1
|
da Silva ACR, Araujo JSC, Pita SSDR, Leite FHA. In silico development of adenosine A2B receptor antagonists for sickle cell disease. J Biomol Struct Dyn 2022; 40:9592-9601. [PMID: 34180379 DOI: 10.1080/07391102.2021.1934121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sickle cell disease (SCD) is a disease resulting from mutation in the globin portion of hemoglobin caused by the replacement of adenine for thymine in the codon of the β globin gene. In Brazil, SCD affects about 0.3% of the black and Caucasian population. Until now, there is no specific treatment and the available drugs have several serious adverse effects which makes the search for new drugs an emergently need. The use of computational techniques can accelerate the drug development process by prioritization of molecules with affinity against essential targets. Adenosine A2b receptor (rA2b) has been studied in SCD due to its relationship with red blood cells concentration of 2,3-diphosphoglycerate which reduces the hemoglobin affinity for oxygen (O2), facilitating its availability for the tissues. Then, development of rA2b antagonists could be helpful for the treatment of SCD. However, there is still no 3D structure of rA2b and to overcome this limitation, homology modeling should be applied. In this scenario, this study aims to build a suitable 3D model of rA2b by SWISS MODEL and to evaluate the structural aspects of rA2b with known antagonists that may be useful for the identification of new potential antagonists by molecular dynamics on a lipid bilayer environment using GROMACS 5.1.4. The complexes with antagonists ZINC223070016 and ZINC17974526 interacted with key residues by hydrophobic contacts and hydrogen bonds which stabilized them at the rA2b binding site. This intermolecular profile can contribute to the development of more potent rA2b antagonists. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anna Carolina Rocha da Silva
- Postgraduate Program in Pharmaceutical Sciences, State University of Feira de Santana, Feira de Santana, Brazil.,Laboratory of Molecular Modeling, Department of Health, State University of Feira de Santana, Feira de Santana, Brazil
| | | | - Samuel Silva da Rocha Pita
- Postgraduate Program in Pharmaceutical Sciences, State University of Feira de Santana, Feira de Santana, Brazil.,Laboratory of Bioinformatics and Molecular Modeling, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Franco Henrique Andrade Leite
- Postgraduate Program in Pharmaceutical Sciences, State University of Feira de Santana, Feira de Santana, Brazil.,Laboratory of Cheminformatics and Biological Assessment, Department of Health, State University of Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
2
|
Purinergic signaling is essential for full Psickle activation by hypoxia and by normoxic acid pH in mature human sickle red cells and in vitro-differentiated cultured human sickle reticulocytes. Pflugers Arch 2022; 474:553-565. [PMID: 35169901 DOI: 10.1007/s00424-022-02665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
Paracrine ATP release by erythrocytes has been shown to regulate endothelial cell function via purinergic signaling, and this erythoid-endothelial signaling network is pathologically dysregulated in sickle cell disease. We tested the role of extracellular ATP-mediated purinergic signaling in the activation of Psickle, the mechanosensitive Ca2+-permeable cation channel of human sickle erythrocytes (SS RBC). Psickle activation increases intracellular [Ca2+] to stimulate activity of the RBC Gardos channel, KCNN4/KCa3.1, leading to cell shrinkage and accelerated deoxygenation-activated sickling.We found that hypoxic activation of Psickle recorded by cell-attached patch clamp in SS RBC is inhibited by extracellular apyrase, which hydrolyzes extracellular ATP. Hypoxic activation of Psickle was also inhibited by the pannexin-1 inhibitor, probenecid, and by the P2 antagonist, suramin. A Psickle-like activity was also activated in normoxic SS RBC (but not in control red cells) by bath pH 6.0. Acid-activated Psickle-like activity was similarly blocked by apyrase, probenecid, and suramin, as well as by the Psickle inhibitor, Grammastola spatulata mechanotoxin-4 (GsMTx-4).In vitro-differentiated cultured human sickle reticulocytes (SS cRBC), but not control cultured reticulocytes, also exhibited hypoxia-activated Psickle activity that was abrogated by GsMTx-4. Psickle-like activity in SS cRBC was similarly elicited by normoxic exposure to acid pH, and this acid-stimulated activity was nearly completely blocked by apyrase, probenecid, and suramin, as well as by GsMTx-4.Thus, hypoxia-activated and normoxic acid-activated cation channel activities are expressed in both SS RBC and SS cRBC, and both types of activation appear to be mediated or greatly amplified by autocrine or paracrine purinergic signaling.
Collapse
|
3
|
Heeney MM, Abboud MR, Amilon C, Andersson M, Githanga J, Inusa B, Kanter J, Leonsson-Zachrisson M, Michelson AD, Berggren AR. Ticagrelor versus placebo for the reduction of vaso-occlusive crises in pediatric sickle cell disease: Rationale and design of a randomized, double-blind, parallel-group, multicenter phase 3 study (HESTIA3). Contemp Clin Trials 2019; 85:105835. [DOI: 10.1016/j.cct.2019.105835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
|
4
|
Agrawal N, Chandrasekaran B, Al-Aboudi A. Recent Advances in the In-silico Structure-based and Ligand-based Approaches for the Design and Discovery of Agonists and Antagonists of A2A Adenosine Receptor. Curr Pharm Des 2019; 25:774-782. [DOI: 10.2174/1381612825666190306162006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023]
Abstract
A2A receptor belongs to the family of GPCRs, which are the most abundant membrane protein family.
Studies in the last few decades have shown the therapeutic applications of A2A receptor in various diseases. In the
present mini-review, we have discussed the recent progress in the in-silico studies of the A2A receptor. Herein, we
described the different structures of A2A receptor, the discovery of new agonists and antagonists using virtualscreening/
docking, pharmacophore modeling, and QSAR based pharmacophore modeling. We have also discussed
various molecular dynamics (MD) simulations studies of A2A receptor in complex with ligands.
Collapse
Affiliation(s)
- Nikhil Agrawal
- College of Health Sciences, University of KwaZulu-Natal, P. O. Box: 4000, Westville, Durban, South Africa
| | - Balakumar Chandrasekaran
- College of Health Sciences, University of KwaZulu-Natal, P. O. Box: 4000, Westville, Durban, South Africa
| | - Amal Al-Aboudi
- Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
5
|
Mehaffey JH, Money D, Charles EJ, Schubert S, Piñeros AF, Wu D, Bontha SV, Hawkins R, Teman NR, Laubach VE, Mas VR, Tribble CG, Maluf DG, Sharma AK, Yang Z, Kron IL, Roeser ME. Adenosine 2A Receptor Activation Attenuates Ischemia Reperfusion Injury During Extracorporeal Cardiopulmonary Resuscitation. Ann Surg 2019; 269:1176-1183. [PMID: 31082918 PMCID: PMC6757347 DOI: 10.1097/sla.0000000000002685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We tested the hypothesis that systemic administration of an A2AR agonist will reduce multiorgan IRI in a porcine model of ECPR. SUMMARY BACKGROUND DATA Advances in ECPR have decreased mortality after cardiac arrest; however, subsequent IRI contributes to late multisystem organ failure. Attenuation of IRI has been reported with the use of an A2AR agonist. METHODS Adult swine underwent 20 minutes of circulatory arrest, induced by ventricular fibrillation, followed by 6 hours of reperfusion with ECPR. Animals were randomized to vehicle control, low-dose A2AR agonist, or high-dose A2AR agonist. A perfusion specialist using a goal-directed resuscitation protocol managed all the animals during the reperfusion period. Hourly blood, urine, and tissue samples were collected. Biochemical and microarray analyses were performed to identify differential inflammatory markers and gene expression between groups. RESULTS Both the treatment groups demonstrated significantly higher percent reduction from peak lactate after reperfusion compared with vehicle controls. Control animals required significantly more fluid, epinephrine, and higher final pump flow while having lower urine output than both the treatment groups. The treatment groups had lower urine NGAL, an early marker of kidney injury (P = 0.01), lower plasma aspartate aminotransferase, and reduced rate of troponin rise (P = 0.01). Pro-inflammatory cytokines were lower while anti-inflammatory cytokines were significantly higher in the treatment groups. CONCLUSIONS Using a novel and clinically relevant porcine model of circulatory arrest and ECPR, we demonstrated that a selective A2AR agonist significantly attenuated systemic IRI and warrants clinical investigation.
Collapse
Affiliation(s)
- James H Mehaffey
- Department of Surgery, University of Virginia, Charlottesville, VA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019; 13:124. [PMID: 30983976 PMCID: PMC6447611 DOI: 10.3389/fncel.2019.00124] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Adenosine receptors (ARs) function in the body’s response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019. [PMID: 30983976 DOI: 10.3389/fncel.2019.00124/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Adenosine receptors (ARs) function in the body's response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
New Therapeutic Options for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2019; 11:e2019002. [PMID: 30671208 PMCID: PMC6328043 DOI: 10.4084/mjhid.2019.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023] Open
Abstract
Sickle cell disease (SCD; ORPHA232; OMIM # 603903) is a chronic and invalidating disorder distributed worldwide, with high morbidity and mortality. Given the disease complexity and the multiplicity of pathophysiological targets, development of new therapeutic options is critical, despite the positive effects of hydroxyurea (HU), for many years the only approved drug for SCD. New therapeutic strategies might be divided into (1) pathophysiology-related novel therapies and (2) innovations in curative therapeutic options such as hematopoietic stem cell transplantation and gene therapy. The pathophysiology related novel therapies are: a) Agents which reduce sickling or prevent sickle red cell dehydration; b) Agents targeting SCD vasculopathy and sickle cell-endothelial adhesive events; c) Anti-oxidant agents. This review highlights new therapeutic strategies in SCD and discusses future developments, research implications, and possible innovative clinical trials.
Collapse
|
9
|
Targeting the tumor promoting effects of adenosine in chronic lymphocytic leukemia. Crit Rev Oncol Hematol 2018; 126:24-31. [DOI: 10.1016/j.critrevonc.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/27/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
|
10
|
Abstract
The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Köse M, Gollos S, Karcz T, Fiene A, Heisig F, Behrenswerth A, Kieć-Kononowicz K, Namasivayam V, Müller CE. Fluorescent-Labeled Selective Adenosine A 2B Receptor Antagonist Enables Competition Binding Assay by Flow Cytometry. J Med Chem 2018; 61:4301-4316. [PMID: 29681156 DOI: 10.1021/acs.jmedchem.7b01627] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescent ligands represent powerful tools for biological studies and are considered attractive alternatives to radioligands. In this study, we developed fluorescent antagonists for A2B adenosine receptors (A2BARs), which are targeted by antiasthmatic xanthines and were proposed as novel targets in immuno-oncology. Our approach was to merge a small borondipyrromethene (BODIPY) derivative with the pharmacophore of 8-substituted xanthine derivatives. On the basis of the design, synthesis, and evaluation of model compounds, several fluorescent ligands were synthesized. Compound 29 (PSB-12105), which displayed high affinity for human, rat, and mouse A2BARs ( Ki = 0.2-2 nM) and high selectivity for this AR subtype, was selected for further studies. A homology model of the human A2BAR was generated, and docking studies were performed. Moreover, 29 allowed us to establish a homogeneous receptor-ligand binding assay using flow cytometry. These compounds constitute the first potent, selective fluorescent A2BAR ligands and are anticipated to be useful for a variety of applications.
Collapse
Affiliation(s)
- Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Sabrina Gollos
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Fabian Heisig
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Andrea Behrenswerth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| |
Collapse
|
12
|
Randomized phase 2 trial of regadenoson for treatment of acute vaso-occlusive crises in sickle cell disease. Blood Adv 2017; 1:1645-1649. [PMID: 29296811 DOI: 10.1182/bloodadvances.2017009613] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/23/2017] [Indexed: 12/21/2022] Open
Abstract
Adenosine A2A receptor (A2AR) agonists have been shown to decrease tissue inflammation induced by hypoxia/reoxygenation in mice with sickle cell disease (SCD). The key mediator of the A2AR agonist's anti-inflammatory effects is a minor lymphocyte subset, invariant natural killer T (iNKT) cells. We tested the hypothesis that administration of an A2AR agonist in patients with SCD would decrease iNKT cell activation and dampen the severity of vaso-occlusive (VO) crises. In a phase 2, randomized, placebo-controlled trial, we administered a 48-hour infusion of the A2AR agonist regadenoson (1.44 μg/kg per hour) to patients with SCD during VO crises to produce a plasma concentration of ∼5 nM, a concentration known from prior studies to suppress iNKT cell activation in SCD. The primary outcome measure was a >30% reduction in the percentage of activated iNKT cells. Ninety-two patients with SCD were randomized to receive a 48-hour infusion of regadenoson or placebo, in addition to standard-of-care treatment, during hospital admission for a VO crisis and had analyzable iNKT cell samples. The proportion of subjects who demonstrated a reduction of >30% in activated iNKT cells was not significantly different between the regadenoson and placebo arms (43% vs 23%; P = .07). There were also no differences between regadenoson and placebo groups in length of hospital stay, mean total opioid use, or pain scores. These data demonstrate that a low-dose infusion of regadenoson intended to reduce the activity of iNKT cells is not sufficient to produce a statistically significant reduction in such activation or in measures of clinical efficacy. This trial was registered at www.clinicaltrials.gov as #NCT01788631.
Collapse
|
13
|
Paz OS, de Jesus Pinheiro M, do Espirito Santo RF, Villarreal CF, Castilho MS. Nanomolar anti-sickling compounds identified by ligand-based pharmacophore approach. Eur J Med Chem 2017; 136:487-496. [DOI: 10.1016/j.ejmech.2017.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
|
14
|
Mendonça R, Silveira AAA, Conran N. Red cell DAMPs and inflammation. Inflamm Res 2016; 65:665-78. [PMID: 27251171 DOI: 10.1007/s00011-016-0955-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/19/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022] Open
Abstract
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Collapse
Affiliation(s)
- Rafaela Mendonça
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Angélica A A Silveira
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Nicola Conran
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
15
|
Owusu-Ansah A, Ihunnah CA, Walker AL, Ofori-Acquah SF. Inflammatory targets of therapy in sickle cell disease. Transl Res 2016; 167:281-97. [PMID: 26226206 PMCID: PMC4684475 DOI: 10.1016/j.trsl.2015.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion, and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident for more than several decades that a more complex disease process contributes to the myriad of clinical complications seen in patients with SCD with inflammation playing a central role. Drugs targeting specific inflammatory pathways therefore offer an attractive therapeutic strategy to ameliorate many of the clinical events in SCD. In addition, they are useful tools to dissect the molecular and cellular mechanisms that promote individual clinical events and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only Food and Drug Administration-approved drug for SCD.
Collapse
Affiliation(s)
- Amma Owusu-Ansah
- Division of Hematology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Center for Translational and International Hematology, Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Chibueze A Ihunnah
- Center for Translational and International Hematology, Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Aisha L Walker
- Center for Translational and International Hematology, Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Solomon F Ofori-Acquah
- Division of Hematology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Center for Translational and International Hematology, Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
16
|
Burnstock G. Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal 2015; 11:411-34. [PMID: 26260710 PMCID: PMC4648797 DOI: 10.1007/s11302-015-9462-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
The involvement of purinergic signalling in the physiology of erythrocytes, platelets and leukocytes was recognised early. The release of ATP and the expression of purinoceptors and ectonucleotidases on erythrocytes in health and disease are reviewed. The release of ATP and ADP from platelets and the expression and roles of P1, P2Y(1), P2Y(12) and P2X1 receptors on platelets are described. P2Y(1) and P2X(1) receptors mediate changes in platelet shape, while P2Y(12) receptors mediate platelet aggregation. The changes in the role of purinergic signalling in a variety of disease conditions are considered. The successful use of P2Y(12) receptor antagonists, such as clopidogrel and ticagrelor, for the treatment of thrombosis, myocardial infarction and stroke is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
17
|
Eisenstein A, Patterson S, Ravid K. The Many Faces of the A2b Adenosine Receptor in Cardiovascular and Metabolic Diseases. J Cell Physiol 2015; 230:2891-7. [PMID: 25975415 DOI: 10.1002/jcp.25043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/09/2023]
Abstract
Modulation of the low affinity adenosine receptor subtype, the A2b adenosine receptor (A2bAR), has gained interest as a therapeutic target in various pathologic areas associated with cardiovascular disease. The actions of the A2bAR are diverse and at times conflicting depending on cell and tissue type and the timing of activation or inhibition of the receptor. The A2bAR is a promising and exciting pharmacologic target, however, a thorough understanding of A2bAR action is necessary to reach the therapeutic potential of this receptor. This review will focus on the role of the A2bAR in various cardiovascular and metabolic pathologies in which the receptor is currently being studied. We will illustrate the complexities of A2bAR signaling and highlight areas of research with potential for therapeutic development.
Collapse
Affiliation(s)
- Anna Eisenstein
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Shenia Patterson
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.,Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
18
|
Wang P, Guo X, Zong W, Song B, Liu G, He S. MicroRNA-128b suppresses tumor growth and promotes apoptosis by targeting A2bR in gastric cancer. Biochem Biophys Res Commun 2015; 467:798-804. [PMID: 26478435 DOI: 10.1016/j.bbrc.2015.10.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/11/2015] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in the development and progression of human cancers, including gastric cancer (GC). The discovery of miRNAs may provide a new and powerful tool for studying the mechanism, diagnosis, and treatment of GC. In this study, we aimed to investigate the role and mechanism of miR-128b in the development and progression of GC. Quantitative real-time PCR (qRT-PCR) was used to measure the expression level of miR-128b in GC tissues and cell lines. We found that miR-128b was significantly down-regulated in GC tissues and cell lines. In addition, over-expression of miR-128b inhibited GC cell proliferation, migration and invasion of GC cells in vitro. Gain-of-function in vitro experiments further showed that the miR-128b mimic significantly promoted GC cell apoptosis. Subsequent dual-luciferase reporter assay identified one of the proto-oncogene A2bR as direct target of miR-128b. Therefore, our results indicate that miR-128b is a proto-oncogene miRNA that can suppresses GC proliferation and migration through down-regulation of the oncogene gene A2bR. Taken together, our results indicate that miR-128b could serve as a potential diagnostic biomarker and therapeutic option for human GC in the near future.
Collapse
Affiliation(s)
- Ping Wang
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710068, China
| | - Xueyan Guo
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710068, China
| | - Wei Zong
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710068, China
| | - Bin Song
- Department of General Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710068, China
| | - Guisheng Liu
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710068, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
19
|
Chronic transfusion therapy improves but does not normalize systemic and pulmonary vasculopathy in sickle cell disease. Blood 2015; 126:703-10. [PMID: 26036801 DOI: 10.1182/blood-2014-12-614370] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/11/2015] [Indexed: 02/07/2023] Open
Abstract
Tricuspid regurgitant (TR) jet velocity and its relationship to pulmonary hypertension has been controversial in sickle cell disease (SCD). Plasma free hemoglobin is elevated in SCD patients and acutely impairs systemic vascular reactivity. We postulated that plasma free hemoglobin would be negatively associated with both systemic and pulmonary endothelial function, assessed by flow-mediated dilation (FMD) of the brachial artery and TR jet velocity, respectively. Whole blood viscosity, plasma free hemoglobin, TR jet, and FMD were measured in chronically transfused SCD pre- and posttransfusion (N = 25), in nontransfused SCD (N = 26), and in ethnicity-matched control subjects (N = 10). We found increased TR jet velocity and decreased FMD in nontransfused SCD patients compared with the other 2 groups. TR jet velocity was inversely correlated with FMD. There was a striking nonlinear relationship between plasma free hemoglobin and both TR jet velocity and FMD. A single transfusion in the chronically transfused cohort improved FMD. In our patient sample, TR jet velocity and FMD were most strongly associated with plasma free hemoglobin and transfusion status (transfusions being protective), and thus consistent with the hypothesis that intravascular hemolysis and increased endogenous erythropoiesis damage vascular endothelia.
Collapse
|
20
|
Conran N. Prospects for early investigational therapies for sickle cell disease. Expert Opin Investig Drugs 2015; 24:595-602. [DOI: 10.1517/13543784.2015.1012292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Field JJ. Can selectin and iNKT cell therapies meet the needs of people with sickle cell disease? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:426-432. [PMID: 26637753 DOI: 10.1182/asheducation-2015.1.426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent insights into the pathogenesis of microvascular occlusion downstream of the sickled red cell have revealed new therapeutic targets for sickle cell disease (SCD). After the formation of sickle cells, tissue injury spurs inflammation, which leads to receptor-mediated contacts between sickle cells, leukocytes, and vascular endothelium. Specifically, selectins decelerate sickled red cells and leukocytes in the circulation to facilitate endothelial adhesion and other cell-cell interactions, ultimately leading to vascular occlusion. Invariant NKT (iNKT) cells, activated during reperfusion, generate a broad inflammatory response, which further increases cellular adhesion and vascular occlusion. Novel therapies are in development that target selectins and iNKT cells to prevent or interrupt the vicious cycle of adhesion and inflammation. Although the therapies hold promise for the treatment of SCD, an underappreciated threat to their development is poor access to care for people with SCD. Unless the majority of people with SCD have access to consistent, high-quality care, they will not have the opportunity to participate in a clinical trial or receive any new therapy, regardless of its efficacy.
Collapse
Affiliation(s)
- Joshua J Field
- Medical Sciences Institute, Blood Center of Wisconsin; and Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|