1
|
Ghalehno AD, Abdi H, Boustan A, Jamialahmadi K, Mosaffa F. Tamoxifen resistance induction results in the upregulation of ABCG2 expression and mitoxantrone resistance in MCF-7 breast cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3723-3732. [PMID: 37310508 DOI: 10.1007/s00210-023-02567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Cancer endocrine therapy can promote evolutionary dynamics and lead to changes in the gene expression profile of tumor cells. We aimed to assess the effect of tamoxifen (TAM)-resistance induction on ABCG2 pump mRNA, protein, and activity in ER + MCF-7 breast cancer cells. We also evaluated if the resistance to TAM leads to the cross-resistance toward mitoxantrone (MX), a well-known substrate of the ABCG2 pump. The ABCG2 mRNA and protein expression were compared in MCF-7 and its TAM-resistant derivative MCF-7/TAMR cells using RT-qPCR and western blot methods, respectively. Cross-resistance of MCF-7/TAMR cells toward MX was evaluated by the MTT method. Flow cytometry was applied to compare ABCG2 function between cell lines using MX accumulation assay. ABCG2 mRNA expression was also analyzed in tamoxifen-sensitive (TAM-S) and tamoxifen-resistant (TAM-R) breast tumor tissues. The levels of ABCG2 mRNA, protein, and activity were significantly higher in MCF-7/TAMR cells compared to TAM-sensitive MCF-7 cells. MX was also less toxic in MCF-7/TAMR compared to MCF-7 cells. ABCG2 was also upregulated in tissue samples obtained from TAM-R cancer patients compared to TAM-S patients. Prolonged exposure of ER + breast cancer cells to the active form of TAM and clonal evolution imposed by the selective pressure of the drug can lead to higher expression of the ABCG2 pump in the emerged TAM-resistant cells. Therefore, in choosing a sequential therapy for a patient who develops resistance to TAM, the possibility of the cross-resistance of the evolved tumor to chemotherapy drugs that are ABCG2 substrates should be considered. Prolonged exposure of MCF-7 breast cancer cells to tamoxifen can cause resistance to it and an increase in the expression of the ABCG2 mRNA and protein levels in the cells. Tamoxifen resistance can lead to cross-resistance to mitoxantrone.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Yu T, Cheng H, Ding Z, Wang Z, Zhou L, Zhao P, Tan S, Xu X, Huang X, Liu M, Peng M, Qiu YA. GPER mediates decreased chemosensitivity via regulation of ABCG2 expression and localization in tamoxifen-resistant breast cancer cells. Mol Cell Endocrinol 2020; 506:110762. [PMID: 32087276 DOI: 10.1016/j.mce.2020.110762] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Rescue chemotherapy is usually the preferred treatment for patients with advanced estrogen receptor-positive (ER+) breast cancer with endocrinotherapy resistance. However, these patients often simultaneously show a poor response to cytotoxic drugs, and thus the detailed mechanism of this resistance needs to be further investigated. Our previous research indicated that the G-protein-coupled estrogen receptor (GPER) is a novel mediator of the development of multidrug resistance, including resistance to both endocrinotherapy and chemotherapy, and ATP binding cassette subfamily G member 2 (ABCG2) has been identified as an engine that confers cancer cells with chemoresistance by expelling xenobiotics and chemotherapeutics. Here, we are the first to show that the expression levels of GPER and ABCG2 are markedly increased in tamoxifen-resistant ER + metastases compared to the corresponding primary tumors. A plasma membrane expression pattern of GPER and ABCG2 was observed in patients with metastases. Furthermore, both ER modulator tamoxifen, GPER-specific agonist G1 and pure ER antagonist ICI 182,780 significantly enhanced ABCG2 expression in tamoxifen-resistant breast cancer cells (MCF-7R) but not in tamoxifen-sensitive cells (MCF-7). The activated downstream GPER/EGFR/ERK and GPER/EGFR/AKT signaling pathways were responsible for regulating the expression and cell membrane localization of ABCG2, respectively, in MCF-7R cells. Interestingly, the above phenomenon could be alleviated by inhibitors of both the indicated signaling pathways and by knockdown of GPER in MCF-7R cells. More importantly, the tamoxifen-induced GPER/ABCG2 signaling axis was shown to play a pivotal role in the development of chemotherapy (doxorubicin) resistance both in vitro and in vivo. The clinical data further revealed that tamoxifen-resistant patients with high GPER/ABCG2 signaling activation had poor progression-free survival (PFS) when given rescue anthracycline chemotherapy. Therefore, our data provide novel insights into GPER-mediated chemoresistance and provide a rationale for the GPER/ABCG2 signaling axis being a promising target for reversing chemoresistance in patients with advanced ER + tamoxifen-resistant breast cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MCF-7 Cells
- Mice
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Transport/drug effects
- Protein Transport/genetics
- Receptors, Estrogen/physiology
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tamoxifen/therapeutic use
- Tissue Distribution/drug effects
- Tissue Distribution/genetics
Collapse
Affiliation(s)
- Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Hong Cheng
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Zhijuan Ding
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Zhiliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lixia Zhou
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Peng Zhao
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Shengxing Tan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xue Xu
- Department of Ultrasonography, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Xianming Huang
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu-An Qiu
- Department of Critical Care Medicine, Jiangxi Cancer Hospital, Nanchang, 330029, China.
| |
Collapse
|
3
|
Chen R, Guo S, Yang C, Sun L, Zong B, Li K, Liu L, Tu G, Liu M, Liu S. Although c‑MYC contributes to tamoxifen resistance, it improves cisplatin sensitivity in ER‑positive breast cancer. Int J Oncol 2020; 56:932-944. [PMID: 32319562 PMCID: PMC7050981 DOI: 10.3892/ijo.2020.4987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
Tamoxifen (TAM) resistance is a major challenge in the treatment of estrogen receptor‑positive (ER+) breast cancer. To date, to the best of our knowledge, there are only a few studies available examining the response of patients with TAM‑resistant breast cancer to chemotherapy, and the guidelines do not specify recommended drugs for these patients. In the present study, TAM‑resistant cells were shown to exhibit increased proliferation and invasion compared with the parent cells, and the increased expression of c‑MYC was demonstrated to play an important role in TAM resistance. Furthermore, the TAM‑resistant cells were significantly more sensitive to cisplatin compared with the parent cells, and the silencing of c‑MYC expression desensitized the cells to cisplatin through the inhibition of the cell cycle. An increased c‑MYC expression was observed in 28 pairs of primary and metastatic tumors from patients treated with TAM, and the clinical remission rate of cisplatin‑based chemotherapy was significantly higher compared with other chemotherapy‑based regimens in 122 patients with TAM resistant breast cancer. Taken together, the data of the present study demonstrated that although c‑MYC was involved in TAM resistance, it increased the sensitivity of ER+ breast cancer to cisplatin. Thus, cisplatin may be a preferred chemotherapeutic agent for the treatment of patients with TAM‑resistant breast cancer, particularly in patients where the rapid control of disease progression is required.
Collapse
Affiliation(s)
- Rui Chen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shipeng Guo
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chengcheng Yang
- Department of Breast Surgery, The People's Hospital of Deyang, Deyang, Sichuan 618000, P.R. China
| | - Lu Sun
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Beige Zong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kang Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
4
|
ObRb downregulation increases breast cancer cell sensitivity to tamoxifen. Tumour Biol 2015; 36:6813-21. [DOI: 10.1007/s13277-015-3375-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/24/2015] [Indexed: 01/12/2023] Open
|
5
|
Yu T, Liu M, Luo H, Wu C, Tang X, Tang S, Hu P, Yan Y, Wang Z, Tu G. GPER mediates enhanced cell viability and motility via non-genomic signaling induced by 17β-estradiol in triple-negative breast cancer cells. J Steroid Biochem Mol Biol 2014; 143:392-403. [PMID: 24874276 DOI: 10.1016/j.jsbmb.2014.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/08/2014] [Accepted: 05/11/2014] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer with a generally poor prognosis. Due to lack of specific targets for its treatment, an efficient therapy is needed. G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, has been reported to be expressed in TNBC tissues. In this study, we investigated the effects of blocking non-genomic signaling mediated by the estrogen/GPER pathway on cell viability and motility in the TNBC cells. GPER was strongly expressed in the TNBC cell lines MDA-MB-468 and MDA-MB-436, and the estrogen-mediated non-genomic ERK signaling activated by GPER was involved in cell viability and motility of TNBC cells. Treatment with 17β-estradiol (E2), the GPER-specific agonist G-1 and tamoxifen (TAM) led to rapid activation of p-ERK1/2, but not p-Akt. Moreover, estrogen/GPER/ERK signaling was involved in increasing cell growth, survival, and migration/invasion by upregulating expression of cyclinA, cyclinD1, Bcl-2, and c-fos associated with the cell cycle, proliferation, and apoptosis. Immunohistochemical analysis of TNBC specimens showed a significantly different staining of p-ERK1/2 between GPER-positive tissues (58/66, 87.9%) and GPER-negative tissues (13/30, 43.3%). The positivity of GPER and p-ERK1/2 displayed a strong association with large tumor size and poor clinical stage, indicating that GPER/ERK signaling might also contribute to tumor progression in TNBC patients which corresponded with in vitro experimental data. Our findings suggest that inhibition of estrogen/GPER/ERK signaling represents a novel targeted therapy in TNBC.
Collapse
Affiliation(s)
- Tenghua Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Haojun Luo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chengyi Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xi Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shifu Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ping Hu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yuzhao Yan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhiliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Mo Z, Liu M, Yang F, Luo H, Li Z, Tu G, Yang G. GPR30 as an initiator of tamoxifen resistance in hormone-dependent breast cancer. Breast Cancer Res 2013; 15:R114. [PMID: 24289103 PMCID: PMC3978564 DOI: 10.1186/bcr3581] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 11/14/2013] [Indexed: 01/23/2023] Open
Abstract
Introduction Tamoxifen is widely used to treat hormone-dependent breast cancer, but its therapeutic benefit is limited by the development of drug resistance. Here, we investigated the role of estrogen G-protein coupled receptor 30 (GPR30) on Tamoxifen resistance in breast cancer. Methods Primary tumors (PTs) of breast cancer and corresponding metastases (MTs) were used to evaluate the expression of GPR30 and epidermal growth factor receptor (EGFR) immunohistochemically. Tamoxifen-resistant (TAM-R) subclones derived from parent MCF-7 cells were used to investigate the role of GPR30 in the development of tamoxifen resistance, using MTT assay, western blot, RT-PCR, immunofluorescence, ELISA and flow cytometry. TAM-R xenografts were established to assess anti-tumor effects of combination therapy with GPR30 antagonist G15 plus 4-hydroxytamoxifen (Tam), using tumor volume measurement and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Results In 53 human breast cancer specimens, GPR30 expression in MTs increased compared to matched PTs; in MTs, the expression patterns of GPR30 and EGFR were closely related. Compared to parent MCF-7 cells, TAM-R cells had greater growth responses to 17β-estradiol (E2), GPR30 agonist G1 and Tam, and significantly higher activation of Mitogen-activated protein (MAP) kinases; but this increased activity was abolished by G15 or AG1478. In TAM-R cells, GPR30 cell-surface translocation facilitated crosstalk with EGFR, and reduced cAMP generation, attenuating inhibition of EGFR signaling. Combination therapy both promoted apoptosis in TAM-R cells and decreased drug-resistant tumor progression. Conclusions Long-term endocrine treatment facilitates the translocation of GPR30 to cell surfaces, which interferes with the EGFR signaling pathway; GPR30 also attenuates the inhibition of MAP kinases. These factors contribute to tamoxifen resistance development in breast cancer. Combination therapy with GPR30 inhibitors and tamoxifen may provide a new therapeutic option for drug-resistant breast cancer.
Collapse
|
7
|
Steindorf K, Ritte R, Eomois PP, Lukanova A, Tjonneland A, Johnsen NF, Overvad K, Østergaard JN, Clavel-Chapelon F, Fournier A, Dossus L, Teucher B, Rohrmann S, Boeing H, Wientzek A, Trichopoulou A, Karapetyan T, Trichopoulos D, Masala G, Berrino F, Mattiello A, Tumino R, Ricceri F, Quirós J, Travier N, Sánchez MJ, Navarro C, Ardanaz E, Amiano P, Bueno-de-Mesquita H, van Duijnhoven F, Monninkhof E, May AM, Khaw KT, Wareham N, Key TJ, Travis RC, Borch KB, Sund M, Andersson A, Fedirko V, Rinaldi S, Romieu I, Wahrendorf J, Riboli E, Kaaks R. Physical activity and risk of breast cancer overall and by hormone receptor status: The European prospective investigation into cancer and nutrition. Int J Cancer 2012; 132:1667-78. [DOI: 10.1002/ijc.27778] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/21/2012] [Indexed: 01/06/2023]
|
8
|
Eisner A, Demirel S. Variability in short-wavelength automated perimetry among peri- or postmenopausal women: a dependence on phyto-oestrogen consumption? Acta Ophthalmol 2011; 89:e217-24. [PMID: 19958290 PMCID: PMC2888924 DOI: 10.1111/j.1755-3768.2009.01799.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To determine whether the hill of vision for Short-Wavelength Automated Perimetry (SWAP) is shallower for women who consume phyto-oestrogen-rich foods than for women who do not. METHODS Visual field data were compared for two groups of healthy amenorrhoeic women 48-69 years-old with normal vision and not using hormone replacement: (1) 24 subjects who reported consuming soy and/or flax products and (2) 20 subjects who reported not consuming these products. Two types of 24-2 visual fields were measured: (1) Full Threshold SWAP and (2) a white-on-white (W/W) field obtained using a Swedish Interactive Threshold Algorithm (SITA Standard). RESULTS The reduction of SWAP sensitivity from the centre of the field (4 loci, mean eccentricity = 4.2°) to the periphery (20 loci, mean eccentricity = 21.9°) was less for soy/flax consumers than for nonconsumers, both with age-referencing (mean difference = 1.7 dB, p = 0.018) and without (p = 0.012). Corresponding distinctions existed for the SWAP - W/W difference, and there was minimal effect for W/W fields alone. The peripheral age-referenced SWAP sensitivities averaged 2.5 dB higher for consumers than nonconsumers (p = 0.022). CONCLUSION The between-group distinctions are consistent with the possibility (derived from the women's health literature) that phyto-oestrogens may counteract a decline of short-wavelength-sensitive cone-mediated response among postmenopausal women. These results suggest another potential application for SWAP outside its original intended purpose as a glaucoma test. Future studies should assess whether phyto-oestrogen consumption is most beneficial for women who are sufficiently young and/or not too far beyond menopause.
Collapse
Affiliation(s)
- Alvin Eisner
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
9
|
Stensheim H, Cvancarova M, Møller B, Fosså SD. Pregnancy after adolescent and adult cancer: A population-based matched cohort study. Int J Cancer 2011; 129:1225-36. [DOI: 10.1002/ijc.26045] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 11/11/2022]
|
10
|
Lønning PE. Evolution of endocrine adjuvant therapy for early breast cancer. Expert Opin Investig Drugs 2010; 19 Suppl 1:S19-30. [DOI: 10.1517/13543781003714865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Dey S, Boffetta P, Mathews A, Brennan P, Soliman A, Mathew A. Risk factors according to estrogen receptor status of breast cancer patients in Trivandrum, South India. Int J Cancer 2009; 125:1663-70. [PMID: 19452528 DOI: 10.1002/ijc.24460] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Estrogen receptor (ER) status is an important biomarker in defining subtypes of breast cancer differing in antihormonal therapy response, risk factors and prognosis. However, little is known about association of ER status with various risk factors in the developing world. Our case-control study done in Kerala, India looked at the associations of ER status and risk factors of breast cancer. From 2002 to 2005, 1,208 cases and controls were selected at the Regional Cancer Center (RCC), Trivandrum, Kerala, India. Information was collected using a standardized questionnaire, and 3-way analyses compared ER+/ER- cases, ER+ cases/controls and ER- cases/controls using unconditional logistic regression to calculate odds ratios and 95% confidence intervals. The proportion of ER- cases was higher (64.1%) than ER+ cases. Muslim women were more likely to have ER- breast cancer compared to Hindus (OR = 1.48, 95% CI = 1.09, 2.02), an effect limited to premenopausal group (OR = 1.87, 95% CI = 1.26, 2.77). Women with higher socioeconomic status were more likely to have ER+ breast cancer (OR = 1.48, 95% CI = 1.11, 1.98). Increasing BMI increased likelihood of ER- breast cancer in premenopausal women (p for trend < 0.001). Increasing age of marriage was positively associated with both ER+ and ER- breast cancer. Increased breastfeeding and physical activity were in general protective for both ER+ and ER- breast cancer. The findings of our study are significant in further understanding the relationship of ER status and risk factors of breast cancer in the context of the Indian subcontinent.
Collapse
Affiliation(s)
- Subhojit Dey
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Eisner A, Toomey MD. The color appearance of stimuli detected via short-wavelength-sensitive cones: comparisons with visual adaptation and visual field data for peri- or post-menopausal women under 70 years of age. Vision Res 2008; 48:2663-72. [PMID: 18343478 PMCID: PMC2653205 DOI: 10.1016/j.visres.2008.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/14/2008] [Accepted: 01/28/2008] [Indexed: 11/24/2022]
Abstract
Dynamics of foveal light adaptation for vision mediated via short-wavelength-sensitive (SWS) cones were compared for two groups of healthy amenorrheic (peri- or post-menopausal) women not using hormonal medication. Each subject was assigned to a group based on the color name-"lavender" ( approximately 2/3 of all subjects) or "white" (approximately 1/3 of all subjects)-chosen in a forced-response paradigm to best describe a threshold-level 440-nm test presented on a larger 3.6 log td 580-nm background that had been viewed for approximately 5 min. During the first 20-30s after this 3.6 log td background abruptly replaced a much dimmer background, the threshold elevations (relative to the steady-state levels measured at approximately 5 min) were significantly greater for the lavender-naming subjects than for the white-naming subjects. However, exponential rates of recovery were indistinguishable for the two groups. A viable interpretation is that the gain of the visual response at background onset is greater for lavender-naming subjects than for white-naming subjects at or distal to a site where responses from middle-wavelength-sensitive and long-wavelength-sensitive (MWS and LWS) cones oppose responses from SWS cones. In addition, the color names derived from foveal testing were related systematically to extrafoveal sensitivities measured with Short Wavelength Automated Perimetry (SWAP), in a manner suggesting that response gain and/or response speed may be greater for lavender-naming subjects in the direction of increased SWS response also. Evidence from other subject populations suggests that the choice of color name and the dynamics of visual response each can be affected by alterations (particularly reductions) of estrogen synthesis and response.
Collapse
Affiliation(s)
- Alvin Eisner
- Neurological Sciences Institute, Oregon Health & Science University, West Campus, 505 NW 185th Ave., Beaverton, OR 97006, USA.
| | | |
Collapse
|