1
|
Tarapara B, Shah F. Role of MRE11 in DNA damage repair pathway dynamics and its diagnostic and prognostic significance in hereditary breast and ovarian cancer. BMC Cancer 2025; 25:650. [PMID: 40205351 PMCID: PMC11984277 DOI: 10.1186/s12885-025-14082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND DNA damage repair pathway genes are key components for maintaining genomic stability and are mainly associated with hereditary breast and ovarian cancer. METHODS The present study aimed to investigate the gene expression profile of DNA damage repair pathway genes, including BRCA1, BRCA2, ATM, TP53, CHEK2, MRE11, RAD50, BARD1, PALB2, and NBN, in hereditary breast and ovarian cancer patients using quantitative real-time PCR. RESULTS The study showed significant upregulation of most DNA damage repair genes in HBOC patients compared to controls, except MRE11, which was downregulated. Receiver operating characteristic (ROC) curve analysis revealed that MRE11 (p < 0.001), BRCA1 (p < 0.001), BRCA2 (p < 0.001), and PALB2 (p < 0.001) can be used as potential diagnostic biomarkers for hereditary breast and ovarian cancer. Spearman correlation analysis showed that RAD50 was significantly associated with the BRCA1/2 mutation status (p = 0.05). Furthermore, bivariate analysis revealed a strong positive correlation between BARD1 gene expression and the expression of BRCA1, PALB2, and NBN genes. Kaplan-Meier survival analysis showed that reduces expression of the MRE11 gene was associated with better overall survival. CONCLUSIONS The study findings may lead to a better understanding of the molecular mechanisms underlying hereditary breast and ovarian cancer, suggesting its role as a potential diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Life-Science, Gujarat University and Young Scientist (DHR-ICMR), Molecular Diagnostic & Research Lab-3, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky Shah
- Department of Cancer Biology, Molecular Diagnostic & Research Lab- 3, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
2
|
Tsuchimochi S, Yamamoto Y, Taguchi A, Kawazu M, Sone K, Ikemura M, Tamai K, Kitamura S, Yoshimoto D, Fukaya S, Ishizaka A, Quynh AD, Nishijima A, Miyamoto Y, Mori M, Hiraike O, Hasegawa K, Ushiku T, Oda K, Hirota Y, Osuga Y. BRCA1 Promoter Methylation in Ovarian Cancer: Clinical Relevance and a Novel Diagnostic Approach Using Fragment Analysis. Cancer Sci 2025. [PMID: 40202107 DOI: 10.1111/cas.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Homologous recombination deficiency (HRD) tests, including MyChoice CDx, are companion diagnostics for poly (ADP-ribose) polymerase (PARP) inhibitors. BRCA1 promoter hypermethylation, a major HRD cause, may correlate with poorer prognosis. This study aimed to develop a simple, accurate method for detecting BRCA1 promoter hypermethylation and elucidate the characteristics of such cases. BRCA1 promoter methylation was analyzed using bisulfite sequencing (BIS-seq) in high-grade serous ovarian carcinoma specimens. We developed a newly developed BRCA1 methylation assay, BRCA1-Fragment Analysis of Methylation (BRCA1-FAM), which combines restriction enzyme digestion with fragment analysis. The accuracy of this assay was compared to the results of BIS-seq. We evaluated the relationship between BRCA1 promoter hypermethylation and prognosis and examined its association with BRCA1 expression and loss of heterozygosity. BRCA1 mutations and promoter methylation were mutually exclusive in the analyzed cases, with methylation observed in 28.9% (22/76) of primary debulking surgery cases. The BRCA1-FAM showed high sensitivity (91.3%) and specificity (100%) for detecting BRCA1 promoter hypermethylation, comparable to BIS-seq. Cases with BRCA1 promoter hypermethylation had significantly poorer progression-free survival (log-rank test, p = 0.048). Among these cases, 86.4% displayed abnormal BRCA1 immunostaining, with lower frequencies of BRCA1 loss of heterozygosity compared to those of other groups. BRCA1 promoter hypermethylation is associated with poor prognosis, underscoring the importance of its identification for HRD stratification. BRCA1-FAM is a simple and highly accurate method for evaluating BRCA1 promoter methylation. This approach may potentially enhance the precision of personalized therapies for ovarian cancer.
Collapse
Affiliation(s)
- Saki Tsuchimochi
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Yoko Yamamoto
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Kana Tamai
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Shuhei Kitamura
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Daisuke Yoshimoto
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Sayuri Fukaya
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Aya Ishizaka
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Anh Duong Quynh
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Akira Nishijima
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Osamu Hiraike
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Tetsuo Ushiku
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Clinical Genomics, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Shirani N, Abdi N, Chehelgerdi M, Yaghoobi H, Chehelgerdi M. Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers. Front Cell Dev Biol 2025; 13:1485422. [PMID: 39925739 PMCID: PMC11802832 DOI: 10.3389/fcell.2025.1485422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Exosomes, as key mediators of intercellular communication, have been increasingly recognized for their role in the oncogenic processes, particularly in facilitating drug resistance. This article delves into the emerging evidence linking exosomal lncRNAs to the modulation of drug resistance mechanisms in cancers such as ovarian, cervical, and endometrial cancer. It synthesizes current research findings on how these lncRNAs influence cancer cell survival, tumor microenvironment, and chemotherapy efficacy. Additionally, the review highlights potential therapeutic strategies targeting exosomal lncRNAs, proposing a new frontier in overcoming drug resistance. By mapping the interface of exosomal lncRNAs and drug resistance, this article aims to provide a comprehensive understanding that could pave the way for innovative treatments and improved patient outcomes in female reproductive system cancers.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Neda Abdi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
4
|
Takamatsu S, Yoshihara K, Baba T, Shimada M, Yoshida H, Kajiyama H, Oda K, Mandai M, Okamoto A, Enomoto T, Matsumura N. Prognostic relevance of HRDness gene expression signature in ovarian high-grade serous carcinoma; JGOG3025-TR2 study. Br J Cancer 2023; 128:1095-1104. [PMID: 36593360 PMCID: PMC10006095 DOI: 10.1038/s41416-022-02122-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the homologous recombination repair pathway deficiency (HRD) in ovarian high-grade serous carcinoma (HGSC). METHODS In the ovarian cancer data from The Cancer Genome Atlas, we identified genes differentially expressed between tumours with and without HRD genomic scars and named these genes "HRDness signature". We performed SNP array, RNA sequencing, and methylation array analyses on 274 HGSC tumours for which targeted sequencing of 51 genes and clinical data were available to generate JGOG3025-TR2 dataset. The HRDness signature was tested on external datasets, including the JGOG3025-TR2 cohort, by computational scoring and machine-learning prediction. RESULTS High scores and positive predictions of the HRDness signature were significantly associated with BRCA alterations, genomic scar scores, and better survival. On the other hand, among cases with high scores and/or positive predictions, those with BRCA1 methylation showed poorer survival. In the JGOG3025-TR2 cohort, HRD status was significantly associated with the use of olaparib after relapse and progression-free survival after its initiation. CONCLUSIONS The HRDness gene expression signature is associated with a good prognosis, while BRCA1 methylation is associated with a poor prognosis. The newly generated JGOG3025-TR2 dataset will be useful in future HGSC studies.
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Obstetrics and Gynecology, Kyoto Okamoto Memorial Hospital, Kyoto, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Yoshida
- Department of Obstetrics and Gynecology, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, The University of Tokyo, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| |
Collapse
|
5
|
Perrone E, Tudisco R, Pafundi PC, Guido D, Ciucci A, Martinelli E, Zannoni GF, Piermattei A, Spadola S, Ferrante G, Marchetti C, Scambia G, Fagotti A, Gallo D. What’s beyond BRCA Mutational Status in High Grade Serous Ovarian Cancer? The Impact of Hormone Receptor Expression in a Large BRCA-Profiled Ovarian Cancer Patient Series: A Retrospective Cohort Study. Cancers (Basel) 2022; 14:cancers14194588. [PMID: 36230510 PMCID: PMC9559459 DOI: 10.3390/cancers14194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Ovarian hormones are involved in ovarian cancer pathogenesis. However, few reports have investigated the hormone receptor pattern according to BRCA mutational status. The aim of this single-center, observational, retrospective study was to explore the relationship between hormone receptor status and BRCA1/2 mutation in a cohort of 207 high-grade serous ovarian carcinoma (HGSOC) patients. Interesting differences emerged between BRCA-mutated and BRCA wild-type women, in terms of pattern of receptor expression and its association to the outcome. On the whole, our findings, though needing further validation, extend our understanding of the complex interplay between BRCA1/2 protein and hormone signaling, suggesting new pathways to be exploited in order to develop future personalized therapy. Abstract Several studies have explored the prognostic role of hormone receptor status in high-grade serous ovarian cancer (HGSOC) patients. However, few reports have investigated their expression according to BRCA mutational status. The aim of this single-center, observational, retrospective study was to explore the hormone receptor pattern and its potential prognostic role in a cohort of 207 HGSOC women stratified for BRCA mutational status. To this end, ERα, ERβ1, ERβ2, ERβ5, PR, and AR expression were assessed by immunohistochemistry in 135 BRCA-wild type (BRCA-wt) and 72 BRCA1/2 mutation carriers (BRCA-mut). No significant difference emerged in hormone receptor expression between the two sub-samples, except for a significantly lower ERα expression observed in pre-menopausal BRCA1/2-mut as compared to BRCA-wt patients (p = 0.02). None of the examined hormone receptors has revealed a significant prognostic role in the whole sample, apart from the ratio ERα/ERβ5 nuclear, for which higher values disclosed a positive role on the outcome in BRCA-wt subgroup (HR 0.77; CI 0.61–0.96; p = 0.019). Conversely, it negatively affected overall survival in the presence of BRCA1/2-mut (HR 1.41; CI 1.06–1.87; p = 0.020). Finally, higher PR levels were associated with platinum sensitivity in the whole sample (p = 0.019). Our data, though needing further validation, suggest a potential role of oestrogen-mediated pathways in BRCA1/2-associated HGSOC tumorigenesis, thus revealing a possible therapeutic potential for targeting this interaction.
Collapse
Affiliation(s)
- Emanuele Perrone
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Riccardo Tudisco
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Pia Clara Pafundi
- Epidemiology and Biostatistics Facility Core Research, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Davide Guido
- Bioinformatics Facility Core Research, Gemelli Science and Technology Park (GSTeP) Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessandra Ciucci
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Enrica Martinelli
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gian Franco Zannoni
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessia Piermattei
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Saveria Spadola
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giulia Ferrante
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Claudia Marchetti
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Anna Fagotti
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Daniela Gallo
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Abstract
ABSTRACT DNA damage response and repair (DDR) is responsible for ensuring genomic integrity. It is composed of intricate, complex pathways that detect various DNA insults and then activate pathways to restore DNA fidelity. Mutations in this network are implicated in many malignancies but can also be exploited for cancer therapies. The advent of inhibitors of poly(ADP-ribose) polymerase has led to the investigation of other DDR inhibitors and combinations to address high unmet needs in cancer therapeutics. Specifically, regimens, often in combination with chemotherapy, radiation, or other DDR inhibitors, are being investigated. This review will focus on 4 main DDR pathways-ATR/CHK1, ATM/CHK2, DNA-PKcs, and polymerase θ-and the current state of clinical research and use of the inhibitors of these pathways with other DDR inhibitors.
Collapse
|
7
|
In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Gupta VG, Hirst J, Petersen S, Roby KF, Kusch M, Zhou H, Clive ML, Jewell A, Pathak HB, Godwin AK, Wilson AJ, Crispens MA, Cybulla E, Vindigni A, Fuh KC, Khabele D. Entinostat, a selective HDAC1/2 inhibitor, potentiates the effects of olaparib in homologous recombination proficient ovarian cancer. Gynecol Oncol 2021; 162:163-172. [PMID: 33867143 DOI: 10.1016/j.ygyno.2021.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/10/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Poly ADP ribose polymerase inhibitors (PARPi) are most effective in BRCA1/2 mutated ovarian tumors. Better treatments are needed for homologous recombination HR-proficient cancer, including CCNE1 amplified subtypes. We have shown that histone deacetylase inhibitors (HDACi) sensitize HR-proficient ovarian cancer to PARPi. In this study, we provide complementary preclinical data for an investigator-initiated phase 1/2 clinical trial of the combination of olaparib and entinostat in recurrent, HR-proficient ovarian cancer. METHODS We assessed the in vitro effects of the combination of olaparib and entinostat in SKOV-3, OVCAR-3 and primary cells derived from CCNE1 amplified high grade serous ovarian cancer (HGSOC) patients. We then tested the combination in a SKOV-3 xenograft model and in a patient-derived xenograft (PDX) model. RESULTS Entinostat potentiates the effect of olaparib in reducing cell viability and clonogenicity of HR-proficient ovarian cancer cells. The combination reduces peritoneal metastases in a SKOV-3 xenograft model and prolongs survival in a CCNE1 amplified HR-proficient PDX model. Entinostat also enhances olaparib-induced DNA damage. Further, entinostat decreases BRCA1, a key HR repair protein, associated with decreased Ki-67, a proliferation marker, and increased cleaved PARP, a marker of apoptosis. Finally, entinostat perturbs replication fork progression, which increases genome instability. CONCLUSION Entinostat inhibits HR repair by reducing BRCA1 expression and stalling replication fork progression, leading to irreparable DNA damage and ultimate cell death. This work provides preclinical support for the clinical trial of the combination of olaparib and entinostat in HR-proficient ovarian cancer and suggests potential benefit even for CCNE1 amplified subtypes.
Collapse
Affiliation(s)
- Vijayalaxmi G Gupta
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeff Hirst
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shariska Petersen
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Katherine F Roby
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Meghan Kusch
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Helen Zhou
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Makena L Clive
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrea Jewell
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Univeristy of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Marta A Crispens
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Arend RC, Jackson-Fisher A, Jacobs IA, Chou J, Monk BJ. Ovarian cancer: new strategies and emerging targets for the treatment of patients with advanced disease. Cancer Biol Ther 2021; 22:89-105. [PMID: 33427569 PMCID: PMC7928025 DOI: 10.1080/15384047.2020.1868937] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/01/2020] [Accepted: 12/22/2020] [Indexed: 10/25/2022] Open
Abstract
Recently approved therapies have contributed to a significant progress in the management of ovarian cancer; yet, more options are needed to further improve outcomes in patients with advanced disease. Here we review the rationale and ongoing clinical trials of novel combination strategies involving chemotherapy, poly ADP ribose polymerase, programmed death 1 (PD-1)/PD-ligand 1 immune checkpoint and/or vascular endothelial growth factor receptor inhibitors. Further, we discuss novel agents aimed at targets associated with ovarian cancer growth or progression that are emerging as potential new treatment approaches. Among them, agents targeted to folate receptor α, tissue factor, and protein kinase-mediated pathways (WEE1 kinase, phosphatidylinositol-3 kinase α, cell cycle checkpoint kinase 1/2, ATR kinase) are currently in clinical development as mono- or combination therapies. If successful, findings from these extensive development efforts may further transform treatment of patients with advanced ovarian cancer.
Collapse
Affiliation(s)
- Rebecca C. Arend
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Jeffrey Chou
- Research and Development, Pfizer, San Francisco, CA, USA
| | | |
Collapse
|
10
|
Fostira F, Papadimitriou M, Papadimitriou C. Current practices on genetic testing in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1703. [PMID: 33490215 PMCID: PMC7812194 DOI: 10.21037/atm-20-1422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial ovarian cancer (EOC) is probably the tumor type with the highest percentage of hereditary cases observed, irrespectively of selection criteria. A fourth to a fifth of unselected epithelial EOC patients carry pathogenic variants (PVs) in a number of genes, the majority of which encode for proteins involved in DNA repair pathways. BRCA1 and BRCA2 predisposing PVs were the first to be associated to ovarian cancer, with the advent in DNA sequencing technologies leading to the discovery and association of additional genes which compromise the homologous recombination (HR) pathway. In addition, PVs genes involved in mismatch repair (MMR) pathway, account for 10–15% of hereditary EOC. The identification of women with HR deficient ovarian cancers has significant clinical implications concerning chemotherapy regimen planning and development and use of targeted therapies as well. More specifically, in patients with BRCA1/2 PVs or HR deficiency maintenance treatment with poly(ADP-ribose) polymerase (PARP) inhibitors, either in the first line setting or in recurrent disease, improves the progression-free survival. But also patients with HR proficient tumors show a benefit. Therefore, genetic testing in ovarian cancer has a prognostic and predictive value. In this review, we discuss which ovarian cancer patients should be referred for genetic counseling and how to perform genetic testing. We also discuss the timing of genetic testing and its clinical relevance to BRCA status.
Collapse
Affiliation(s)
- Florentia Fostira
- InRaSTES, Molecular Diagnostics Laboratory, National Centre for Scientific Research NCSR Demokritos, Athens, Greece
| | - Marios Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
11
|
Lerksuthirat T, Wikiniyadhanee R, Chitphuk S, Stitchantrakul W, Sampattavanich S, Jirawatnotai S, Jumpathong J, Dejsuphong D. DNA Repair Biosensor-Identified DNA Damage Activities of Endophyte Extracts from Garcinia cowa. Biomolecules 2020; 10:E1680. [PMID: 33339185 PMCID: PMC7765599 DOI: 10.3390/biom10121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
Recent developments in chemotherapy focus on target-specific mechanisms, which occur only in cancer cells and minimize the effects on normal cells. DNA damage and repair pathways are a promising target in the treatment of cancer. In order to identify novel compounds targeting DNA repair pathways, two key proteins, 53BP1 and RAD54L, were tagged with fluorescent proteins as indicators for two major double strand break (DSB) repair pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). The engineered biosensor cells exhibited the same DNA repair properties as the wild type. The biosensor cells were further used to investigate the DNA repair activities of natural biological compounds. An extract from Phyllosticta sp., the endophyte isolated from the medicinal plant Garcinia cowa Roxb. ex Choisy, was tested. The results showed that the crude extract induced DSB, as demonstrated by the increase in the DNA DSB marker γH2AX. The damaged DNA appeared to be repaired through NHEJ, as the 53BP1 focus formation in the treated fraction was higher than in the control group. In conclusion, DNA repair-based biosensors are useful for the preliminary screening of crude extracts and biological compounds for the identification of potential targeted therapeutic drugs.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Rakkreat Wikiniyadhanee
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Somponnat Sampattavanich
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Juangjun Jumpathong
- Center of Excellent in Research for Agricultural Biotechnology and Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Donniphat Dejsuphong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
12
|
Feng X, Han L, Ma S, Zhao L, Wang L, Zhang K, Yin P, Guo L, Jing W, Li Q. Microbes in Tumoral In Situ Tissues and in Tumorigenesis. Front Cell Infect Microbiol 2020; 10:572570. [PMID: 33330121 PMCID: PMC7732458 DOI: 10.3389/fcimb.2020.572570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cancerous tumors are severe diseases affecting human health that have a complicated etiology and pathogenesis. Microbes have been considered to be related to the development and progression of numerous tumors through various pathogenic mechanisms in recent studies. Bacteria, which have so far remained the most studied microbes worldwide, have four major possible special pathogenic mechanisms (modulation of inflammation, immunity, DNA damage, and metabolism) that are related to carcinogenesis. This review aims to macroscopically summarize and verify the relationships between microbes and tumoral in situ tissues from cancers of four major different systems (urinary, respiratory, digestive, and reproductive); the abovementioned four microbial pathogenic mechanisms, as well as some synergistic pathogenic mechanisms, are also discussed. Once the etiologic role of microbes and their precise pathogenic mechanisms in carcinogenesis are known, the early prevention, diagnosis, and treatment of cancers would progress significantly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Li Z, Huang L, Wei L, Zhang B, Zhong S, Ou Y, Wen C, Huang S. KCNH3 Predicts Poor Prognosis and Promotes Progression in Ovarian Cancer. Onco Targets Ther 2020; 13:10323-10333. [PMID: 33116612 PMCID: PMC7568620 DOI: 10.2147/ott.s268055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Ovarian cancer (OC) is one of the most common causes of cancer-related death among women; accordingly, new biomarkers of OC are urgently needed. Potassium voltage-gated channel sub-family H member 3 (KCNH3) is a voltage-gated potassium channel member involved in cognitive function and diabetes. Here, we aimed to elucidate the role and potential molecular mechanisms of KCNH3 in OC. Materials and Methods KCNH3 expression levels in OC tissues were analyzed using TCGA data and confirmed by RT-qPCR and immunohistochemistry in OC tissues. The cell counting kit-8 was used to assess cell proliferation in OC cells in which KCNH3 was knocked-down with small interference RNA (siRNA). Wound-healing and transwell invasion assays were used to assess migratory and invasive abilities, respectively. Cell cycle distribution and apoptosis were determined using a flow cytometer. Gene set enrichment analysis and Western blot were used to investigate the potential pathways of KCNH3 in OC development. Results TCGA data and RT-qPCR results from patients with OC revealed high KCNH3 expression in OC tissues compared to normal ovarian tissues. Survival analysis in patients with OC suggested that high KCNH3 expression might be an independent predictor for poor overall survival and disease-free survival. In vitro studies showed that KCNH3 silencing in OC cells could inhibit cell proliferation and migration ability, and induce apoptosis and G2/M phase arrest. Furthermore, Western blot results showed that KCNH3 silencing might induce downregulation of RPA1 and RPA2 expression level in both SKOV3 and COC1 cells. Conclusion KCNH3 plays an important role in cancer progression in patients with OC. Further investigation might reveal KCNH3 as a potential biomarker for prognosis or diagnosis in OC.
Collapse
Affiliation(s)
- Zhongjun Li
- Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, People's Republic of China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Lishan Huang
- Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, People's Republic of China
| | - Li Wei
- Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, People's Republic of China
| | - Bin Zhang
- Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, People's Republic of China
| | - Shulin Zhong
- Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, People's Republic of China
| | - Yijing Ou
- Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, People's Republic of China
| | - Chuangyu Wen
- Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, People's Republic of China
| | - Suran Huang
- Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, People's Republic of China
| |
Collapse
|
14
|
Xie H, Wang W, Xia B, Jin W, Lou G. Therapeutic applications of PARP inhibitors in ovarian cancer. Biomed Pharmacother 2020; 127:110204. [PMID: 32422564 DOI: 10.1016/j.biopha.2020.110204] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy with a high recurrence rate. Poly(ADP-ribose) polymerase inhibitors (PARPi) are one of the most active new therapies for treatment of ovarian cancer. These treatment modalities are based on the mechanisms of "synthetic lethal" and "PARP trapping", especially for patients with homologous recombination deficiencies, and they demonstrate a high survival advantage. However, resistance to PARPi is an emerging problem. Identifying potential biomarkers to monitor the resistance and developing drug combination strategies are effective ways to address PARPi resistance. This review introduces the mechanisms of anticancer activity of PARPi and the developmental history in clinical research. Moreover, this paper systematically analyzes the functions of PARP family proteins. Additionally, this work highlights the treatment prospects of the combination of immunotherapy and PARPi in ovarian cancer. Finally, we propose several novel technologies to overcome the limitations of current preclinical studies and utilize them to select potential targets for combined drug therapy and identify biomarkers of PARPi resistance in ovarian cancer.
Collapse
Affiliation(s)
- Hongyu Xie
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Wenjie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, PR China
| | - Bairong Xia
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China.
| |
Collapse
|
15
|
Pellarin I, Dall'Acqua A, Gambelli A, Pellizzari I, D'Andrea S, Sonego M, Lorenzon I, Schiappacassi M, Belletti B, Baldassarre G. Splicing factor proline- and glutamine-rich (SFPQ) protein regulates platinum response in ovarian cancer-modulating SRSF2 activity. Oncogene 2020; 39:4390-4403. [PMID: 32332923 PMCID: PMC7253352 DOI: 10.1038/s41388-020-1292-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 11/09/2022]
Abstract
In epithelial ovarian cancer (EOC), response to platinum (PT)-based chemotherapy dictates subsequent treatments and predicts patients' prognosis. Alternative splicing is often deregulated in human cancers and can be altered by chemotherapy. Whether and how changes in alternative splicing regulation could impact on the response of EOC to PT-based chemotherapy is still not clarified. We identified the splicing factor proline and glutamine rich (SFPQ) as a critical mediator of response to PT in an unbiased functional genomic screening in EOC cells and, using a large cohort of primary and recurrent EOC samples, we observed that it is frequently overexpressed in recurrent PT-treated samples and that its overexpression correlates with PT resistance. At mechanistic level, we show that, under PT treatment, SFPQ, in complex with p54nrb, binds and regulates the activity of the splicing factor SRSF2. SFPQ/p54nrb complex decreases SRSF2 binding to caspase-9 RNA, favoring the expression of its alternative spliced antiapoptotic form. As a consequence, SFPQ/p54nrb protects cells from PT-induced death, eventually contributing to chemoresistance. Overall, our work unveils a previously unreported SFPQ/p54nrb/SRSF2 pathway that in EOC cells plays a central role in regulating alternative splicing and PT-induced apoptosis and that could result in the design of new possible ways of intervention to overcome PT resistance.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Alice Gambelli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Ilenia Pellizzari
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Sara D'Andrea
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Ilaria Lorenzon
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Monica Schiappacassi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy.
| |
Collapse
|
16
|
Wang Z, Zuo W, Zeng Q, Li Y, Lu T, Bu Y, Hu G. The Homologous Recombination Repair Pathway is Associated with Resistance to Radiotherapy in Nasopharyngeal Carcinoma. Int J Biol Sci 2020; 16:408-419. [PMID: 32015678 PMCID: PMC6990897 DOI: 10.7150/ijbs.37302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy plays a major role in the management of nasopharyngeal carcinoma (NPC). However, the radioresistant cells limit its efficiency and drive recurrence inside the irradiated tumor volume leading to poor outcome for patients. To illuminate the signal pathway involved in the radioresistance and evaluate the potential for predicting NPC response to radiotherapy, we established the radioresistant NPC cell line (CNE2-RR) derived from NPC cell line CNE2 by gradually increased the radiation dose (total 60 Gy), and the radioresistance of CNE2-RR cells was evaluated by the colony formation, FCM and comet assays. Furthermore, comparison of established CNE2-RR cell line to parental cell line found the homologous recombination repair (HRR) proteins differences involved in NPC radioresistance. In addition, the differentially expressed proteins were further validated by western blotting, immunofluorescence and IHC in tumor xenografs and radioresistant NPC tissues. Furthermore, the correlation of HRR proteins expression levels with NPC radioresistance were evaluated. The results showed that the upregulation of HRR proteins were significantly correlated with NPC radioresistance. In addition, using the Youden Index cutoff value, a panel of the HRR proteins analyses revealed a sensitivity of 70%, specificity of 72%. Furthermore, silencing NFBD1 enhanced the radiosensitivity of CNE2-RR cells by impairing IR-inducing γ-H2AX and HR proteins foci formation. These results suggest that controlling the HRR signaling pathway may hold promise to overcome NPC radioresistance.
Collapse
Affiliation(s)
- Zhihai Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenqi Zuo
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Quan Zeng
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanshi Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tao Lu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
17
|
Choi J, Berdis A. An artificial nucleoside that simultaneously detects and combats drug resistance to doxorubicin. Eur J Haematol 2019; 104:97-109. [DOI: 10.1111/ejh.13347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Jung‐Suk Choi
- Department of Chemistry Cleveland State University Cleveland OH
| | - Anthony Berdis
- Department of Chemistry Cleveland State University Cleveland OH
- Center for Gene Regulation in Health and Disease Cleveland State University Cleveland OH
| |
Collapse
|
18
|
Lheureux S, Mirza M, Coleman R. The DNA Repair Pathway as a Target for Novel Drugs in Gynecologic Cancers. J Clin Oncol 2019; 37:2449-2459. [PMID: 31403862 DOI: 10.1200/jco.19.00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | - Robert Coleman
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
19
|
Lee EK, Konstantinopoulos PA. Combined PARP and Immune Checkpoint Inhibition in Ovarian Cancer. Trends Cancer 2019; 5:524-528. [PMID: 31474356 DOI: 10.1016/j.trecan.2019.06.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 11/17/2022]
Abstract
Recent studies have demonstrated that, besides direct cytotoxic effects, poly(ADP ribose) polymerase (PARP) inhibitors (PARPis) exhibit antitumor immunity that occurs in a stimulator of interferon genes (STING)-dependent manner and is augmented by immune checkpoint blockade (CPB). In ovarian cancer, combined PARP and immune checkpoint inhibition has yielded encouraging preliminary results in two early-phase clinical trials and is currently being evaluated in both first-line and recurrent settings.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Panagiotis A Konstantinopoulos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Liu JF, Gordon M, Veneris J, Braiteh F, Balmanoukian A, Eder JP, Oaknin A, Hamilton E, Wang Y, Sarkar I, Molinero L, Fassò M, O'Hear C, Lin YG, Emens LA. Safety, clinical activity and biomarker assessments of atezolizumab from a Phase I study in advanced/recurrent ovarian and uterine cancers. Gynecol Oncol 2019; 154:314-322. [PMID: 31204078 DOI: 10.1016/j.ygyno.2019.05.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Patients with advanced/recurrent epithelial ovarian and uterine cancers have limited treatment options beyond platinum chemotherapy. Both tumor types can express programmed death-ligand 1 (PD-L1), providing a potential therapeutic target for these patients. Here we present data from the ovarian and uterine cancer cohorts of the Phase I atezolizumab monotherapy study (PCD4989g). METHODS This Phase I, multi-center, first-in-human, open-label, dose-escalation/expansion clinical trial investigated single-agent atezolizumab in cohorts of patients with recurrent epithelial ovarian or uterine cancer. The primary objective was to evaluate the safety and tolerability of single-agent atezolizumab. Anti-tumor activity and preliminary assessment of potential biomarkers were evaluated as secondary and exploratory objectives, respectively. RESULTS The ovarian and uterine cancer cohorts enrolled 12 and 15 patients, respectively (10 [83%] and 5 [33%], respectively, had PD-L1 ≥ 5% on tumor-infiltrating immune cells). Atezolizumab was generally well tolerated with no new safety signals identified. The safety profiles in both cohorts were consistent with the known profile of atezolizumab monotherapy. Treatment-related adverse events (AEs) were mostly Grade ≤ 2, with no treatment-related Grade ≥ 4 AEs reported. Preliminary anti-tumor activity, with long durations of response, was observed in 2 patients from each cohort (ovarian cancer, 8.1 and 30.6+ months; uterine cancer, 7.3 and 16.6+ months). High microsatellite instability and tumor mutational burden were noted in the responders from the uterine cancer cohort. CONCLUSIONS Atezolizumab monotherapy was well tolerated in patients with epithelial ovarian or uterine cancer and may have clinical activity warranting further investigation. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01375842.
Collapse
Affiliation(s)
- Joyce F Liu
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215-5450, United States.
| | - Michael Gordon
- HonorHealth Research Institute, 10510 N 92nd St, Suite 200, Scottsdale, AZ 85258, United States.
| | - Jennifer Veneris
- University of Chicago Medicine, 5841 S Maryland Ave, Chicago, IL 60637, United States.
| | - Fadi Braiteh
- Comprehensive Cancer Centers of Nevada, 3730 S Eastern Avenue, Las Vegas, NV 89169, United States.
| | - Ani Balmanoukian
- The Angeles Clinic and Research Institute, 11818 Wilshire Blvd #200, Los Angeles, CA 90025, United States.
| | - Joseph Paul Eder
- Yale Cancer Center, Medical Oncology, PO Box 208028, New Haven, CT 06520-8028, United States.
| | - Ana Oaknin
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Centro Cellex, Calle Natzaret, 115-117, 08035 Barcelona, Spain.
| | - Erika Hamilton
- Tennessee Oncology/Sarah Cannon Research Institute, 250 25th Ave N, Nashville, TN 37203, United States.
| | - Yulei Wang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Indrani Sarkar
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Luciana Molinero
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Marcella Fassò
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Carol O'Hear
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Yvonne G Lin
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Leisha A Emens
- UPMC Hillman Cancer Center, 300 Halket St, Suite 4628, Pittsburgh, PA 15213, United States.
| |
Collapse
|
21
|
Zhao YJ, Xie L. Potential role of exosomes in cancer therapy. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ya jing Zhao
- School of Medicine and Life SciencesUniversity of Jinan, Shandong Academy of Medical Sciences Jinan China
- Department of Clinical LaboratoryShandong Cancer Hospital Affiliated to Shandong UniversityShandong Academy of Medical Sciences Jinan China
| | - Li Xie
- Department of Clinical LaboratoryShandong Cancer Hospital Affiliated to Shandong UniversityShandong Academy of Medical Sciences Jinan China
| |
Collapse
|
22
|
Lin CK, Chang CC, Wang CK, Lin CK, Huang LC, Chou SJ. Establishment of primary human epithelial ovarian cancer cells and their application to cytotoxicity assessment. JOURNAL OF MEDICAL SCIENCES 2019. [DOI: 10.4103/jmedsci.jmedsci_17_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|