1
|
Oliveira RDC, Ivanovic RF, Leite KRM, Viana NI, Pimenta RCA, Junior JP, Guimarães VR, Morais DR, Abe DK, Nesrallah AJ, Srougi M, Nahas W, Reis ST. Expression of micro-RNAs and genes related to angiogenesis in ccRCC and associations with tumor characteristics. BMC Urol 2017; 17:113. [PMID: 29202733 PMCID: PMC5715647 DOI: 10.1186/s12894-017-0306-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer in adults. Our aim is to evaluate genes and miRNAs expression profiles involved with angiogenesis and tumor characteristics in ccRCC. METHODS The expression levels of miRNAs miR-99a, 99b, 100; 199a; 106a; 106b; 29a; 29b; 29c; 126; 200a, 200b and their respective target genes: mTOR, HIF1-α, VHL, PDGF, VEGF, VEGFR1 and VEGFR2 were analyzed using qRT-PCR in tumor tissue samples from 56 patients with ccRCC. Five samples of benign renal tissue were utilized as control. The expression levels of miRNAs and genes were related to tumor size, Fuhrman nuclear grade and microvascular invasion. RESULTS miR99a was overexpressed in most samples and its target gene mTOR was underexpressed, this also occurs for miRNAs 106a, 106b, and their target gene VHL. An increase in miR-200b was correlated with high-risk tumors (p = 0.01) while miR-126 overexpression was associated with Fuhrman's low grade (p = 0.03). CONCLUSIONS Our results show that in ccRCC there are changes in miRNAs expression affecting gene expression that could be important in determining the aggressiveness of this lethal neoplasia.
Collapse
Affiliation(s)
- Rita de Cássia Oliveira
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Renato Fidelis Ivanovic
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Katia Ramos Moreira Leite
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Nayara Izabel Viana
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Ruan César Aparecido Pimenta
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - José Pontes Junior
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil.,Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Vanessa Ribeiro Guimarães
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Denis Reis Morais
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Daniel Kanda Abe
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Adriano João Nesrallah
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Miguel Srougi
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - William Nahas
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Sabrina Thalita Reis
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil.
| |
Collapse
|
2
|
Murakami M, Zhao S, Zhao Y, Chowdhury NF, Yu W, Nishijima KI, Takiguchi M, Tamaki N, Kuge Y. Evaluation of changes in the tumor microenvironment after sorafenib therapy by sequential histology and 18F-fluoromisonidazole hypoxia imaging in renal cell carcinoma. Int J Oncol 2012; 41:1593-600. [PMID: 22965141 PMCID: PMC3583814 DOI: 10.3892/ijo.2012.1624] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023] Open
Abstract
The mechanistic dissociation of ‘tumor starvation’ versus ‘vascular normalization’ following anti-angiogenic therapy is a subject of intense controversy in the field of experimental research. In addition, accurately evaluating changes of the tumor microenvironment after anti-angiogenic therapy is important for optimizing treatment strategy. Sorafenib has considerable anti-angiogenic effects that lead to tumor starvation and induce tumor hypoxia in the highly vascularized renal cell carcinoma (RCC) xenografts. 18F-fluoromisonidazole (18F-FMISO) is a proven hypoxia imaging probe. Thus, to clarify early changes in the tumor microenvironment following anti-angiogenic therapy and whether 18F-FMISO imaging can detect those changes, we evaluated early changes in the tumor microenvironment after sorafenib treatment in an RCC xenograft by sequential histological analysis and 18F-FMISO autoradiography (ARG). A human RCC xenograft (A498) was established in nude mice, for histological studies and ARG, and further assigned to the control and sorafenib-treated groups (80 mg/kg, per os). Mice were sacrificed on Days 1, 2, 3 and 7 in the histological study, and on Days 3 and 7 in ARG after sorafenib treatment. Tumor volume was measured every day. 18F-FMISO and pimonidazole were injected intravenously 4 and 2 h before sacrifice, respectively. Tumor sections were stained with hematoxylin and eosin and immunohistochemically with pimonidazole and CD31. Intratumoral 18F-FMISO distribution was quantified in ARG. Tumor volume did not significantly change on Day 7 after sorafenib treatment. In the histological study, hypoxic fraction significantly increased on Day 2, mean vessel density significantly decreased on Day 1 and necrosis area significantly increased on Day 2 after sorafenib treatment. Intratumoral 18F-FMISO distribution significantly increased on Days 3 (10.2-fold, p<0.01) and 7 (4.1-fold, p<0.01) after sorafenib treatment. The sequential histological evaluation of the tumor microenvironment clarified tumor starvation in A498 xenografts treated with sorafenib. 18F-FMISO hypoxia imaging confirmed the tumor starvation. 18F-FMISO PET may contribute to determine an optimum treatment protocol after anti-angiogenic therapy.
Collapse
Affiliation(s)
- Masahiro Murakami
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Dal Lago L, D'Hondt V, Awada A. Selected combination therapy with sorafenib: a review of clinical data and perspectives in advanced solid tumors. Oncologist 2008; 13:845-58. [PMID: 18695262 DOI: 10.1634/theoncologist.2007-0233] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of targeted therapies has provided new options for the management of patients with advanced solid tumors. There has been particular interest in agents that target the mitogen-activated protein kinase pathway, which controls tumor growth and survival and promotes angiogenesis. Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in renal cell carcinoma, and there is a strong rationale for investigating its use in combination with other agents. In particular, targeting multiple Raf isoforms with sorafenib may help to overcome resistance to other agents, while the ability of sorafenib to induce apoptosis may increase the cytotoxicity of chemotherapeutic agents. Based on positive results in preclinical studies, further investigation in phase I and II studies has shown potential antitumor activity when sorafenib is combined with cytotoxic agents in different solid tumors, including hepatocellular carcinoma and melanoma. Promising results have been reported in phase I and II studies of sorafenib combined with paclitaxel and carboplatin, with oxaliplatin in gastric and colorectal cancer, with docetaxel in breast cancer, with gemcitabine in ovarian cancer, and with capecitabine in different solid tumors. Phase II and III studies are currently investigating the use of sorafenib in combination with different agents in a variety of solid tumors. The primary objective of this review is to summarize the early clinical studies of sorafenib with cytotoxic agents and discuss future perspectives of these combinations in different tumor types.
Collapse
Affiliation(s)
- Lissandra Dal Lago
- Head of the Medical Oncology Clinic, Jules Bordet Institute, Boulevard de Waterloo 121, B-1000 Brussels, Belgium
| | | | | |
Collapse
|
4
|
Qin Y, Hurley LH. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 2008; 90:1149-71. [PMID: 18355457 DOI: 10.1016/j.biochi.2008.02.020] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/22/2008] [Indexed: 12/16/2022]
Abstract
In its simplest form, a DNA G-quadruplex is a four-stranded DNA structure that is composed of stacked guanine tetrads. G-quadruplex-forming sequences have been identified in eukaryotic telomeres, as well as in non-telomeric genomic regions, such as gene promoters, recombination sites, and DNA tandem repeats. Of particular interest are the G-quadruplex structures that form in gene promoter regions, which have emerged as potential targets for anticancer drug development. Evidence for the formation of G-quadruplex structures in living cells continues to grow. In this review, we examine recent studies on intramolecular G-quadruplex structures that form in the promoter regions of some human genes in living cells and discuss the biological implications of these structures. The identification of G-quadruplex structures in promoter regions provides us with new insights into the fundamental aspects of G-quadruplex topology and DNA sequence-structure relationships. Progress in G-quadruplex structural studies and the validation of the biological role of these structures in cells will further encourage the development of small molecules that target these structures to specifically modulate gene transcription.
Collapse
Affiliation(s)
- Yong Qin
- College of Pharmacy, 1703 E. Mabel, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
5
|
Siablis D, Liatsikos EN, Karnabatidis D, Kagadis GC, Sakelaropoulos GC, Maroulis J, Kardamakis D, Athanassopoulos A, Perimenis P, Nikiforidis G, Barbalias GA. Digital subtraction angiography and computer assisted image analysis for the evaluation of the antiangiogenetic effect of ionizing radiation on tumor angiogenesis. Int Urol Nephrol 2007; 38:407-11. [PMID: 17033888 DOI: 10.1007/s11255-005-3617-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of the present study was to evaluate and quantify the antiangiogenetic effect of ionizing radiation on tumor angiogenesis using digital subtraction angiography (DSA) in conjunction with computer assisted image analysis (CAIA). METHODS Walker 256 carcinosarcoma was inoculated in both glutei of 12 Wistar rats. When the tumors reached a diameter of 1.5 cm, local irradiation of the right gluteus was performed. The left gluteus of each animal served as a control. After 24 hours of irradiation, angiography was performed, and images where digitized and subsequently processed. The effect of irradiation was observed both in big and small vessels (smaller or greater than 200 microm). RESULTS Irradiated areas of both small and big vessels showed a statistically significant reduction in both total vessel area and length. Small vessels showed a greater trend toward suppression by irradiation (not statistically significant). CONCLUSION Irradiation had a deleterious effect in both macro- and micro-blood supply of a tumor. The use of CAIA enhanced the efficacy of DSA and enabled the in vivo identification of the effect of irradiation on various caliber vessels as well as the ratios of total length and total area of small and big vessels.
Collapse
Affiliation(s)
- Dimitrios Siablis
- Department of Radiology, School of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, Bortolon E, Ichetovkin M, Chen C, McNabola A, Wilkie D, Carter CA, Taylor ICA, Lynch M, Wilhelm S. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 2006; 59:561-74. [PMID: 17160391 DOI: 10.1007/s00280-006-0393-4] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 11/09/2006] [Indexed: 02/06/2023]
Abstract
PURPOSE New research findings have revealed a key role for vascular endothelial growth factor (VEGF) in the stimulation of angiogenesis in clear cell renal carcinoma (RCC) which is a highly vascularized and treatment-resistant tumor. Sorafenib (BAY 43-9006, Nexavar) is a multi-kinase inhibitor which targets receptor tyrosine and serine/threonine kinases involved in tumor progression and tumor angiogenesis. The effect of sorafenib on tumor growth and tumor histology was assessed in both ectopic and orthotopic mouse models of RCC. METHODS Sorafenib was administered orally to mice bearing subcutaneous (SC, ectopic) or sub-renal capsule (SRC, orthotopic) tumors of murine (Renca) or human (786-O) RCC. Treatment efficacy was determined by measurements of tumor volume and tumor growth delay. In mechanism of action studies, using the 786-O and Renca RCC tumor models, the effect of sorafenib was assessed after dosing for 3 or 5 days in the SC models and 21 days in the SRC models. Inhibition of tumor angiogenesis was assessed by measuring level of CD31 and alpha-smooth muscle actin (alphaSMA) staining by immunohistochemistry (IHC). The effect of sorafenib on MAPK signaling, cell cycle progression and cell proliferation was also assessed by IHC by measuring levels of phospho-ERK, phospho-histone H3 and Ki-67 staining, respectively. The extent of tumor apoptosis was measured by terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assays. Finally, the effects of sorafenib on tumor hypoxia was assessed in 786-O SC model by injecting mice intravenously with pimonidazole hydrochloride 1 h before tumor collection and tumor sections were stained with a FITC-conjugated Hypoxyprobe antibody. RESULTS Sorafenib produced significant tumor growth inhibition (TGI) and a reduction in tumor vasculature of both ectopic and orthotopic Renca and 786-O tumors, at a dose as low as 15 mg/kg when administered daily. Inhibition of tumor vasculature was observed as early as 3 days post-treatment, and this inhibition of angiogenesis correlated with increased level of tumor apoptosis (TUNEL-positive) and central necrosis. Consistent with these results, a significant increase in tumor hypoxia was also observed 3 days post-treatment in 786-O SC model. However, no significant effect of sorafenib on phospho-ERK, phospho-histone H3 or Ki-67 levels in either RCC tumor model was observed. CONCLUSION Our results show the ability of sorafenib to potently inhibit the growth of both ectopically- and orthotopically-implanted Renca and 786-O tumors. The observed tumor growth inhibition and tumor stasis or stabilization correlated strongly with decreased tumor angiogenesis, which was due, at least in part, to inhibition of VEGF and PDGF-mediated endothelial cell and pericyte survival. Finally, sorafenib-mediated inhibition of tumor growth and angiogenesis occurred at concentrations equivalent to those achieved in patients in the clinic.
Collapse
Affiliation(s)
- Yong S Chang
- Department of Protein Therapeutics, Bayer Research Center, Bayer HealthCare, Pharmaceuticals, 400 Morgan Lane, West Haven, CT 06516, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|