producing K. pneumoniae in two hospitals located in Southwest Iran. Methods One hundred clinical isolates of K. pneumoniae were randomly collected from two hospitals over a period of five months, from November 2023. The isolates were confirmed using biochemical and genotypic tests. According to the CLSI 2022 guidelines, K. pneumoniae isolates that exhibited resistance to at least one of the three indicator cephalosporins or carbapenems were selected for evaluation of ESBL and carbapenemase production. This was done using a combination disk confirmatory test and the modified carbapenem inactivation method (mCIM). Finally, the presence of ESBLs and carbapenemase resistance encoding genes was assessed using PCR and specific primers. Results Out of the 100 isolates, the percentage of antibiotic resistance was cefoxitin (29 %), cefixime (28 %), ceftazidime (26 %), cefotaxime (24 %), cefepime (22 %), ceftriaxone (21 %), imipenem (20 %), and meropenem (17 %). Additionally, thirty isolated strains were found to be multidrug-resistant. Out of these, twenty-seven strains demonstrated a potential for ESBLs, twenty strains for Carbapenemase, and seventeen strains for both ESBLs and Carbapenemase production. Moreover, the occurrence of ESBLs and carbapenemase genes was as follows: bla SHV (25 %), bla TEM (23 %), bla CTX-M (20 %), bla OXA-48 (17 %), and bla VIM (13 %). It is important to mention that we did not detect the bla IMP and bla KPC. resistant genes among clinical isolates. Conclusion Based on the results, the existence of this type of resistance in hospital centers needs to be reevaluated in terms of empirical antibiotic prescribing. Additionally, it is recommended that infection control measures should be taken for public health. Also, it's suggested that hospital-acquired infections caused by superbug K. pneumoniae resistant strains should be addressed.
Collapse
Affiliation(s)
- Farhad Moradi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Maryam Akbari, Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roghayyeh Vakili-Ghartavol
- Roghayyeh Vakili-Ghartavol: Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Ostovari
- Mohsen Ostovari, Department of Medical Physics and Biomedical Engineering, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Khan S, Rauf A, Aljohani ASM, Al-Awthan YS, Ahmad Z, Bahattab OS, Khan S, Saadiq M, Khan SA, Thiruvengadam R, Thiruvengadam M. Green synthesis of silver and gold nanoparticles in Callistemon viminalis extracts and their antimicrobial activities. Bioprocess Biosyst Eng 2024; 47:1197-1211. [PMID: 38512495 DOI: 10.1007/s00449-024-02994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In the current study, the bottlebrush [Callistemon viminalis (Sol. ex Gaertn.) G. Don] plant was selected for the green synthesis of silver (Ag) and gold (Au) nanoparticles and to evaluate its antibacterial and antifungal activities. Phytochemical screening of C. viminalis confirmed the presence of alkaloids, anthraquinones, saponins, tannins, betacyanins, phlobatanins, coumarins, terpenoids, steroids, glycosides, and proteins. To characterize the synthesized Ag and Au NPs, UV-Visible spectroscopy, FTIR spectroscopy for functional group identification, field emission scanning electron microscopy (FE-SEM) for particle size, and elemental analysis were performed using EDX. The UV-Visible absorption spectra of the green-synthesized Ag and Au nanoparticles were found to have a maximum absorption band at 420 nm for Ag NPs and 525 nm for Au NPs. FE-SEM analysis of the synthesized NPs revealed a circular shape with a size of 100 nm. Elemental analysis was performed for the synthesis of Ag and Au NPs, which confirmed the purity of the nanoparticles. The greenly synthesized Ag and Au NPs were also evaluated for their anti-bacterial and anti-fungal activities, which exhibited prominent inhibition activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, C. krusei, Aspergillus sp., and Trichoderma species. The highest zone of inhibition 15.5 ± 0.75 and 15 ± 0.85 mm was observed for Ag NPs against E. coli and P. aeruginosa. Similarly, Trichoderma sp. and Aspergillus sp. were inhibited by Ag NPs up to 13.5 ± 0.95 and 13 ± 0.70 mm. This work will open doors for the development of new antimicrobial agents using green chemistry.
Collapse
Affiliation(s)
- Shahid Khan
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Omar S Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Shehla Khan
- Department, of Biotechnology, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Muhammad Saadiq
- Department of Chemistry, Bacha Khan University, Charsadda, KP, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
15
|
Bachvarova-Nedelcheva A, Kostova Y, Yordanova L, Nenova E, Shestakova P, Ivanova I, Pavlova E. Sol-Gel Synthesis of Silica-Poly (Vinylpyrrolidone) Hybrids with Prooxidant Activity and Antibacterial Properties. Molecules 2024; 29:2675. [PMID: 38893548 PMCID: PMC11173412 DOI: 10.3390/molecules29112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The present work deals with the sol-gel synthesis of silica-poly (vinylpyrrolidone) hybrid materials. The nanohybrids (Si-PVP) have been prepared using an acidic catalyst at ambient temperature. Tetramethyl ortosilane (TMOS) was used as a silica precursor. Poly (vinylpyrrolidone) (PVP) was introduced into the reaction mixture as a solution in ethanol with a concentration of 20%. The XRD established that the as-prepared material is amorphous. The IR and 29Si MAS NMR spectra proved the formation of a polymerized silica network as well as the hydrogen bonding interactions between the silica matrix and OH hydrogens of the silanol groups. The TEM showed spherical particle formation along with increased agglomeration tendency. The efficacy of SiO2/PVP nanoparticles as a potential antimicrobial agent against a wide range of bacteria was evaluated as bacteriostatic, using agar diffusion and spot tests. Combined effects of hybrid nanomaterial and antibiotics could significantly reduce the bactericidal concentrations of both the antibiotic and the particles, and they could also eliminate the antibiotic resistance of the pathogen. The registered prooxidant activity of the newly synthesized material was confirmative and explicatory for the antibacterial properties of the tested substance and its synergetic combination with antibiotics. The effect of new hybrid material on Crustacea Daphnia magna was also estimated as harmless under concentration of 0.1 mg/mL.
Collapse
Affiliation(s)
- Albena Bachvarova-Nedelcheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia, Bulgaria
| | - Yoanna Kostova
- Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre “Acad. A. Balevski”, Bulgarian Academy of Sciences, Shipchenski Prohod Str., 67, 1574 Sofia, Bulgaria;
| | - Lilia Yordanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (L.Y.); (E.N.); (I.I.)
| | - Elena Nenova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (L.Y.); (E.N.); (I.I.)
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria;
| | - Iliana Ivanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (L.Y.); (E.N.); (I.I.)
| | - Elitsa Pavlova
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 5 James Boucher Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
16
|
Jose A, Asha S, Rani A, T S X, Kumar P. Pseudomonas otitidis-mediated synthesis of silver nanoparticles: characterization, antimicrobial and antibiofilm potential. Lett Appl Microbiol 2024; 77:ovae053. [PMID: 38845375 DOI: 10.1093/lambio/ovae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
This study explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using soil bacteria, Pseudomonas otitidis. The bio-synthesized AgNPs were characterized using various techniques, including UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). UV-visible spectroscopy revealed a distinct broad absorption band in the range of 443 nm, indicating the reduction of silver nitrate to AgNPs. XRD analysis provided evidence of the crystalline nature of the particles, with sharp peaks confirming their crystallinity and an average size of 82.76 nm. FTIR spectroscopy identified extracellular protein compounds as capping agents. SEM examination revealed spherical agglomeration of the crystalline AgNPs. The antimicrobial assay by a disc diffusion method, minimum inhibitory concentration, and minimum bactericidal concentration testing revealed that the biosynthesized AgNPs showed moderate antibacterial activity against both pathogenic Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) and Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus mutans) bacterial strains. Furthermore, the AgNPs significantly disrupted the biofilm of P. aeruginosa, as confirmed by crystal violet assay and fluorescent microscopy. Overall, this study underscores the potential of microbial-synthesized nanoparticles in biomedical applications, particularly in combating pathogenic bacteria, offering a promising avenue for future research and development.
Collapse
Affiliation(s)
- Ashitha Jose
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Sneha Asha
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Anaswara Rani
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Xavier T S
- Center for Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Praveen Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
17
|
Eslaminezhad S, Moradi F, Hojjati MR. Evaluation of the wound healing efficacy of new antibacterial polymeric nanofiber based on polyethylene oxide coated with copper nanoparticles and defensin peptide: An in-vitro to in-vivo assessment. Heliyon 2024; 10:e29542. [PMID: 38628749 PMCID: PMC11019281 DOI: 10.1016/j.heliyon.2024.e29542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Today, designing nanofibers with antibacterial properties using electrospinning technology is one of the attractive approaches for wound healing. Methods & analysis: This study aims to fabricate a nanocomposite from polyethylene oxide (PEO) coated with copper nanoparticles (NPs) and defensin peptide with wound healing and antimicrobial properties in different ratios of CuNPs/defensin (2/0 mg), (1.5/0.5 mg), and (1/1 mg) in the fixed contain polymer (98 mg). Then, the nanofiber properties were investigated by SEM, tensile, DSC, and BET analysis. Also, the antibacterial properties against S. aureus and E. coli, antioxidant, and in-vivo wound healing effects and histological analysis of the designed nanocomposites were evaluated in rat models. Results Our SEM images showed that CuNPs and defensin were properly coated on the PEO surface. According to the tensile, DSC, and antibacterial analysis results, the most appropriate feature was related to CuNPs/defensin (1.5/0.5 mg), with maximum elasticity, heat resistance, and antibacterial activity. Furthermore, the designed nanocomposites showed the best performance as a wound closure agent by increasing dermis and epidermis volume density, stimulating fibroblast cells and collagen fiber production, and improving skin vessels. Conclusion According to our results, PEO nanofibers loaded with CuNPs and defensin have the best potential for wound healing, and they can be used as antibacterial materials in the textile, drug, and medical industries.
Collapse
Affiliation(s)
- Sahba Eslaminezhad
- Sahba Eslaminezhad, Department of chemical engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Farhad Moradi
- Farhad Moradi, Department of Bacteriology & Virology, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Reza Hojjati
- Mahmoud Reza Hojjati, Faculty of Engineering, Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
18
|
Nasrollahian S, Moradi F, Hadi N, Ranjbar S, Ranjbar R. An update on alternative therapy for Escherichia coli causing urinary tract infections; a narrative review. Photodiagnosis Photodyn Ther 2024; 46:104075. [PMID: 38574879 DOI: 10.1016/j.pdpdt.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most common type of nosocomial infection and severe health issues because of the difficulties and frequent recurrence. Today, alternative methods such as sonodynamic therapy (SDT), photodynamic therapy (PDT) and herbal materials use for treating infections like UTI in many countries. METHOD We conducted searches of the biomedical databases (Google Scholar, Scopus, PubMed, and Web of sciences) to identify related studies from 2008 to 2023. RESULT SDT aims to use ultrasound to activate a sonosensitizer, which causes a biological effect by raising reactive oxygen species (ROS). When bacteria are exposed to ROS, several important effects occur: oxidative damage, DNA damage, protein dysfunction etc. SDT with herbal medicine significantly reduced the number of colony-forming units and bactericidal activity for Klebsiella pneumonia and E. coli. PDT is a promising treatment for cancer and microbial infections, combining a photosensitiser, light and tissue molecular oxygen. It involves a photosensitizer, light source, and oxygen, with variations affecting microbial binding and bactericidal activity. Factors affecting antibacterial properties include plant type, growing conditions, harvesting, and processing. This review highlights the recent advancements in sonodynamic, photodynamic, herbal, and bio-material-based approaches in the treatment of E. coli infections. CONCLUSIONS These alternative therapies offer exciting prospects for addressing UTIs, especially in cases where traditional antibiotic treatments may be less effective. Further research and clinical studies are warranted to fully explore the potential of these innovative treatment modalities in combating UTIs and improving patient outcomes.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Ranjbar
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Mancuso G, Trinchera M, Midiri A, Zummo S, Vitale G, Biondo C. Novel Antimicrobial Approaches to Combat Bacterial Biofilms Associated with Urinary Tract Infections. Antibiotics (Basel) 2024; 13:154. [PMID: 38391540 PMCID: PMC10886225 DOI: 10.3390/antibiotics13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Urinary tract infections (UTIs) are prevalent bacterial infections in both community and healthcare settings. They account for approximately 40% of all bacterial infections and require around 15% of all antibiotic prescriptions. Although antibiotics have traditionally been used to treat UTIs for several decades, the significant increase in antibiotic resistance in recent years has made many previously effective treatments ineffective. Biofilm on medical equipment in healthcare settings creates a reservoir of pathogens that can easily be transmitted to patients. Urinary catheter infections are frequently observed in hospitals and are caused by microbes that form a biofilm after a catheter is inserted into the bladder. Managing infections caused by biofilms is challenging due to the emergence of antibiotic resistance. Biofilms enable pathogens to evade the host's innate immune defences, resulting in long-term persistence. The incidence of sepsis caused by UTIs that have spread to the bloodstream is increasing, and drug-resistant infections may be even more prevalent. While the availability of upcoming tests to identify the bacterial cause of infection and its resistance spectrum is critical, it alone will not solve the problem; innovative treatment approaches are also needed. This review analyses the main characteristics of biofilm formation and drug resistance in recurrent uropathogen-induced UTIs. The importance of innovative and alternative therapies for combatting biofilm-caused UTI is emphasised.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Marilena Trinchera
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Giulia Vitale
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|