1
|
Seale TS, Li L, Bruner JK, Chou M, Nguyen B, Seo J, Zhu R, Levis MJ, Pratilas CA, Small D. Targeting rapid TKI-induced AXL upregulation overcomes adaptive ERK reactivation and exerts antileukemic effects in FLT3/ITD acute myeloid leukemia. Mol Oncol 2025; 19:1386-1403. [PMID: 39395205 PMCID: PMC12077278 DOI: 10.1002/1878-0261.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
Acute myeloid leukemia (AML) patients with the FMS-related receptor tyrosine kinase 3 internal tandem duplication (FLT3/ITD) mutation have a poorer prognosis, and treatment with FLT3 tyrosine kinase inhibitors (TKIs) has been hindered by resistance mechanisms. One such mechanism is known as adaptive resistance, in which downstream signaling pathways are reactivated after initial inhibition. Past work has shown that FLT3/ITD cells undergo adaptive resistance through the reactivation of extracellular signal-regulated kinase (ERK) signaling within 24 h of sustained FLT3 inhibition. We investigated the mechanism(s) responsible for this ERK reactivation and hypothesized that targeting tyrosine-protein kinase receptor UFO (AXL), another receptor tyrosine kinase that has been implicated in cancer resistance, may overcome the adaptive ERK reactivation. Experiments revealed that AXL is upregulated and activated in FLT3/ITD cell lines mere hours after commencing TKI treatment. AXL inhibition combined with FLT3 inhibition to decrease the ERK signal rebound and to exert greater anti-leukemia effects than with either treatment alone. Finally, we observed that TKI-induced AXL upregulation occurs in patient samples, and combined inhibition of both AXL and FLT3 increased efficacy in our in vivo models. Taken together, these data suggest that AXL plays a role in adaptive resistance in FLT3/ITD AML and that combined AXL and FLT3 inhibition might improve FLT3/ITD AML patient outcomes.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/enzymology
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Humans
- Axl Receptor Tyrosine Kinase
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Animals
- Up-Regulation/drug effects
- Cell Line, Tumor
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Mice
- Tandem Repeat Sequences
- Xenograft Model Antitumor Assays
- MAP Kinase Signaling System/drug effects
Collapse
Affiliation(s)
- Tessa S. Seale
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Li Li
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - J. Kyle Bruner
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Melody Chou
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Bao Nguyen
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jaesung Seo
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ruiqi Zhu
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Mark J. Levis
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Christine A. Pratilas
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Donald Small
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
2
|
El-Deen NA, DeFilippis R, Abdel-Aziz AK, Milik SN, Patel S, Ismail MI, Khaled O, Ahmed TE, Abdelfattah AG, Ali EMH, Gaballah MY, McPhillie MJ, Abouzid KAM, Serya RAT, Henary M, Minucci S, Shah NP, Dokla EME. Structural Optimization and MD Simulation Study of Benzimidazole Derivatives as Potent Mutant FLT3 Kinase Inhibitors Targeting AML. Arch Pharm (Weinheim) 2025; 358:e70002. [PMID: 40346763 DOI: 10.1002/ardp.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 05/12/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with poor survival rates in adults, posing a significant economic burden. FMS-like tyrosine kinase 3 (FLT3) mutations are linked to poor prognosis in AML and resistance to clinically approved FLT3 inhibitors. Previously, we reported a novel benzimidazole-based FLT3 inhibitor, 4ACP, with nanomolar activities against FLT3-ITD and FLT3-TKD mutants, showing selective cytotoxicity against FLT3-ITD+ AML cell lines. In this study, we synthesized 31 derivatives by modifying the 4-acetamidophenyl group and varying substituents at N1-phenyl and C2 positions. We identified compound 21l (3-acetamidophenyl) as the most potent derivative (FLT3-TKD(D835Y) IC50 = 1.47 nM). Linking 21l to a solvent-accessible group yielded compound 22b, which exhibited a sub-nanomolar activity against FLT-TKD(D835Y) mutant with an IC50 value of 0.48 nM. Compound 22b showed preferential antiproliferative activities against MOLM-14, MV4-11, MOLM-14-D835Y, and MOLM-14-F691L AML cell lines with IC50 values of 16.1, 10.5, 26.5, and 160.3 nM, respectively. 22b induced dose-dependent inhibition of FLT3, ERK, STAT5, and S6 phosphorylation, G0/G1 cell-cycle arrest, and apoptotic cell death at low nanomolar concentrations in MOLM-14 and MOLM-14-D835Y cells. It was more selective for FLT3-dependent cell lines, showing about 80-fold selectivity toward FLT3-TKD(D835Y) over KIT, indicating relative safety and lower myelosuppression potential. The molecular dynamics study of 4ACP and 22b was conducted to explain the significant changes in activity resulting from subtle structural alterations. Altogether, these findings establish 22b as a potent mutant FLT3 inhibitor, warranting further investigation and optimization to target resistant AML.
Collapse
Affiliation(s)
- Nada Alaa El-Deen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - RosaAnna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, California, USA
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sandra N Milik
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- School of Chemistry, University of Leeds, Leeds, UK
| | - Suhana Patel
- Division of Hematology/Oncology, University of California, San Francisco, California, USA
| | - Muhammad I Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo, Egypt
| | - Omar Khaled
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Tarek Erfan Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Ayatullah Gamal Abdelfattah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Eslam M H Ali
- Drug Discovery Core, Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Maiy Y Gaballah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Maged Henary
- Department of Chemistry, and Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, California, USA
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
3
|
Zhang T, Wei D, Zhan Y, Long Z, Lu T, Zhao P, Gao R, Kang Q, Zhang L, Liu M, Yang X, Wang J. Heme oxygenase 1 confers gilteritinib resistance in FLT3-ITD acute myeloid leukemia in a STAT6-dependent manner. Cancer Cell Int 2025; 25:129. [PMID: 40186248 PMCID: PMC11969713 DOI: 10.1186/s12935-025-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. We previously discovered that heme oxygenase 1 (HO1) is crucial for chemoresistance in AML, but the detailed molecular mechanism of that remains unclear. METHODS RNA sequencing was conducted to assess transcriptomic changes in three pairs of AML cells after regulating the expression of HO1. The molecular mechanism by which HO1 induces gilteritinib resistance in FLT3-ITD (FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD)) AML was evaluated by quantitative real-time PCR (qRT-PCR), CCK-8, flow cytometry, and western blotting. FLT3-ITD AML mouse models were established to investigate the effects of HO1 expression on gilteritinib resistance in vivo. RESULTS In these three pairs of AML cells, we discovered that HO1-mediated drug resistance is connected to the interleukin-4-mediated signaling pathway (specifically STAT6) only in MV4-11 cells with the FLT3-ITD mutation. Further findings revealed that HO1 overexpression confers gilteritinib resistance in FLT3-ITD AML cell lines and primary individual specimens. While suppression of HO1 sensitized FLT3-ITD AML cell lines and primary individual specimens to gilteritinib. Mechanistically, western blotting and flow cytometry confirmed that HO1-mediated gilteritinib resistance is related to STAT6 phosphorylation in FLT3-ITD AML cell lines and primary individual specimens. Moreover, tumor-bearing mice were employed to determine that HO1 overexpression conferred gilteritinib resistance in vivo. CONCLUSIONS Collectively, these studies illustrate that HO1 may act as a successful treatment target for gilteritinib-resistant FLT3-ITD AML patients.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Danna Wei
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Yun Zhan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Zhengmei Long
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Tingting Lu
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rui Gao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qian Kang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Luxin Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Min Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xueying Yang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guizhou Province Institute of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
4
|
Tecik M, Adan A. Concurrent inhibition of FLT3 and sphingosine kinase-1 triggers synergistic cytotoxicity in midostaurin resistant FLT3-ITD positive acute myeloid leukemia cells via blocking FLT3/STAT5A signaling to induce apoptosis. J Chemother 2025:1-17. [PMID: 40119531 DOI: 10.1080/1120009x.2025.2478340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025]
Abstract
The FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations observed in acute myeloid leukemia (AML) which contributes to disease progression and unfavorable prognosis. Midostaurin, a small FLT3 inhibitor (FLT3I), is clinically approved. However, patients generally possess acquired resistance when midostaurin used alone. Shifting the balance in the sphingolipid rheostat toward anti-apoptotic sphingosine kinase-1 (SK-1) or glucosylceramide synthase (GCS) is related to therapy resistance in cancer, however, their role in midostaurin resistant FLT3-ITD positive AML has not been previously investigated. We generated midostaurin resistant MV4-11 and MOLM-13 cell lines which showed increased IC50 values compared to their sensitive partner cells. SK-1 is overexpressed in resistant cells while GCS remains unchanged. Subsequent pharmacological targeting of SK-1 in resistant cells decreased SK-1 protein level, inhibited cell proliferation and showed additive or synergistic effect on cell growth, as confirmed by the Chou-Talalay combination index, and induced G0/G1 arrest (PI staining by flow cytometry). Cotreatment (SKI-II plus midostaurin) triggered apoptosis via phosphatidylserine exposure (annexin V/PI double staining). Mechanistically, induction of the intrinsic pathway of apoptosis was confirmed as increased activating cleavages of caspase-3 and PARP and increased Bax/Bcl-2 ratios. Activating phosphorylations of FLT3 (at tyrosine residue 591) and STAT5A (at tyrosine residue 694) dramatically inhibited in resistant cells treated with the combination. In conclusion, midostaurin resistance could be reversed by dual SK-1 and FLT3 inhibition in midostaurin resistant AML cell lines, providing the first evidence of a novel treatment approach to re-sensitize FLT3-ITD positive AML.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Türkiye
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Türkiye
| |
Collapse
|
5
|
Liu W, Ma Y, Wang M, He Y, Liu Y, Zhu Z, Ding Y, Zhang G, Wang S. Discovery of 3-amide-pyrimidine-based derivatives as potential fms-like tyrosine receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia. Bioorg Med Chem Lett 2025; 117:130082. [PMID: 39708925 DOI: 10.1016/j.bmcl.2024.130082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
FLT3-ITD and TKD mutants play a central role in acute myeloid leukemia (AML), making FLT3 an attractive target for AML treatment. To discover next-generation FLT3 inhibitors and gather additional structure-activity relationship (SAR) information, we performed structural modifications of G-749 (denfivontinib) utilizing structure simplification and scaffold hopping strategies. Among these derivatives, MY-10 exhibited the most potent and selective inhibition of MV4-11 cell proliferation, demonstrating potent inhibitory activity against FLT3-ITD (IC50 = 6.5 nM) and FLT3-D835Y (IC50 = 10.3 nM) mutants. Notably, MY-10 exhibited no inhibitory activity against c-KIT kinase (IC50 > 100 μM). Mechanistic studies revealed that MY-10 arrested the cell cycle at the G0/G1 phase and efficiently induced apoptosis. Furthermore, it significantly reduced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP), and strongly inhibited FLT3-mediated signaling pathways. These findings, along with the obtained SAR information, provide valuable insights for the further development of FLT3 inhibitors.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Structure-Activity Relationship
- Pyrimidines/pharmacology
- Pyrimidines/chemistry
- Pyrimidines/chemical synthesis
- Cell Proliferation/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Molecular Structure
- Cell Line, Tumor
- Apoptosis/drug effects
- Drug Discovery
- Drug Screening Assays, Antitumor
- Amides/chemistry
- Amides/pharmacology
- Amides/chemical synthesis
- Dose-Response Relationship, Drug
- Reactive Oxygen Species/metabolism
- Membrane Potential, Mitochondrial/drug effects
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Ma
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Miaomiao Wang
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yanhong Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhenbao Zhu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710021, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region.
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
6
|
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. MOLECULAR BIOMEDICINE 2025; 6:2. [PMID: 39757310 PMCID: PMC11700966 DOI: 10.1186/s43556-024-00239-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer remains a leading cause of mortality globally and a major health burden, with chemotherapy often serving as the primary therapeutic option for patients with advanced-stage disease, partially compensating for the limitations of non-curative treatments. However, the emergence of chemotherapy resistance significantly limits its efficacy, posing a major clinical challenge. Moreover, heterogeneity of resistance mechanisms across cancer types complicates the development of universally effective diagnostic and therapeutic approaches. Understanding the molecular mechanisms of chemoresistance and identifying strategies to overcome it are current research focal points. This review provides a comprehensive analysis of the key molecular mechanisms underlying chemotherapy resistance, including drug efflux, enhanced DNA damage repair (DDR), apoptosis evasion, epigenetic modifications, altered intracellular drug metabolism, and the role of cancer stem cells (CSCs). We also examine specific causes of resistance in major cancer types and highlight various molecular targets involved in resistance. Finally, we discuss current strategies aiming at overcoming chemotherapy resistance, such as combination therapies, targeted treatments, and novel drug delivery systems, while proposing future directions for research in this evolving field. By addressing these molecular barriers, this review lays a foundation for the development of more effective cancer therapies aimed at mitigating chemotherapy resistance.
Collapse
Affiliation(s)
- Yixiang Gu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | | | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
7
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
8
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Lap CJ, Abrahim MS, Nassereddine S. Perspectives and challenges of small molecule inhibitor therapy for FLT3-mutated acute myeloid leukemia. Ann Hematol 2024; 103:2215-2229. [PMID: 37975931 DOI: 10.1007/s00277-023-05545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disease characterized overall by an aggressive clinical course. The underlying genetic abnormalities present in leukemic cells contribute significantly to the AML phenotype. Mutations in FMS-like tyrosine kinase 3 (FLT3) are one of the most common genetic abnormalities identified in AML, and the presence of these mutations strongly influences disease presentation and negatively impacts prognosis. Since mutations in FLT3 were identified in AML, they have been recognized as a valid therapeutic target resulting in decades of research to develop effective small molecule inhibitor treatment that could improve outcome for these patients. Despite the approval of several FLT3 inhibitors over the last couple of years, the treatment of patients with FLT3-mutated AML remains challenging and many questions still need to be addressed. This review will provide an up-to-date overview of our current understanding of FLT3-mutated AML and discuss what the current status is of the available FLT3 inhibitors for the day-to-day management of this aggressive disease.
Collapse
Affiliation(s)
- Coen J Lap
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Marwa Sh Abrahim
- The George Washington Cancer Center, George Washington University, Washington, DC, USA
| | - Samah Nassereddine
- The George Washington Cancer Center, George Washington University, Washington, DC, USA.
| |
Collapse
|
10
|
Mohebbi A, Shahriyary F, Farrokhi V, Bandar B, Saki N. A systematic review of second-generation FLT3 inhibitors for treatment of patients with relapsed/refractory acute myeloid leukemia. Leuk Res 2024; 141:107505. [PMID: 38692232 DOI: 10.1016/j.leukres.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a complex disease with diverse mutations, including prevalent mutations in the FMS-like receptor tyrosine kinase 3 (FLT3) gene that lead to poor prognosis. Recent advancements have introduced FLT3 inhibitors that have improved outcomes for FLT3-mutated AML patients, however, questions remain on their application in complex conditions such as relapsed/refractory (R/R) disease. Therefore, we aimed to evaluate the clinical effectiveness of second-generation FLT3 inhibitors in treating patients with R/R AML. METHODS A systematic literature search of PubMed, MEDLINE, SCOPUS and Google Scholar databases was made to identify relevant studies up to January 30, 2024. This study was conducted following the guidelines of the PRISMA. RESULTS The ADMIRAL trial revealed significantly improved overall survival and complete remission rates with gilteritinib compared to salvage chemotherapy, with manageable adverse effects. Ongoing research explores its potential in combination therapies, showing synergistic effects with venetoclax and promising outcomes in various clinical trials. The QuANTUM-R trial suggested longer overall survival with quizartinib compared to standard chemotherapy, although concerns were raised regarding trial design and cardiotoxicity. Ongoing research explores combination therapies involving quizartinib, such as doublet or triplet regimens with venetoclax, showing promising outcomes in FLT3-mutated AML patients. CONCLUSION These targeted therapies offer promise for managing this subgroup of AML patients, but further research is needed to optimize their use. This study underscores the importance of personalized treatment based on genetic mutations in AML, paving the way for more effective and tailored approaches to combat the disease.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Bandar
- Department of Medical Laboratory, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Department of Medical Laboratory, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Darici S, Jørgensen HG, Huang X, Serafin V, Antolini L, Barozzi P, Luppi M, Forghieri F, Marmiroli S, Zavatti M. Improved efficacy of quizartinib in combination therapy with PI3K inhibition in primary FLT3-ITD AML cells. Adv Biol Regul 2023; 89:100974. [PMID: 37245251 DOI: 10.1016/j.jbior.2023.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Acute myeloid leukemia is a heterogeneous hematopoietic malignancy, characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells, with poor outcomes. The internal tandem duplication (ITD) mutation of the Fms-like receptor tyrosine kinase 3 (FLT3) (FLT3-ITD) represents the most common genetic alteration in AML, detected in approximately 30% of AML patients, and is associated with high leukemic burden and poor prognosis. Therefore, this kinase has been regarded as an attractive druggable target for the treatment of FLT3-ITD AML, and selective small molecule inhibitors, such as quizartinib, have been identified and trialled. However, clinical outcomes have been disappointing so far due to poor remission rates, also because of acquired resistance. A strategy to overcome resistance is to combine FLT3 inhibitors with other targeted therapies. In this study, we investigated the preclinical efficacy of the combination of quizartinib with the pan PI3K inhibitor BAY-806946 in FLT3-ITD cell lines and primary cells from AML patients. We show here that BAY-806946 enhanced quizartinib cytotoxicity and, most importantly, that this combination increases the ability of quizartinib to kill CD34+ CD38-leukemia stem cells, whilst sparing normal hematopoietic stem cells. Because constitutively active FLT3 receptor tyrosine kinase is known to boost aberrant PI3K signaling, the increased sensitivity of primary cells to the above combination can be the mechanistic results of the disruption of signaling by vertical inhibition.
Collapse
Affiliation(s)
- Salihanur Darici
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, Largo del Pozzo 71, University of Modena and Reggio Emilia, Modena, 41125, Italy; Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Heather G Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology Oncology and Immunology Section University of Padova, Italy
| | - Ludovica Antolini
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, Largo del Pozzo 71, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Patrizia Barozzi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Di Modena, Via del Pozzo 71, 41124, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Di Modena, Via del Pozzo 71, 41124, Modena, Italy.
| | - Fabio Forghieri
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Di Modena, Via del Pozzo 71, 41124, Modena, Italy.
| | - Sandra Marmiroli
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, Largo del Pozzo 71, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Manuela Zavatti
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, Largo del Pozzo 71, University of Modena and Reggio Emilia, Modena, 41125, Italy
| |
Collapse
|
12
|
Tomasoni C, Pievani A, Rambaldi B, Biondi A, Serafini M. A Question of Frame: The Role of the Bone Marrow Stromal Niche in Myeloid Malignancies. Hemasphere 2023; 7:e896. [PMID: 37234820 PMCID: PMC10208717 DOI: 10.1097/hs9.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Until a few years ago, the onset of acute myeloid leukemia (AML) was entirely ascribed to genetic lesions in hematopoietic stem cells. These mutations generate leukemic stem cells, which are known to be the main ones responsible for chemoresistance and relapse. However, in the last years, increasing evidence demonstrated that dynamic interplay between leukemic cells and bone marrow (BM) niche is of paramount relevance in the pathogenesis of myeloid malignancies, including AML. Specifically, BM stromal niche components, such as mesenchymal stromal cells (MSCs) and their osteoblastic cell derivatives, play a key role not only in supporting normal hematopoiesis but also in the manifestation and progression of myeloid malignancies. Here, we reviewed recent clinical and experimental findings about how genetic and functional alterations in MSCs and osteolineage progeny can contribute to leukemogenesis and how leukemic cells in turn generate a corrupted niche able to support myeloid neoplasms. Moreover, we discussed how the newest single-cell technologies may help dissect the interactions between BM stromal cells and malignant hematopoiesis. The deep comprehension of the tangled relationship between stroma and AML blasts and their modulation during disease progression may have a valuable impact on the development of new microenvironment-directed therapeutic strategies, potentially useful for a wide cohort of patients.
Collapse
Affiliation(s)
- Chiara Tomasoni
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alice Pievani
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Benedetta Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marta Serafini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
13
|
Perrone S, Ottone T, Zhdanovskaya N, Molica M. How acute myeloid leukemia (AML) escapes from FMS-related tyrosine kinase 3 (FLT3) inhibitors? Still an overrated complication? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:223-238. [PMID: 37457126 PMCID: PMC10344728 DOI: 10.20517/cdr.2022.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 07/18/2023]
Abstract
FMS-related tyrosine kinase 3 (FLT3) mutations, present in about 25%-30% of acute myeloid leukemia (AML) patients, constitute one of the most frequently detected mutations in these patients. The binding of FLT3L to FLT3 activates the phosphatidylinositol 3-kinase (PI3K) and RAS pathways, producing increased cell proliferation and the inhibition of apoptosis. Two types of FLT3 mutations exist: FLT3-ITD and FLT3-TKD (point mutations in D835 and I836 or deletion of codon I836). A class of drugs, tyrosine-kinase inhibitors (TKI), targeting mutated FLT3, is already available with 1st and 2nd generation molecules, but only midostaurin and gilteritinib are currently approved. However, the emergence of resistance or the selection of clones not responding to FLT3 inhibitors has become an important clinical dilemma, as the duration of clinical responses is generally limited to a few months. This review analyzes the insights into mechanisms of resistance to TKI and poses a particular view on the clinical relevance of this phenomenon. Has resistance been overlooked? Indeed, FLT3 inhibitors have significantly contributed to reducing the negative impact of FLT3 mutations on the prognosis of AML patients who are no longer considered at high risk by the European LeukemiaNet (ELN) 2022. Finally, several ongoing efforts to overcome resistance to FLT3-inhibitors will be presented: new generation FLT3 inhibitors in monotherapy or combined with standard chemotherapy, hypomethylating drugs, or IDH1/2 inhibitors, Bcl2 inhibitors; novel anti-human FLT3 monoclonal antibodies (e.g., FLT3/CD3 bispecific antibodies); FLT3-CAR T-cells; CDK4/6 kinase inhibitor (e.g., palbociclib).
Collapse
Affiliation(s)
- Salvatore Perrone
- Hematology, Polo Universitario Pontino, S.M. Goretti Hospital, Latina 04100, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, the University of Rome “Tor Vergata”, Rome 00100 Italy
- Neuro-Oncohematology, Santa Lucia Foundation, I.R.C.C.S., Rome 00100, Italy
| | - Nadezda Zhdanovskaya
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome 00161, Italy
| | - Matteo Molica
- Hematology Unit, S. Eugenio Hospital, ASL Roma 2, Rome 00144, Italy
| |
Collapse
|
14
|
Zhang Y, Wang P, Wang Y, Shen Y. Sitravatinib as a potent FLT3 inhibitor can overcome gilteritinib resistance in acute myeloid leukemia. Biomark Res 2023; 11:8. [PMID: 36691065 PMCID: PMC9872318 DOI: 10.1186/s40364-022-00447-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Gilteritinib is the only drug approved as monotherapy for acute myeloid leukemia (AML) patients harboring FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation throughout the world. However, drug resistance inevitably develops in clinical. Sitravatinib is a multi-kinase inhibitor under evaluation in clinical trials of various solid tumors. In this study, we explored the antitumor activity of sitravatinib against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS Growth inhibitory assays were performed in AML cell lines and BaF3 cells expressing various FLT3 mutants to evaluate the antitumor activity of sitravatinib in vitro. Immunoblotting was used to examine the activity of FLT3 and its downstream pathways. Molecular docking was performed to predict the binding sites of FLT3 to sitravatinib. The survival benefit of sitravatinib in vivo was assessed in MOLM13 xenograft mouse models and mouse models of transformed BaF3 cells harboring different FLT3 mutants. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of sitravatinib. RESULTS Sitravatinib inhibited cell proliferation, induced cell cycle arrest and apoptosis in FLT3-ITD AML cell lines. In vivo studies showed that sitravatinib exhibited a better therapeutic effect than gilteritinib in MOLM13 xenograft model and BaF3-FLT3-ITD model. Unlike gilteritinib, the predicted binding sites of sitravatinib to FLT3 did not include F691 residue. Sitravatinib displayed a potent inhibitory effect on FLT3-ITD-F691L mutation which conferred resistance to gilteritinib and all other FLT3 inhibitors available, both in vitro and in vivo. Compared with gilteritinib, sitravatinib retained effective activity against FLT3 mutation in the presence of cytokines through the more potent and steady inhibition of p-ERK and p-AKT. Furthermore, patient blasts harboring FLT3-ITD were more sensitive to sitravatinib than to gilteritinib in vitro and in the PDX model. CONCLUSIONS Our study reveals the potential therapeutic role of sitravatinib in FLT3 mutant AML and provides an alternative inhibitor for the treatment of AML patients who are resistant to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Yvyin Zhang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Peihong Wang
- Department of Hematology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000 China
| | - Yang Wang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yang Shen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
15
|
Wang QX, Wang YB, Sha JK, Zhou H, Liu JC, Wu JZ, Tong ZJ, Cai J, Chen ZJ, Zhang CQ, Zheng XR, Wang JJ, Wang XL, Xue X, Yu YC, Ding N, Leng XJ, Dai WC, Sun SL, Chang L, Li NG, Shi ZH. Discovery of 4-(4-aminophenyl)-6-phenylisoxazolo[3,4-b]pyridine-3-amine derivatives as novel FLT3 covalent inhibitors for the intervention of acute myeloid leukemia. Drug Dev Res 2023; 84:296-311. [PMID: 36644989 DOI: 10.1002/ddr.22032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/17/2023]
Abstract
Small molecule covalent drugs have proved to be desirable therapies especially on drug resistance related to point mutations. Secondary mutations of FLT3 have become the main mechanism of FLT3 inhibitors resistance which further causes the failure of treatment. Herein, a series of 4-(4-aminophenyl)-6-phenylisoxazolo[3,4-b]pyridine-3-amine covalent derivatives were synthesized and optimized to overcome the common secondary resistance mutations of FLT3. Among these derivatives, compound F15 displayed potent inhibition activities against FLT3 (IC50 = 123 nM) and FLT3-internal tandem duplication (ITD) by 80% and 26.06%, respectively, at the concentration of 1 μM. Besides, F15 exhibited potent activity against FLT3-dependent human acute myeloid leukemia (AML) cell lines MOLM-13 (IC50 = 253 nM) and MV4-11 (IC50 = 91 nM), as well as BaF3 cells with variety of secondary mutations. Furthermore, cellular mechanism assays indicated that F15 inhibited phosphorylation of FLT3 and its downstream signaling factors. Notably, F15 could be considered for further development as potential drug candidate to treat AML.
Collapse
Affiliation(s)
- Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiu-Kai Sha
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hai Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zi-Jun Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen-Qian Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin-Rui Zheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Design and synthesis of selective FLT3 inhibitors via exploration of back pocket II. Future Med Chem 2023; 15:57-71. [PMID: 36651264 DOI: 10.4155/fmc-2022-0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: The clinical benefits of FLT3 inhibitors against acute myeloid leukemia (AML) have been limited by selectivity and resistance mutations. Thus, to identify FLT3 inhibitors possessing high selectivity and potency is of necessity. Methods & results: The authors used computational methods to systematically compare pocket similarity with 269 kinases. Subsequently, based on these investigations and beginning with in-house compound 10, they synthesized a series of 6-methyl-isoxazol[3,4-b]pyridine-3-amino derivatives and identified that compound 45 (IC50: 103 nM) displayed gratifying potency in human AML cell lines with FLT3-internal tandem duplications mutation as well as FLT3-internal tandem duplications-tyrosine kinase domain-transformed BaF3 cells. Conclusion: The integrated biological activity results indicated that compound 45 deserves further development for therapeutic remedies for AML.
Collapse
|
17
|
The magnitude of CXCR4 signaling regulates resistance to quizartinib in FLT3/ITD + cells via RUNX1. Leuk Res 2023; 124:106983. [PMID: 36473282 DOI: 10.1016/j.leukres.2022.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022]
Abstract
CXCR4 antagonists sensitize FLT3/ITD+ AML cells to FLT3 inhibitors; however, CXCR4 signaling can induce apoptosis in AML cells, raising the question of whether CXCR4 signaling exerts divergent effects on FLT3/ITD+ cells. The present study investigated the paradoxical function of CXCR4 in resistance to FLT3 inhibitors. The FLT3 inhibitor quizartinib significantly decreased the number of FLT3/ITD+ Ba/F3 cells, whereas 1 ng/ml CXCL12 showed a significant protective effect against quizartinib. In contrast, CXCL12 over 100 ng/ml significantly decreased FLT3/ITD+ cell viability with concomitant downregulation of Runx1. Moreover, the survival of FLT3/ITD+ Ba/F3 or MOLM13 cells with low surface CXCR4 expression incubated with quizartinib was significantly enhanced by 100 ng/ml CXCL12; however, this protective effect of CXCL12 against quizartinib was barely detected in cells with high surface CXCR4 expression. Although silencing Runx1 downregulated CXCR4 expression, RUNX1 expression levels were significantly higher in CXCR4LOW FLT3/ITD+ Ba/F3 cells incubated with 100 ng/ml CXCL12 than in CXCR4HIGH cells, coincident with an increase in FLT3 phosphorylation. Silencing RUNX1 partially abrogated resistance to quizartinib in CXCR4LOW cells incubated with CXCL12, whereas ectopic RUNX1 significantly restored resistance in CXCR4HIGH cells. These results indicate that CXCR4 signaling of different magnitudes paradoxically regulates resistance to quizartinib in FLT3/ITD+ cells via RUNX1.
Collapse
|
18
|
Tecik M, Adan A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. Onco Targets Ther 2022; 15:1449-1478. [PMID: 36474506 PMCID: PMC9719701 DOI: 10.2147/ott.s384293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
19
|
Díaz-Beyá M, García-Fortes M, Valls R, Artigas L, Gómez-Casares MT, Montesinos P, Sánchez-Guijo F, Coma M, Vendranes M, Martínez-López J. A Systems Biology- and Machine Learning-Based Study to Unravel Potential Therapeutic Mechanisms of Midostaurin as a Multitarget Therapy on FLT3-Mutated AML. BIOMEDINFORMATICS 2022; 2:375-397. [DOI: 10.3390/biomedinformatics2030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Acute myeloid leukemia (AML), a hematologic malignancy that results in bone marrow failure, is the most common acute leukemia in adults. The presence of FMS-related tyrosine kinase 3 (FLT3) mutations is associated with a poor prognosis, making the evaluation of FLT3-inhibitors an imperative goal in clinical trials. Midostaurin was the first FLT3-inhibitor approved by the FDA and EMA for the treatment of FLT3-mutated AML, and it showed a significant improvement in overall survival for newly diagnosed patients treated with midostaurin, in combination with standard chemotherapy (RATIFY study). The main interest of midostaurin has been the FLT3-specific inhibition, but little is known about its role as a multikinase inhibitor and whether it may be used in relapse and maintenance therapy. Here, we used systems biology- and machine learning-based approaches to deepen the potential benefits of the multitarget activity of midostaurin and to better understand its anti-leukemic effect on FLT3-mutated AML. The resulting in silico study revealed that the multikinase activity of midostaurin may play a role in the treatment’s efficacy. Additionally, we propose a series of molecular mechanisms that support a potential benefit of midostaurin as a maintenance therapy in FLT3-mutated AML, by regulating the microenvironment. The obtained results are backed up using independent gene expression data.
Collapse
Affiliation(s)
- Marina Díaz-Beyá
- Department of Hematology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - María García-Fortes
- Hematology Department, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Raquel Valls
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | - Laura Artigas
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | - Mª Teresa Gómez-Casares
- Hematology Service, Hospital Universitario Insular Materno-Infantil, 35016 Las Palmas de Gran Canaria, Spain
| | - Pau Montesinos
- Departament of Hematology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Fermín Sánchez-Guijo
- Cancer Research Center (CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mireia Coma
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | | | - Joaquín Martínez-López
- Hospital 12 de Octubre. Universidad Complutense. CNIO. Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto Carlos III, 28041 Madrid, Spain
| |
Collapse
|
20
|
Zhao JC, Agarwal S, Ahmad H, Amin K, Bewersdorf JP, Zeidan AM. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev 2022; 52:100905. [PMID: 34774343 PMCID: PMC9846716 DOI: 10.1016/j.blre.2021.100905] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
FLT3 mutations are the most common genetic aberrations found in acute myeloid leukemia (AML) and associated with poor prognosis. Since the discovery of FLT3 mutations and their prognostic implications, multiple FLT3-targeted molecules have been evaluated. Midostaurin is approved in the U.S. and Europe for newly diagnosed FLT3 mutated AML in combination with standard induction and consolidation chemotherapy based on data from the RATIFY study. Gilteritinib is approved for relapsed or refractory FLT3 mutated AML as monotherapy based on the ADMIRAL study. Although significant progress has been made in the treatment of AML with FLT3-targeting, many challenges remain. Several drug resistance mechanisms have been identified, including clonal selection, stromal protection, FLT3-associated mutations, and off-target mutations. The benefit of FLT3 inhibitor maintenance therapy, either post-chemotherapy or post-transplant, remains controversial, although several studies are ongoing.
Collapse
Affiliation(s)
- Jennifer C Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Sonal Agarwal
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Hiba Ahmad
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Kejal Amin
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Role of Biomarkers in FLT3 AML. Cancers (Basel) 2022; 14:cancers14051164. [PMID: 35267471 PMCID: PMC8909069 DOI: 10.3390/cancers14051164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Genetically heterogeneous disorder acute myeloid leukemia (AML) is marked by recurring mutations in FLT3. Current FLT3 inhibitors and other emerging inhibitors have helped in the improvement of the quality of standard of care therapies; however, the overall survival of the patients remains static. This is due to numerous mutations in FLT3, which causes resistance against these FLT3 inhibitors. For effective treatment of AML patients, alternative approaches are required to overcome this resistance. Here, we will summarize the biomarkers for FLT3 inhibitors in AML, as well as the alternative measures to overcome resistance to the current therapies. Abstract Acute myeloid leukemia is a disease characterized by uncontrolled proliferation of clonal myeloid blast cells that are incapable of maturation to leukocytes. AML is the most common leukemia in adults and remains a highly fatal disease with a five-year survival rate of 24%. More than 50% of AML patients have mutations in the FLT3 gene, rendering FLT3 an attractive target for small-molecule inhibition. Currently, there are several FLT3 inhibitors in the clinic, and others remain in clinical trials. However, these inhibitors face challenges due to lack of efficacy against several FLT3 mutants. Therefore, the identification of biomarkers is vital to stratify AML patients and target AML patient population with a particular FLT3 mutation. Additionally, there is an unmet need to identify alternative approaches to combat the resistance to FLT3 inhibitors. Here, we summarize the current knowledge on the utilization of diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for FLT3-mutated AML. The resistance mechanisms to various FLT3 inhibitors and alternative approaches to combat this resistance are also discussed and presented.
Collapse
|
22
|
Dupont M, Huart M, Lauvinerie C, Bidet A, Guitart AV, Villacreces A, Vigon I, Desplat V, El Habhab A, Pigneux A, Ivanovic Z, Brunet De la Grange P, Dumas PY, Pasquet JM. Autophagy Targeting and Hematological Mobilization in FLT3-ITD Acute Myeloid Leukemia Decrease Repopulating Capacity and Relapse by Inducing Apoptosis of Committed Leukemic Cells. Cancers (Basel) 2022; 14:cancers14020453. [PMID: 35053612 PMCID: PMC8796021 DOI: 10.3390/cancers14020453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Targeting FLT3-ITD in AML using TKI against FLT3 cannot prevent relapse even in the presence of complete remission, suggesting the resistance and/or the persistence of leukemic-initiating cells in the hematopoietic niche. By mimicking the hematopoietic niche condition with cultures at low oxygen concentrations, we demonstrate in vitro that FLT3-ITD AML cells decrease their repopulating capacity when Vps34 is inhibited. Ex vivo, AML FLT3-ITD blasts treated with Vps34 inhibitors recovered proliferation more slowly due to an increase an apoptosis. In vivo, mice engrafted with FLT3-ITD AML MV4-11 cells have the invasion of the bone marrow and blood in 2 weeks. After 4 weeks of FLT3 TKI treatment with gilteritinib, the leukemic burden had strongly decreased and deep remission was observed. When treatment was discontinued, mice relapsed rapidly. In contrast, Vps34 inhibition strongly decreased the relapse rate, and even more so in association with mobilization by G-CSF and AMD3100. These results demonstrate that remission offers the therapeutic window for a regimen using Vps34 inhibition combined with mobilization to target persistent leukemic stem cells and thus decrease the relapse rate.
Collapse
Affiliation(s)
- Marine Dupont
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Mathilde Huart
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Claire Lauvinerie
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Audrey Bidet
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Service d’Hématologie Biologique, CHU Bordeaux, 33000 Bordeaux, France
| | - Amélie Valérie Guitart
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Arnaud Villacreces
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Isabelle Vigon
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Vanessa Desplat
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Ali El Habhab
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Arnaud Pigneux
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Service d’Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, 33000 Bordeaux, France
| | - Zoran Ivanovic
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Etablissement Français du Sang Nouvelle Aquitaine, 33035 Bordeaux, France
| | - Philippe Brunet De la Grange
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Etablissement Français du Sang Nouvelle Aquitaine, 33035 Bordeaux, France
| | - Pierre-Yves Dumas
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Service d’Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, 33000 Bordeaux, France
| | - Jean-Max Pasquet
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Correspondence: ; Tel.: +33-07-85-42-59-25
| |
Collapse
|
23
|
Bregante J, Schönbichler A, Pölöske D, Degenfeld-Schonburg L, Monzó Contreras G, Hadzijusufovic E, de Araujo ED, Valent P, Moriggl R, Orlova A. Efficacy and Synergy of Small Molecule Inhibitors Targeting FLT3-ITD + Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:6181. [PMID: 34944800 PMCID: PMC8699584 DOI: 10.3390/cancers13246181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Constitutive activation of FLT3 by ITD mutations is one of the most common genetic aberrations in AML, present in ~1/3 of cases. Patients harboring FLT3-ITD display worse clinical outcomes. The integration and advancement of FLT3 TKI in AML treatment provided significant therapeutic improvement. However, due to the emergence of resistance mechanisms, FLT3-ITD+ AML remains a clinical challenge. We performed an unbiased drug screen to identify 18 compounds as particularly efficacious against FLT3-ITD+ AML. Among these, we characterized two investigational compounds, WS6 and ispinesib, and two approved drugs, ponatinib and cabozantinib, in depth. We found that WS6, although not yet investigated in oncology, shows a similar mechanism and potency as ponatinib and cabozantinib. Interestingly, ispinesib and cabozantinib prevent activation of AXL, a key driver and mechanism of drug resistance in FLT3-ITD+ AML patients. We further investigated synergies between the selected compounds and found that combination treatment with ispinesib and cabozantinib or ponatinib shows high synergy in FLT3-ITD+ AML cell lines and patient samples. Together, we suggest WS6, ispinesib, ponatinib and cabozantinib as novel options for targeting FLT3-ITD+ AML. Whether combinatorial tyrosine kinase and kinesin spindle blockade is effective in eradicating neoplastic (stem) cells in FLT3-ITD+ AML remains to be determined in clinical trials.
Collapse
Affiliation(s)
- Javier Bregante
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.B.); (A.S.); (D.P.); (G.M.C.); (R.M.)
| | - Anna Schönbichler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.B.); (A.S.); (D.P.); (G.M.C.); (R.M.)
| | - Daniel Pölöske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.B.); (A.S.); (D.P.); (G.M.C.); (R.M.)
| | - Lina Degenfeld-Schonburg
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.); (E.H.); (P.V.)
| | - Garazi Monzó Contreras
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.B.); (A.S.); (D.P.); (G.M.C.); (R.M.)
| | - Emir Hadzijusufovic
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.); (E.H.); (P.V.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Clinic for Companion Animals and Horses, University Clinic for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Elvin D. de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada;
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - Peter Valent
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.); (E.H.); (P.V.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.B.); (A.S.); (D.P.); (G.M.C.); (R.M.)
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.B.); (A.S.); (D.P.); (G.M.C.); (R.M.)
| |
Collapse
|
24
|
Huang A, Zeng P, Li Y, Lu W, Lai Y. LY294002 Is a Promising Inhibitor to Overcome Sorafenib Resistance in FLT3-ITD Mutant AML Cells by Interfering With PI3K/Akt Signaling Pathway. Front Oncol 2021; 11:782065. [PMID: 34820336 PMCID: PMC8606661 DOI: 10.3389/fonc.2021.782065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Internal tandem duplications (ITD) mutation within FMS-like tyrosine kinase 3 (FLT3), the most frequent mutation happens in almost 20% acute myeloid leukemia (AML) patients, always predicts a poor prognosis. As a small molecule tyrosine kinase inhibitor, sorafenib is clinically used for the treatment of advanced renal cell carcinoma (RCC), hepatocellular carcinoma (HCC), and differentiated thyroid cancer (DTC), with its preclinical and clinical activity demonstrated in the treatment of Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutant AML. Even though it shows a rosy future in the AML treatment, the short response duration remains a vital problem that leads to treatment failure. Rapid onset of drug resistance is still a thorny problem that we cannot overlook. Although the mechanisms of drug resistance have been studied extensively in the past years, there is still no consensus on the exact reason for resistance and without effective therapeutic regimens established clinically. My previous work reported that sorafenib-resistant FLT3-ITD mutant AML cells displayed mitochondria dysfunction, which rendered cells depending on glycolysis for energy supply. In my present one, we further illustrated that losing the target protein FLT3 and the continuously activated PI3K/Akt signaling pathway may be the reason for drug resistance, with sustained activation of PI3K/AKT signaling responsible for the highly glycolytic activity and adenosine triphosphate (ATP) generation. PI3K inhibitor, LY294002, can block PI3K/AKT signaling, further inhibit glycolysis to disturb ATP production, and finally induce cell apoptosis. This finding would pave the way to remedy the FLT3-ITD mutant AML patients who failed with FLT3 targeted therapy.
Collapse
Affiliation(s)
- Amin Huang
- Department of Medical Oncology of the East Division, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peiting Zeng
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yinguang Li
- Department of Obstetrics and Gynecology of the East Division, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yaoming Lai
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Genomic Abnormalities as Biomarkers and Therapeutic Targets in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13205055. [PMID: 34680203 PMCID: PMC8533805 DOI: 10.3390/cancers13205055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary AML is a heterogenous malignancy with a variety of underlying genomic abnormalities. Some of the genetic aberrations in AML have led to the development of specific inhibitors which were approved by the Food and Drug Administration (FDA) and are currently used to treat eligible patients. In this review, we describe five gene mutations for which approved inhibitors have been developed, the response of AML patients to these inhibitors, and the known mechanism(s) of resistance. This review also highlights the significance of developing function-based screens for target discovery in the era of personalized medicine. Abstract Acute myeloid leukemia (AML) is a highly heterogeneous malignancy characterized by the clonal expansion of myeloid stem and progenitor cells in the bone marrow, peripheral blood, and other tissues. AML results from the acquisition of gene mutations or chromosomal abnormalities that induce proliferation or block differentiation of hematopoietic progenitors. A combination of cytogenetic profiling and gene mutation analyses are essential for the proper diagnosis, classification, prognosis, and treatment of AML. In the present review, we provide a summary of genomic abnormalities in AML that have emerged as both markers of disease and therapeutic targets. We discuss the abnormalities of RARA, FLT3, BCL2, IDH1, and IDH2, their significance as therapeutic targets in AML, and how various mechanisms cause resistance to the currently FDA-approved inhibitors. We also discuss the limitations of current genomic approaches for producing a comprehensive picture of the activated signaling pathways at diagnosis or at relapse in AML patients, and how innovative technologies combining genomic and functional methods will improve the discovery of novel therapeutic targets in AML. The ultimate goal is to optimize a personalized medicine approach for AML patients and possibly those with other types of cancers.
Collapse
|
26
|
Almatani MF, Ali A, Onyemaechi S, Zhao Y, Gutierrez L, Vaikari VP, Alachkar H. Strategies targeting FLT3 beyond the kinase inhibitors. Pharmacol Ther 2021; 225:107844. [PMID: 33811956 PMCID: PMC11490306 DOI: 10.1016/j.pharmthera.2021.107844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal expansion and differentiation arrest of the myeloid progenitor cells, which leads to the accumulation of immature cells called blasts in the bone marrow and peripheral blood. Mutations in the receptor tyrosine kinase FLT3 occur in 30% of normal karyotype patients with AML and are associated with a higher incidence of relapse and worse survival. Targeted therapies against FLT3 mutations using small-molecule FLT3 tyrosine kinase inhibitors (TKIs) have long been investigated, with some showing favorable clinical outcomes. However, major setbacks such as limited clinical efficacy and the high risk of acquired resistance remain unresolved. FLT3 signaling, mutations, and FLT3 inhibitors are topics that have been extensively reviewed in recent years. Strategies to target FLT3 beyond the small molecule kinase inhibitors are expanding, nevertheless they are not receiving enough attention. These modalities include antibody-based FLT3 targeted therapies, immune cells mediated targeting strategies, and approaches targeting downstream signaling pathways and FLT3 translation. Here, we review the most recent advances and the challenges associated with the development of therapeutic modalities targeting FLT3 beyond the kinase inhibitors.
Collapse
Affiliation(s)
- Mohammed F Almatani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Atham Ali
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Sandra Onyemaechi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Yang Zhao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Lucas Gutierrez
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Vijaya Pooja Vaikari
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
27
|
Wang Z, Cai J, Cheng J, Yang W, Zhu Y, Li H, Lu T, Chen Y, Lu S. FLT3 Inhibitors in Acute Myeloid Leukemia: Challenges and Recent Developments in Overcoming Resistance. J Med Chem 2021; 64:2878-2900. [PMID: 33719439 DOI: 10.1021/acs.jmedchem.0c01851] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene are often present in newly diagnosed acute myeloid leukemia (AML) patients with an incidence rate of approximately 30%. Recently, many FLT3 inhibitors have been developed and exhibit positive preclinical and clinical effects against AML. However, patients develop resistance soon after undergoing FLT3 inhibitor treatment, resulting in short durable responses and poor clinical effects. This review will discuss the main mechanisms of resistance to clinical FLT3 inhibitors and summarize the emerging strategies that are utilized to overcome drug resistance. Basically, medicinal chemistry efforts to develop new small-molecule FLT3 inhibitors offer a direct solution to this problem. Other potential strategies include the combination of FLT3 inhibitors with other therapies and the development of multitarget inhibitors. It is hoped that this review will provide inspiring insights into the discovery of new AML therapies that can eventually overcome the resistance to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiongheng Cai
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Wenqianzi Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yifan Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
28
|
OTS167 blocks FLT3 translation and synergizes with FLT3 inhibitors in FLT3 mutant acute myeloid leukemia. Blood Cancer J 2021; 11:48. [PMID: 33658483 PMCID: PMC7930094 DOI: 10.1038/s41408-021-00433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Internal tandem duplication (-ITD) mutations of Fms-like tyrosine kinase 3 (FLT3) provide growth and pro-survival signals in the context of established driver mutations in FLT3 mutant acute myeloid leukemia (AML). Maternal embryonic leucine zipper kinase (MELK) is an aberrantly expressed gene identified as a target in AML. The MELK inhibitor OTS167 induces cell death in AML including cells with FLT3 mutations, yet the role of MELK and mechanisms of OTS167 function are not understood. OTS167 alone or in combination with tyrosine kinase inhibitors (TKIs) were used to investigate the effect of OTS167 on FLT3 signaling and expression in human FLT3 mutant AML cell lines and primary cells. We describe a mechanism whereby OTS167 blocks FLT3 expression by blocking FLT3 translation and inhibiting phosphorylation of eukaryotic initiation factor 4E–binding protein 1 (4E-BP1) and eukaryotic translation initiation factor 4B (eIF4B). OTS167 in combination with TKIs results in synergistic induction of FLT3 mutant cell death in FLT3 mutant cell lines and prolonged survival in a FLT3 mutant AML xenograft mouse model. Our findings suggest signaling through MELK is necessary for the translation and expression of FLT3-ITD, and blocking MELK with OTS167 represents a viable therapeutic strategy for patients with FLT3 mutant AML.
Collapse
|
29
|
Li L, Chai Y, Wu C, Zhao L. Chemokine receptor CXCR4: An important player affecting the molecular-targeted drugs commonly used in hematological malignancies. Expert Rev Hematol 2020; 13:1387-1396. [PMID: 33170753 DOI: 10.1080/17474086.2020.1839885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION A variety of molecular-targeted drugs have been widely used in hematological malignancies and have shown great advances. Nevertheless, as the use of drugs in clinical practice increases, the problem of relapse or of the disease being refractory to treatment is becoming apparent. This problem is closely related to the C-X-C chemokine receptor 4 (CXCR4). AREAS COVERED This review focuses mainly on the effect of CXCR4 on molecular-targeted drug resistance in hematological malignancies as well as the clinical efficacy of CXCR4 antagonists combined with molecular-targeted drugs. Relevant literatures published between 2006 and 2020 were searched using PubMed/Medline for this review. EXPERT OPINION Monoclonal antibodies and non-antibody molecular-targeted drugs provide new therapeutic approaches for B-lineage malignancies and leukemia, but the clinical activity of these drugs is affected by CXCR4. In general, high CXCR4 expression or mutation inhibits the effects of molecular-targeted drugs, but there are exceptions, and in studies of proteasome inhibitors bortezomib (Bz) in multiple myeloma (MM), low CXCR4 expression or loss of CXCR4 was associated with Bz resistance (BzR) and poor treatment outcomes. Given that CXCR4 is a critical mediator of molecular-targeted drug resistance, numerous studies have combined molecular-targeted drugs with CXCR4 antagonists, which synergistically enhance the anti-proliferative/pro-apoptotic effect of molecular-targeted drugs.
Collapse
Affiliation(s)
- Liangliang Li
- The First Clinical Medical College of Lanzhou University , Lanzhou, Gansu, China.,Department of Hematology, Lanzhou University Second Hospital , Lanzhou, Gansu, China
| | - Ye Chai
- Department of Hematology, Lanzhou University Second Hospital , Lanzhou, Gansu, China
| | - ChongYang Wu
- Department of Hematology, Lanzhou University Second Hospital , Lanzhou, Gansu, China
| | - Li Zhao
- Department of Central Laboratory, The First Hospital of Lanzhou University , Lanzhou, Gansu, China
| |
Collapse
|
30
|
Zabkiewicz J, Lazenby M, Edwards G, Bygrave CA, Omidvar N, Zhuang L, Knapper S, Guy C, Hills RK, Burnett AK, Alvares CL. Combination of a mitogen-activated protein kinase inhibitor with the tyrosine kinase inhibitor pacritinib combats cell adhesion-based residual disease and prevents re-expansion of FLT3-ITD acute myeloid leukaemia. Br J Haematol 2020; 191:231-242. [PMID: 32394450 DOI: 10.1111/bjh.16665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/23/2020] [Indexed: 01/18/2023]
Abstract
Minimal residual disease (MRD) in acute myeloid leukaemia (AML) poses a major challenge due to drug insensitivity and high risk of relapse. Intensification of chemotherapy and stem cell transplantation are often pivoted on MRD status. Relapse rates are high even with the integration of first-generation FMS-like tyrosine kinase 3 (FLT3) inhibitors in pre- and post-transplant regimes and as maintenance in FLT3-mutated AML. Pre-clinical progress is hampered by the lack of suitable modelling of residual disease and post-therapy relapse. In the present study, we investigated the nature of pro-survival signalling in primary residual tyrosine kinase inhibitor (TKI)-treated AML cells adherent to stroma and further determined their drug sensitivity in order to inform rational future therapy combinations. Using a primary human leukaemia-human stroma model to mimic the cell-cell interactions occurring in patients, the ability of several TKIs in clinical use, to abrogate stroma-driven leukaemic signalling was determined, and a synergistic combination with a mitogen-activated protein kinase (MEK) inhibitor identified for potential therapeutic application in the MRD setting. The findings reveal a common mechanism of stroma-mediated resistance that may be independent of mutational status but can be targeted through rational drug design, to eradicate MRD and reduce treatment-related toxicity.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Bridged-Ring Compounds/pharmacology
- Cell Adhesion/drug effects
- Child
- Child, Preschool
- Extracellular Signal-Regulated MAP Kinases
- Female
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Models, Biological
- Neoplasm, Residual
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
Collapse
Affiliation(s)
- Joanna Zabkiewicz
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Michelle Lazenby
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Gareth Edwards
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Ceri A Bygrave
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Nader Omidvar
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Lihui Zhuang
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Steve Knapper
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Carol Guy
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Robert K Hills
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Alan K Burnett
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Caroline L Alvares
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| |
Collapse
|
31
|
LAM-003, a new drug for treatment of tyrosine kinase inhibitor-resistant FLT3-ITD-positive AML. Blood Adv 2020; 3:3661-3673. [PMID: 31751472 DOI: 10.1182/bloodadvances.2019001068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemias (AML) harboring a constitutively active internal tandem duplication (ITD) mutation in the FMS-like kinase tyrosine kinase (FLT3) receptor are associated with poor patient prognosis. Despite initial clinical responses to FLT3 kinase inhibitors, patients eventually relapse. Mechanisms of resistance include the acquisition of secondary FLT3 mutations and protective stromal signaling within the bone marrow niche. Here we show that LAM-003, a prodrug of the heat shock protein 90 inhibitor LAM-003A, has cytotoxic activity against AML cell lines and primary samples harboring FLT3-ITD. LAM-003 regressed tumors in an MV-4-11 xenograft mouse model and extended survival in a MOLM-13 systemic model. LAM-003 displayed synergistic activity with chemotherapeutic drugs and FLT3 inhibitors, with the most robust synergy being obtained with venetoclax, a BCL-2 inhibitor. This finding was verified in a MOLM-13 systemic survival model in which the combination significantly prolonged survival compared with the single agents. Importantly, LAM-003 exhibited equipotent activity against FLT3 inhibitor-resistant mutants of FLT3, such as D835 or F691, in cytotoxic and FLT3 degradation assays. LAM-003 also retained potency in AML cells grown in stromal-conditioned media that were resistant to FLT3 inhibitors. Lastly, a genome-wide CRISPR screen revealed epigenetic regulators, including KDM6A, as determinants of LAM-003 sensitivity in AML cell lines, leading to the discovery of synergy with an EZH2 inhibitor. Collectively, these preclinical findings support the use of LAM-003 in FLT3-ITD patients with AML who no longer respond to FLT3 inhibitor therapy either as a single agent or in combination with drugs known to be active in AML.
Collapse
|
32
|
Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms Underlying Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Biomedicines 2020; 8:biomedicines8080245. [PMID: 32722298 PMCID: PMC7459983 DOI: 10.3390/biomedicines8080245] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
FLT3-ITD and FLT3-TKD mutations were observed in approximately 20 and 10% of acute myeloid leukemia (AML) cases, respectively. FLT3 inhibitors such as midostaurin, gilteritinib and quizartinib show excellent response rates in patients with FLT3-mutated AML, but its duration of response may not be sufficient yet. The majority of cases gain secondary resistance either by on-target and off-target abnormalities. On-target mutations (i.e., FLT3-TKD) such as D835Y keep the TK domain in its active form, abrogating pharmacodynamics of type II FLT3 inhibitors (e.g., midostaurin and quizartinib). Second generation type I inhibitors such as gilteritinib are consistently active against FLT3-TKD as well as FLT3-ITD. However, a “gatekeeper” mutation F691L shows universal resistance to all currently available FLT3 inhibitors. Off-target abnormalities are consisted with a variety of somatic mutations such as NRAS, AXL and PIM1 that bypass or reinforce FLT3 signaling. Off-target mutations can occur just in the primary FLT3-mutated clone or be gained by the evolution of other clones. A small number of cases show primary resistance by an FL-dependent, FGF2-dependent, and stromal CYP3A4-mediated manner. To overcome these mechanisms, the development of novel agents such as covalently-coupling FLT3 inhibitor FF-10101 and the investigation of combination therapy with different class agents are now ongoing. Along with novel agents, gene sequencing may improve clinical approaches by detecting additional targetable mutations and determining individual patterns of clonal evolution.
Collapse
Affiliation(s)
- Motoki Eguchi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Ayumi Kuzume
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa 296-8602, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| |
Collapse
|
33
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
34
|
Aikawa T, Togashi N, Iwanaga K, Okada H, Nishiya Y, Inoue S, Levis MJ, Isoyama T. Quizartinib, a selective FLT3 inhibitor, maintains antileukemic activity in preclinical models of RAS-mediated midostaurin-resistant acute myeloid leukemia cells. Oncotarget 2020; 11:943-955. [PMID: 32215183 PMCID: PMC7082118 DOI: 10.18632/oncotarget.27489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022] Open
Abstract
FLT3 internal tandem duplication (ITD) mutations are associated with poor prognosis in patients with acute myeloid leukemia (AML). In this preclinical study, we characterized the binding affinity and selectivity of quizartinib, a small-molecule inhibitor of FLT3, and AC886, the active metabolite of quizartinib, compared with those of other FLT3 inhibitors. Selectivity profiling against >400 kinases showed that quizartinib and AC886 were highly selective against FLT3. Quizartinib and AC886 inhibited FLT3 signaling pathways in FLT3-ITD–mutated AML cells, leading to potent growth inhibition with IC50 values of <1 nM. When quizartinib was administered to mice bearing FLT3-ITD mutated tumors, AC886 was rapidly detected and tumor regression was observed at doses of ≥1 mg/kg without severe body weight loss. In addition, quizartinib inhibited the viability of midostaurin-resistant MOLM-14 cells and exerted potent antitumor activity in mouse xenograft models without severe body weight loss, while midostaurin and gilteritinib did not show significant antitumor effects. This is the first detailed characterization of quizartinib and AC886 in comparison with other FLT3 inhibitors under the same experimental conditions. Preclinical antileukemic activity in midostaurin-resistant FLT3-ITD–mutated AML cells suggests the potential value of quizartinib following midostaurin failure in patients with FLT3-ITD mutated AML.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark J Levis
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, United States of America
| | | |
Collapse
|
35
|
Ladikou EE, Chevassut T, Pepper CJ, Pepper AG. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia. Br J Haematol 2020; 189:815-825. [PMID: 32135579 DOI: 10.1111/bjh.16456] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukaemia (AML) is the most common adult acute leukaemia with the lowest survival rate. It is characterised by a build-up of immature myeloid cells anchored in the protective niche of the bone marrow (BM) microenvironment. The CXCL12/CXCR4 axis is central to the pathogenesis of AML as it has fundamental control over AML cell adhesion into the protective BM niche, adaptation to the hypoxic environment, cellular migration and survival. High levels of CXCR4 expression are associated with poor relapse-free and overall survival. The CXCR4 ligand, CXCL12 (SDF-1), is expressed by multiple cells types in the BM, facilitating the adhesion and survival of the malignant clone. Blocking the CXCL12/CXCR4 axis is an attractive therapeutic strategy providing a 'multi-hit' therapy that both prevents essential survival signals and releases the AML cells from the BM into the circulation. Once out of the protective niche of the BM they would be more susceptible to destruction by conventional chemotherapeutic drugs. In this review, we disentangle the diverse roles of the CXCL12/CXCR4 axis in AML. We then describe multiple CXCR4 inhibitors, including small molecules, peptides, or monoclonal antibodies, which have been developed to date and their progress in pre-clinical and clinical trials. Finally, the review leads us to the conclusion that there is a need for further investigation into the development of a 'multi-hit' therapy that targets several signalling pathways related to AML cell adhesion and maintenance in the BM.
Collapse
Affiliation(s)
- Eleni E Ladikou
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Royal Sussex County Hospital, Brighton, UK
| | - Timothy Chevassut
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Royal Sussex County Hospital, Brighton, UK
| | - Chris J Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Andrea Gs Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
36
|
Waldeck S, Rassner M, Keye P, Follo M, Herchenbach D, Endres C, Charlet A, Andrieux G, Salzer U, Boerries M, Duyster J, von Bubnoff N. CCL5 mediates target-kinase independent resistance to FLT3 inhibitors in FLT3-ITD-positive AML. Mol Oncol 2020; 14:779-794. [PMID: 31955503 PMCID: PMC7138400 DOI: 10.1002/1878-0261.12640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/04/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
FLT3‐ITD tyrosine kinase inhibitors (TKI) show limited clinical activity in acute myeloid leukemia (AML) due to emerging resistance. TKI resistance is mediated by secondary FLT3‐ITD mutations only in a minority of cases. We hypothesize that the cytokine CCL5 protects AML cells from TKI‐mediated cell death and contributes to treatment resistance. We generated PKC412‐ and sorafenib‐resistant MOLM‐13 cell lines as an in vitro model to study TKI resistance in AML. Increased CCL5 levels were detected in supernatants from PKC412‐resistant cell lines compared to TKI‐sensitive cells. Moreover, CCL5 treatment of TKI‐sensitive cells induced resistance to PKC412. In resistant cell lines with high CCL5 release, we observed a significant downregulation of the CCL5‐receptor CCR5 and CXCR4. In these cell lines, TKI resistance could be partly overcome by addition of the CXCR4‐receptor antagonist plerixafor. Microarray and intracellular flow cytometry analyses revealed increased p‐Akt or p‐Stat5 levels in PKC412‐resistant cell lines releasing high amounts of CCL5. Treatment with the CXCR4 antagonist plerixafor, αCCL5, or CCR5‐targeting siRNA led to a decrease of p‐Akt‐positive cells. Transient transfection of sensitive MOLM‐13 cells with a CCL5‐encoding vector mediated resistance against PKC412 and led to an increase in p‐Akt‐positive and p‐Stat5‐positive cells. Isolated AML blasts from patients treated with PKC412 revealed that CCL5 transcript levels increase significantly at relapse. Taken together, our findings indicate that CCL5 mediates resistance to FLT3‐TKIs in FLT3‐ITD‐mutated AML and could possibly serve as a biomarker to predict drug resistance.
Collapse
Affiliation(s)
- Silvia Waldeck
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Rassner
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Philip Keye
- Department of Ophthalmology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Marie Follo
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Dieter Herchenbach
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Cornelia Endres
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Charlet
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Geoffroy Andrieux
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Ulrich Salzer
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hematology and Oncology, Medical Center, University of Schleswig Holstein, Lübeck, Germany
| |
Collapse
|
37
|
Gurnari C, Voso MT, Maciejewski JP, Visconte V. From Bench to Bedside and Beyond: Therapeutic Scenario in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12020357. [PMID: 32033196 PMCID: PMC7072629 DOI: 10.3390/cancers12020357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of clonal disorders characterized by abnormal proliferation of undifferentiated myeloid progenitors, impaired hematopoiesis, and variable response to therapy. To date, only about 30% of adult patients with AML become long-term survivors and relapse and/or disease refractoriness are the major cause of treatment failure. Thus, this is an urgent unmet clinical need and new drugs are envisaged in order to ameliorate disease survival outcomes. Here, we review the latest therapeutic approaches (investigational and approved agents) for AML treatment. A specific focus will be given to molecularly targeted therapies for AML as a representation of possible agents for precision medicine. We will discuss experimental and preclinical data for FLT3, IDH1, BCL-2, Hedgehog pathway inhibitors, and epitherapy.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Neuro-Oncohematology Unit, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00143 Rome, Italy
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
- Correspondence:
| |
Collapse
|
38
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
39
|
Fletcher L, Joshi SK, Traer E. Profile of Quizartinib for the Treatment of Adult Patients with Relapsed/Refractory FLT3-ITD-Positive Acute Myeloid Leukemia: Evidence to Date. Cancer Manag Res 2020; 12:151-163. [PMID: 32021432 PMCID: PMC6955578 DOI: 10.2147/cmar.s196568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematologic neoplasm characterized by rapid, uncontrolled cell growth of immature myeloid cells (blasts). There are numerous genetic abnormalities in AML, many of which are prognostic, but an increasing number are targets for drug therapy. One of the most common genetic abnormalities in AML are activating mutations in the FMS-like tyrosine kinase 3 receptor (FLT3). As a receptor tyrosine kinase, FLT3 was the first targetable genetic abnormality in AML. The first generation of FLT3 inhibitors were broad-spectrum kinase inhibitors that inhibited FLT3 among other proteins. Although clinically active, first-generation FLT3 inhibitors had limited success as single agents. This led to the development of a second generation of more selective FLT3 inhibitors. This review focuses on quizartinib, a potent second-generation FLT3 inhibitor. We discuss the clinical trial development, mechanisms of resistance, and the recent FDA decision to deny approval for quizartinib as a single agent in relapsed/refractory AML.
Collapse
Affiliation(s)
- Luke Fletcher
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sunil K Joshi
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.,School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
40
|
Mitchell K, Steidl U. Targeting Immunophenotypic Markers on Leukemic Stem Cells: How Lessons from Current Approaches and Advances in the Leukemia Stem Cell (LSC) Model Can Inform Better Strategies for Treating Acute Myeloid Leukemia (AML). Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036251. [PMID: 31451539 DOI: 10.1101/cshperspect.a036251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapies targeting cell-surface antigens in acute myeloid leukemia (AML) have been tested over the past 20 years with limited improvement in overall survival. Recent advances in the understanding of AML pathogenesis support therapeutic targeting of leukemia stem cells as the most promising avenue toward a cure. In this review, we provide an overview of the evolving leukemia stem cell (LSC) model, including evidence of the cell of origin, cellular and molecular disease architecture, and source of relapse in AML. In addition, we explore limitations of current targeted strategies utilized in AML and describe the various immunophenotypic antigens that have been proposed as LSC-directed therapeutic targets. We draw lessons from current approaches as well as from the (pre)-LSC model to suggest criteria that immunophenotypic targets should meet for more specific and effective elimination of disease-initiating clones, highlighting in detail a few targets that we suggest fit these criteria most completely.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
41
|
Galinsky I, Coleman M, Fechter L. Midostaurin: Nursing Perspectives on Managing Treatment and Adverse Events in Patients With FLT3 Mutation–Positive Acute Myeloid Leukemia and Advanced Systemic Mastocytosis. Clin J Oncol Nurs 2019; 23:599-608. [DOI: 10.1188/19.cjon.599-608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
The FLT3-ITD mutation and the expression of its downstream signaling intermediates STAT5 and Pim-1 are positively correlated with CXCR4 expression in patients with acute myeloid leukemia. Sci Rep 2019; 9:12209. [PMID: 31434952 PMCID: PMC6704161 DOI: 10.1038/s41598-019-48687-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023] Open
Abstract
Chemokine ligand 12(CXCL12) mediates signaling through chemokine receptor 4(CXCR4), which is essential for the homing and maintenance of Hematopoietic stem cells (HSCs) in the bone marrow. FLT3-ITD mutations enhance cell migration toward CXCL12, providing a drug resistance mechanism underlying the poor effects of FLT3-ITD antagonists. However, the mechanism by which FLT3-ITD mutations regulate the CXCL12/CXCR4 axis remains unclear. We analyzed the relationship between CXCR4 expression and the FLT3-ITD mutation in 466 patients with de novo AML to clarify the effect of FLT3-ITD mutations on CXCR4 expression in patients with AML. Our results indicated a positive correlation between the FLT3-ITD mutant-type allelic ratio (FLT3-ITD MR) and the relative fluorescence intensity (RFI) of CXCR4 expression in patients with AML (r = 0.588, P ≤ 0.0001). Moreover, the levels of phospho(p)-STAT5, Pim-1 and CXCR4 proteins were positively correlated with the FLT3-ITD MR, and the mRNA levels of CXCR4 and Pim-1 which has been revealed as one of the first known target genes of STAT5, were upregulated with an increasing FLT3-ITD MR(P < 0.05). Therefore, FLT3-ITD mutations upregulate the expression of CXCR4 in patients with AML, and the downstream signaling intermediates STAT5 and Pim-1 are also involved in this phenomenon and subsequently contribute to chemotherapy resistance and disease relapse in patients with AML. However, the mechanism must be confirmed in further experiments. The combination of CXCR4 antagonists and FLT3 inhibitors may improve the sensitivity of AML cells to chemotherapy and overcome drug resistance.
Collapse
|
43
|
Tallis E, Borthakur G. Novel treatments for relapsed/refractory acute myeloid leukemia with FLT3 mutations. Expert Rev Hematol 2019; 12:621-640. [PMID: 31232619 DOI: 10.1080/17474086.2019.1635882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Mutations in the gene encoding for the FMS-like tyrosine kinase 3 (FLT3) are present in about 30% of adults with AML and are associated with shorter disease-free and overall survival after initial therapy. Prognosis of relapsed/refractory AML with FLT3 mutations is even more dismal with median overall survival of a few months only. Areas covered: This review will cover current and emerging treatments for relapsed/refractory AML with FLT3 mutations, preclinical rationale and clinical trials with new encouraging data for this particularly challenging population. The authors discuss mechanisms of resistance to FLT3 inhibitors and how these insights serve to identify current and future treatments. As allogeneic stem cell transplant in the first remission is the preferred therapy for newly diagnosed AML patients with FLT3 mutations, the authors discuss the role of maintenance after SCT for the prevention of relapse. Expert opinion: Relapsed/refractory AML with FLT3 mutations remains a therapeutic challenge with currently available treatments. However, the evolution of targeted therapies with next-generation FLT3 inhibitors and their combinations with chemotherapy is showing much promise. Moreover, growing understanding of the pathways of resistance to treatment has led to the identification of various targeted therapies currently being explored, which in time will improve outcomes.
Collapse
Affiliation(s)
- Eran Tallis
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gautam Borthakur
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
44
|
Ferrara F, Vitagliano O. Induction therapy in acute myeloid leukemia: Is it time to put aside standard 3 + 7? Hematol Oncol 2019; 37:558-563. [DOI: 10.1002/hon.2615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
|
45
|
Bohl SR, Bullinger L, Rücker FG. New Targeted Agents in Acute Myeloid Leukemia: New Hope on the Rise. Int J Mol Sci 2019; 20:E1983. [PMID: 31018543 PMCID: PMC6515298 DOI: 10.3390/ijms20081983] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
The therapeutic approach for acute myeloid leukemia (AML) remains challenging, since over the last four decades a stagnation in standard cytotoxic treatment has been observed. But within recent years, remarkable advances in the understanding of the molecular heterogeneity and complexity of this disease have led to the identification of novel therapeutic targets. In the last two years, seven new targeted agents (midostaurin, gilteritinib, enasidenib, ivosidenib, glasdegib, venetoclax and gemtuzumab ozogamicin) have received US Food and Drug Administration (FDA) approval for the treatment of AML. These drugs did not just prove to have a clinical benefit as single agents but have especially improved AML patient outcomes if they are combined with conventional therapy. In this review, we will focus on currently approved and promising upcoming agents and we will discuss controversial aspects and limitations of targeted treatment strategies.
Collapse
Affiliation(s)
- Stephan R Bohl
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany.
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine, 13353 Berlin, Germany.
| | - Frank G Rücker
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany.
| |
Collapse
|
46
|
Yuan X, Chen Y, Zhang W, He J, Lei L, Tang M, Liu J, Li M, Dou C, Yang T, Yang L, Yang S, Wei Y, Peng A, Niu T, Xiang M, Ye H, Chen L. Identification of Pyrrolo[2,3- d]pyrimidine-Based Derivatives as Potent and Orally Effective Fms-like Tyrosine Receptor Kinase 3 (FLT3) Inhibitors for Treating Acute Myelogenous Leukemia. J Med Chem 2019; 62:4158-4173. [PMID: 30939008 DOI: 10.1021/acs.jmedchem.9b00223] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of pyrrolo[2,3- d]pyrimidine derivatives were prepared and optimized for cytotoxic activities against FLT3-ITD mutant cancer cells. Among them, compound 9u possessed nanomolar FLT3 inhibitory activities and subnanomolar inhibitory activities against MV4-11 and Molm-13 cells. It also showed excellent inhibitory activities in FLT3-ITD-D835V and FLT3-ITD-F691L cells which were resistant to quizartinib. Furthermore, 9u exhibited over 40-fold selectivity toward FLT3 relative to c-Kit kinase, which might reduce myelosuppression toxicity. Cellular assays demonstrated that 9u inhibited phosphorylated FLT3 and downstream signaling factors and also induced cell cycle arrest in the G0/G1 stage and apoptosis in MV4-11 and Molm-13 cells. Oral administration of 9u at 10 mg/kg could achieve rapid tumor extinction in the MV4-11 xenograft model and significantly inhibit the tumor growth in the MOLM-13 xenograft model with a tumor growth inhibitory rate of 96% without obvious toxicity. Additionally, 9u demonstrated high bioavailability ( F = 59.5%) and suitable eliminated half-life time ( T1/2 = 2.06 h), suggesting that 9u may be a potent candidate for treating acute myelogenous leukemia.
Collapse
|
47
|
Javidi-Sharifi N, Martinez J, English I, Joshi SK, Scopim-Ribeiro R, Viola SK, Edwards DK, Agarwal A, Lopez C, Jorgens D, Tyner JW, Druker BJ, Traer E. FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells. eLife 2019; 8:e40033. [PMID: 30720426 PMCID: PMC6363389 DOI: 10.7554/elife.40033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Protective signaling from the leukemia microenvironment leads to leukemia cell persistence, development of resistance, and disease relapse. Here, we demonstrate that fibroblast growth factor 2 (FGF2) from bone marrow stromal cells is secreted in exosomes, which are subsequently endocytosed by leukemia cells, and protect leukemia cells from tyrosine kinase inhibitors (TKIs). Expression of FGF2 and its receptor, FGFR1, are both increased in a subset of stromal cell lines and primary AML stroma; and increased FGF2/FGFR1 signaling is associated with increased exosome secretion. FGFR inhibition (or gene silencing) interrupts stromal autocrine growth and significantly decreases secretion of FGF2-containing exosomes, resulting in less stromal protection of leukemia cells. Likewise, Fgf2 -/- mice transplanted with retroviral BCR-ABL leukemia survive significantly longer than their +/+ counterparts when treated with TKI. Thus, inhibition of FGFR can modulate stromal function, reduce exosome secretion, and may be a therapeutic option to overcome resistance to TKIs. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
| | - Jacqueline Martinez
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Isabel English
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Sunil K Joshi
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | | | - Shelton K Viola
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - David K Edwards
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Anupriya Agarwal
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Division of Hematology and Medical OncologyOregon Health & Science UniversityPortlandUnited States
| | - Claudia Lopez
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Center for Spatial Systems BiomedicineOregon Health & Science UniversityPortlandUnited States
| | - Danielle Jorgens
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Center for Spatial Systems BiomedicineOregon Health & Science UniversityPortlandUnited States
| | - Jeffrey W Tyner
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Department of Cell, Developmental & Cancer BiologyOregon Health & Science UniversityPortlandUnited States
| | - Brian J Druker
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Division of Hematology and Medical OncologyOregon Health & Science UniversityPortlandUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Elie Traer
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Division of Hematology and Medical OncologyOregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
48
|
Bewersdorf JP, Stahl M, Zeidan AM. Are we witnessing the start of a therapeutic revolution in acute myeloid leukemia? Leuk Lymphoma 2019; 60:1354-1369. [DOI: 10.1080/10428194.2018.1546854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jan Philipp Bewersdorf
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maximilian Stahl
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
49
|
Staudt D, Murray HC, McLachlan T, Alvaro F, Enjeti AK, Verrills NM, Dun MD. Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance. Int J Mol Sci 2018; 19:ijms19103198. [PMID: 30332834 PMCID: PMC6214138 DOI: 10.3390/ijms19103198] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The identification of recurrent driver mutations in genes encoding tyrosine kinases has resulted in the development of molecularly-targeted treatment strategies designed to improve outcomes for patients diagnosed with acute myeloid leukemia (AML). The receptor tyrosine kinase FLT3 is the most commonly mutated gene in AML, with internal tandem duplications within the juxtamembrane domain (FLT3-ITD) or missense mutations in the tyrosine kinase domain (FLT3-TKD) present in 30–35% of AML patients at diagnosis. An established driver mutation and marker of poor prognosis, the FLT3 tyrosine kinase has emerged as an attractive therapeutic target, and thus, encouraged the development of FLT3 tyrosine kinase inhibitors (TKIs). However, the therapeutic benefit of FLT3 inhibition, particularly as a monotherapy, frequently results in the development of treatment resistance and disease relapse. Commonly, FLT3 inhibitor resistance occurs by the emergence of secondary lesions in the FLT3 gene, particularly in the second tyrosine kinase domain (TKD) at residue Asp835 (D835) to form a ‘dual mutation’ (ITD-D835). Individual FLT3-ITD and FLT3-TKD mutations influence independent signaling cascades; however, little is known about which divergent signaling pathways are controlled by each of the FLT3 specific mutations, particularly in the context of patients harboring dual ITD-D835 mutations. This review provides a comprehensive analysis of the known discrete and cooperative signaling pathways deregulated by each of the FLT3 specific mutations, as well as the therapeutic approaches that hold the most promise of more durable and personalized therapeutic approaches to improve treatments of FLT3 mutant AML.
Collapse
Affiliation(s)
- Dilana Staudt
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Tabitha McLachlan
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Frank Alvaro
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
- John Hunter Children's Hospital, Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, NSW 2305, Australia.
| | - Anoop K Enjeti
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
- Calvary Mater Hospital, Hematology Department, Waratah, NSW 2298, Australia.
- NSW Health Pathology North, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
50
|
Tyrosine kinase inhibitor-induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors. Blood 2018; 132:67-77. [PMID: 29784639 DOI: 10.1182/blood-2018-02-834895] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Mutations in FMS-like tyrosine kinase 3 (FLT3), such as internal tandem duplications (ITDs), can be found in up to 23% of patients with acute myeloid leukemia (AML) and confer a poor prognosis. Current treatment options for FLT3(ITD)-positive AMLs include genotoxic therapy and FLT3 inhibitors (FLT3i's), which are rarely curative. PARP1 inhibitors (PARP1i's) have been successfully applied to induce synthetic lethality in tumors harboring BRCA1/2 mutations and displaying homologous recombination (HR) deficiency. We show here that inhibition of FLT3(ITD) activity by the FLT3i AC220 caused downregulation of DNA repair proteins BRCA1, BRCA2, PALB2, RAD51, and LIG4, resulting in inhibition of 2 major DNA double-strand break (DSB) repair pathways, HR, and nonhomologous end-joining. PARP1i, olaparib, and BMN673 caused accumulation of lethal DSBs and cell death in AC220-treated FLT3(ITD)-positive leukemia cells, thus mimicking synthetic lethality. Moreover, the combination of FLT3i and PARP1i eliminated FLT3(ITD)-positive quiescent and proliferating leukemia stem cells, as well as leukemic progenitors, from human and mouse leukemia samples. Notably, the combination of AC220 and BMN673 significantly delayed disease onset and effectively reduced leukemia-initiating cells in an FLT3(ITD)-positive primary AML xenograft mouse model. In conclusion, we postulate that FLT3i-induced deficiencies in DSB repair pathways sensitize FLT3(ITD)-positive AML cells to synthetic lethality triggered by PARP1i's. Therefore, FLT3(ITD) could be used as a precision medicine marker for identifying AML patients that may benefit from a therapeutic regimen combining FLT3 and PARP1i's.
Collapse
|