1
|
Herreno-Pachón AM, Leal AF, Khan S, Alméciga-Díaz CJ, Tomatsu S. CRISPR/nCas9-Edited CD34+ Cells Rescue Mucopolysaccharidosis IVA Fibroblasts Phenotype. Int J Mol Sci 2025; 26:4334. [PMID: 40362571 PMCID: PMC12072265 DOI: 10.3390/ijms26094334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Mucopolysaccharidosis (MPS) IVA is a bone-affecting lysosomal storage disease (LSD) caused by impaired degradation of the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin 6-sulfate (C6S) due to deficient N-acetylgalactosamine-6-sulfatase (GALNS) enzyme activity. Previously, we successfully developed and validated a CRISPR/nCas9-based gene therapy (GT) to insert an expression cassette at the AAVS1 and ROSA26 loci in human MPS IVA fibroblasts and MPS IVA mice, respectively. In this study, we have extended our approach to evaluate the effectiveness of our CRISPR/nCas9-based GT in editing human CD34+ cells to mediate cross-correction of MPS IVA fibroblasts. CD34+ cells were electroporated with the CRISPR/nCas9 system, targeting the AAVS1 locus. The nCas9-mediated on-target donor template insertion, and the stemness of the CRISPR/nCas-edited CD34+ cells was evaluated. Additionally, MPS IVA fibroblasts were co-cultured with CRISPR/nCas-edited CD34+ cells to assess cross-correction. CRISPR/nCas9-based gene editing did not affect the stemness of CD34+ cells but did lead to supraphysiological levels of the GALNS enzyme. Upon co-culture, MPS IVA fibroblasts displayed a significant increase in the GALNS enzyme activity along with lysosomal mass reduction, pro-oxidant profile amelioration, mitochondrial mass recovery, and pro-apoptotic and pro-inflammatory profile improvement. These results show the potential of our CRISPR/nCas9-based GT to edit CD34+ cells to mediate cross-correction.
Collapse
Affiliation(s)
- Angélica María Herreno-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.M.H.-P.); (A.F.L.); (S.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrés Felipe Leal
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.M.H.-P.); (A.F.L.); (S.K.)
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia;
| | - Shaukat Khan
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.M.H.-P.); (A.F.L.); (S.K.)
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia;
| | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.M.H.-P.); (A.F.L.); (S.K.)
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Rossi A, Romano R, Fecarotta S, Dell'Anno M, Pecorella V, Passeggio R, Zancan S, Parenti G, Santamaria F, Borgia F, Deodato F, Funghini S, Rupar CA, Prasad C, O'Callaghan M, Mitchell JJ, Valsecchi MG, la Marca G, Galimberti S, Auricchio A, Brunetti-Pierri N. Multi-year enzyme expression in patients with mucopolysaccharidosis type VI after liver-directed gene therapy. MED 2025; 6:100544. [PMID: 39547230 DOI: 10.1016/j.medj.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Mucopolysaccharidosis type VI (MPS VI) is due to a deficiency of the lysosomal enzyme arylsulfatase B (ARSB) that results in multi-organ accumulation of glycosaminoglycans (GAGs). Limitations of current treatments prompted the development of a liver-directed gene therapy clinical trial for MPS VI. METHODS We report the long-term follow-up of patients with MPS VI who discontinued enzyme replacement therapy (ERT) and received a single intravenous infusion of high-dose (6 × 1012 genome copies/kg) recombinant adeno-associated virus serotype 8 (AAV8) vector expressing ARSB under the control of a liver-specific promoter (ClinicalTrials.gov: NCT03173521). Primary outcomes were safety and urinary GAG excretion. Secondary outcomes were endurance and respiratory function. FINDINGS Median follow-up time was 45 months (n = 4, three females and one male; age range: 5-10 years). No late-emergent safety events were observed. Patients showed sustained serum ARSB activity (38%-67% of mean healthy reference values), a modest increase in urinary GAG concentrations, and no relevant changes in endurance, cardiac, or pulmonary function. In one of the four patients, ERT was restarted because of elevated urinary GAGs without decreased serum ARSB activity up to about 2.5 years after gene transfer. Liver and spleen size remained within the reference ranges. CONCLUSIONS A single intravenous administration of AAV8.TBG.hARSB was safe and resulted in sustained ARSB expression and a modest increase in urinary GAGs in most patients, thus supporting liver-directed gene therapy for MPS VI. FUNDING This study was sponsored by the Telethon Foundation ETS, the European Union, the Isaac Foundation, and the Italian Ministry of University and Research.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medicine, "Federico II" University, 80131 Naples, Italy
| | - Roberta Romano
- Department of Translational Medicine, "Federico II" University, 80131 Naples, Italy
| | - Simona Fecarotta
- Dipartimento ad Attività Integrata Materno Infantile, "Federico II" University Hospital, 80131 Naples, Italy
| | | | | | - Roberta Passeggio
- Department of Translational Medicine, "Federico II" University, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | | | - Giancarlo Parenti
- Department of Translational Medicine, "Federico II" University, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Francesca Santamaria
- Department of Translational Medicine, "Federico II" University, 80131 Naples, Italy
| | - Francesco Borgia
- Department of Advanced Biomedical Sciences, Divisions of Cardiology and Cardiothoracic Surgery, "Federico II" University, 80131 Naples, Italy
| | - Federica Deodato
- Division of Metabolic Diseases and Hepatology, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy
| | - Silvia Funghini
- Newborn Screening, Clinical Biochemistry and Clinical Pharmacy Lab, Meyer Children's Hospital IRCCS, 50134 Florence, Italy
| | - Charles A Rupar
- Division of Medical Genetics, London Health Science Centre, Western University, London, ON N6G 2M1, Canada; Department of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON N6A 5C1, Canada
| | - Chitra Prasad
- Division of Medical Genetics, London Health Science Centre, Western University, London, ON N6G 2M1, Canada
| | - Mar O'Callaghan
- Servicio de Neurologıa, Unidad de Enfermedades Metabolicas, Hospital Sant Joan de Deu, 08950 Barcelona, Spain
| | - John J Mitchell
- Division of Medical Genetics and Division of Pediatric Endocrinology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Giancarlo la Marca
- Newborn Screening, Clinical Biochemistry and Clinical Pharmacy Lab, Meyer Children's Hospital IRCCS, 50134 Florence, Italy; Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Department of Advanced Biomedical Sciences, "Federico II" University, 80131 Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, 80138 Naples, Italy.
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, "Federico II" University, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, 80138 Naples, Italy.
| |
Collapse
|
3
|
Hamdy NM, Basalious EB, El-Sisi MG, Nasr M, Kabel AM, Nossier ES, Abadi AH. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin 2024; 40:1943-1961. [PMID: 39412377 DOI: 10.1080/03007995.2024.2416985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
The development of therapies followed a generalized approach for a long time, assuming that a single treatment could effectively address various patient populations. However, recent breakthroughs have revealed the limitations of this one-size-fits-all paradigm. More recently, the field of therapeutics has witnessed a shift toward other modules, including cell therapies, high molecular weight remedies, personalized medicines, and gene therapies. Such advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects. Cell therapies have gained considerable attention in regenerative medicine. Stem cell-based therapies, for instance, hold promise for tissue repair and regeneration, with ongoing research focusing on enhancing their efficacy and safety. High molecular weight drugs like peptides and proteins emerged as promising therapeutics because of their high specificity and diverse biological functions. Engineered peptides and proteins are developed for targeted drug delivery, immunotherapy, and disease-modulation. In personalized medicine, tailored treatments to individuals based on specific genetic profiling, lifestyle, biomarkers, and disease characteristics are all implemented. Clinicians have tailored treatments to optimize outcomes and minimize adverse effects, using targeted therapies based on specific mutations, yielding remarkable results. Gene therapies have revolutionized the treatment of genetic disorders by directly targeting the underlying genetic abnormalities. Innovative techniques, such as CRISPR-Cas9 have allowed precise gene editing, opening up possibilities for curing previously incurable conditions. In conclusion, advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
| | - Emad B Basalious
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
| | - Maha Nasr
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M Kabel
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman S Nossier
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ashraf H Abadi
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| |
Collapse
|
4
|
Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells 2023; 12:2660. [PMID: 37998395 PMCID: PMC10670380 DOI: 10.3390/cells12222660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA;
| | - Roger Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, 65 Landsdowne St, Suite 143, Cambridge, MA 02139, USA;
| | - Ulf Landmesser
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Kumar P, Jimenez Franco A, Zhao X. 3D culture of fibroblasts and neuronal cells on microfabricated free-floating carriers. Colloids Surf B Biointerfaces 2023; 227:113350. [PMID: 37209598 DOI: 10.1016/j.colsurfb.2023.113350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/07/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
3D cell culture is a relatively recent trend in biomedical research for artificially mimicking in vivo environment and providing three dimensions for the cells to grow in vitro, particularly with regard to surface-adherent mammalian cells. Different cells and research objectives require different culture conditions which has led to an increase in the diversity of 3D cell culture models. In this study, we show two independent on-carrier 3D cell culture models aimed at two different potential applications. Firstly, micron-scale porous spherical structures fabricated from poly (lactic-co-glycolic acid) or PLGA are used as 3D cell carriers so that the cells do not lose their physiologically relevant spherical shape. Secondly, millimetre-scale silk fibroin structures fabricated by 3D inkjet bioprinting are used as 3D cell carriers to demonstrate cell growth patterning in 3D for use in applications which require directed cell growth. The L929 fibroblasts demonstrated excellent adherence, cell-division and proliferation on the PLGA carriers, while the PC12 neuronal cells showed excellent adherence, proliferation and spread on the fibroin carriers without any evidence of cytotoxicity from the carriers. The present study thus proposes two models for 3D cell culture and demonstrates, firstly, that easily fabricable porous PLGA structures can act as excellent cell carriers for aiding cells easily retain their physiologically relevant 3D spherical shape in vitro, and secondly, that 3D inkjet printed silk fibroin structures can act as geometrically-shaped carriers for 3D cell patterning or directed cell growth in vitro. While the 'fibroblasts on PLGA carriers' model will help achieve more accurate results than the conventional 2D culture in cell research, such as drug discovery, and cell proliferation for adoptive cell transfer, such as stem cell therapy, the 'neuronal cells on silk fibroin carriers' model will help in research requiring patterned cell growth, such as treatment of neuropathies.
Collapse
Affiliation(s)
- Piyush Kumar
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; Centre for NanoHealth, Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Ana Jimenez Franco
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
6
|
Brooks PJ, Urv TK, Parisi MA. Gene-targeted therapies: Overview and implications. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:13-18. [PMID: 36864710 PMCID: PMC11331404 DOI: 10.1002/ajmg.c.32033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 03/04/2023]
Abstract
Gene-targeted therapies (GTTs) are therapeutic platforms that are in principle applicable to large numbers of monogenic diseases. The rapid development and implementation of GTTs have profound implications for rare monogenic disease therapy development. This article provides a brief summary of the primary types of GTTs and a brief overview of the current state of the science. It also serves as a primer for the articles in this special issue.
Collapse
Affiliation(s)
- P J Brooks
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Tiina K Urv
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa A Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Kido J, Sugawara K, Nakamura K. Gene therapy for lysosomal storage diseases: Current clinical trial prospects. Front Genet 2023; 14:1064924. [PMID: 36713078 PMCID: PMC9880060 DOI: 10.3389/fgene.2023.1064924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of metabolic inborn errors caused by defective enzymes in the lysosome, resulting in the accumulation of undegraded substrates. LSDs are progressive diseases that exhibit variable rates of progression depending on the disease and the patient. The availability of effective treatment options, including substrate reduction therapy, pharmacological chaperone therapy, enzyme replacement therapy, and bone marrow transplantation, has increased survival time and improved the quality of life in many patients with LSDs. However, these therapies are not sufficiently effective, especially against central nerve system abnormalities and corresponding neurological and psychiatric symptoms because of the blood-brain barrier that prevents the entry of drugs into the brain or limiting features of specific treatments. Gene therapy is a promising tool for the treatment of neurological pathologies associated with LSDs. Here, we review the current state of gene therapy for several LSDs for which clinical trials have been conducted or are planned. Several clinical trials using gene therapy for LSDs are underway as phase 1/2 studies; no adverse events have not been reported in most of these studies. The administration of viral vectors has achieved good therapeutic outcomes in animal models of LSDs, and subsequent human clinical trials are expected to promote the practical application of gene therapy for LSDs.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan,Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan,*Correspondence: Jun Kido,
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan,Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
8
|
Huang C, Li Q, Li J. Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:471-500. [PMID: 37724161 PMCID: PMC10388762 DOI: 10.1515/mr-2022-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
Advancements in genome editing enable permanent changes of DNA sequences in a site-specific manner, providing promising approaches for treating human genetic disorders caused by gene mutations. Recently, genome editing has been applied and achieved significant progress in treating inherited genetic disorders that remain incurable by conventional therapy. Here, we present a review of various programmable genome editing systems with their principles, advantages, and limitations. We introduce their recent applications for treating inherited diseases in the clinic, including sickle cell disease (SCD), β-thalassemia, Leber congenital amaurosis (LCA), heterozygous familial hypercholesterolemia (HeFH), etc. We also discuss the paradigm of ex vivo and in vivo editing and highlight the promise of somatic editing and the challenge of germline editing. Finally, we propose future directions in delivery, cutting, and repairing to improve the scope of clinical applications.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|