1
|
Zhou X, Ling Y, Huang L, Yang F, Zhang Y, Lan Y. HIF-3α Facilitates the Proliferation and Migration in Pancreatic Cancer by Inhibiting Autophagy Through Downregulating TP53INP2. Cell Biochem Biophys 2025; 83:2139-2150. [PMID: 39614944 DOI: 10.1007/s12013-024-01624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 05/20/2025]
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, often diagnosed late, leading to a poor prognosis and extremely high mortality rates. In recent years, the role of cellular autophagy in tumors has become increasingly prominent, gradually becoming an important target for malignant tumors. HIF-3α is a member of HIF family with potential oncogenic function. However, the role of HIF-3α in pancreatic cancer is not clear. The present study revealed its role in pancreatic cancer by exploring the regulatory mechanism of HIF-3α on autophagy. HIF-3α was found markedly upregulated in pancreatic cancer cell lines. In HIF-3α silenced MiaPaCa-2 cells, largely declined migration distance, reduced number of invaded cells and colonies, increased number of autophagosome, downregulated p62, and upregulated Beclin1, LC3II/I, and ATG7 were observed, accompanied by elevated TP53INP2 expressions. on the contrary, in HIF-3α overexpressed PANC-1 cells, notably increased migration distance, and elevated number of invaded cells and colonies were observed, along with decreased autophagosome, upregulated p62, and downregulated Beclin1, LC3II/I, ATG7, and TP53INP2. Subsequently, HIF-3α overexpressed PANC-1 cells were transfected with TP53INP2 overexpressing vector. The influence of HIF-3α overexpression on the proliferation, migration, invasion, and autophagy was abolished by TP53INP2 overexpressing. Furthermore, HIF-3α overexpression facilitated the in vivo growth of PANC-1 cells, accompanied by the autophagy inhibition in tumor tissues, which were remarkably abolished by TP53INP2 overexpressing. Collectively, HIF-3α facilitated the proliferation and migration in pancreatic cancer by inhibiting autophagy through downregulating TP53INP2.
Collapse
Affiliation(s)
- Xianfei Zhou
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Yisheng Ling
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Luoshun Huang
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Fan Yang
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Yang Zhang
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Yong Lan
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China.
| |
Collapse
|
2
|
Lehmann J, Thelen M, Kreer C, Schran S, Garcia-Marquez MA, Cisic I, Siepmann K, Hagen EM, Eckel HNC, Lohneis P, Kruger S, Boeck S, Ormanns S, Rudelius M, Werner J, Popp F, Klein F, von Bergwelt-Baildon MS, Bruns CJ, Quaas A, Wennhold K, Schlößer HA. Tertiary Lymphoid Structures in Pancreatic Cancer are Structurally Homologous, Share Gene Expression Patterns and B-cell Clones with Secondary Lymphoid Organs, but Show Increased T-cell Activation. Cancer Immunol Res 2025; 13:323-336. [PMID: 39661055 DOI: 10.1158/2326-6066.cir-24-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Tertiary lymphoid structures (TLS) in cancer are considered ectopic hotspots for immune activation that are similar to lymphoid follicles in secondary lymphoid organs (SLO). This study elucidates shared and TLS/SLO-specific features in pancreatic ductal adenocarcinoma (PDAC). TLS abundance was related to superior survival and T-cell abundance in 110 treatment-naïve PDAC samples, underlining their clinical relevance. Immunofluorescence microscopy identified structural homologies between TLSs and SLOs. In RNA expression analyses of laser-microdissected TLSs and paired SLOs, we observed largely overlapping expression patterns of immune-related gene clusters but distinct expression patterns of T-cell and complement-associated genes. Immune cells in TLS expressed essential markers of germinal center formation. Increased activation of tumor-draining lymph nodes in patients with high numbers of TLSs highlights the relevance of these tumor-related structures to systemic immune response. In line with this, we identified an overlap of expanded B-cell receptor clonotypes in TLSs and SLOs, which suggests a vivid cross-talk between the two compartments. We conclude that combined therapeutic approaches exploiting TLS-mediated antitumor immune responses may improve susceptibility of PDAC to immunotherapy.
Collapse
Affiliation(s)
- Jonas Lehmann
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Thelen
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Faculty of Medicine and University Hospital Cologne, Institute of Virology, University of Cologne Cologne, Germany
| | - Simon Schran
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Maria A Garcia-Marquez
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Igor Cisic
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Klara Siepmann
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Elena M Hagen
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Hans Nikolaus Caspar Eckel
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | - Philipp Lohneis
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stephan Kruger
- Department of Internal Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Stefan Boeck
- Department of Internal Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
- Department of Hematology and Oncology, München Klinik Neuperlach, Munich, Germany
| | - Steffen Ormanns
- Faculty of Medicine, Institute of Pathology, Ludwig Maximilians University, Munich, Germany
- Innpath Institute of Pathology, Tirol Kliniken, Innsbruck, Austria
| | - Martina Rudelius
- Faculty of Medicine, Institute of Pathology, Ludwig Maximilians University, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Felix Popp
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Florian Klein
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Laboratory of Experimental Immunology, Faculty of Medicine and University Hospital Cologne, Institute of Virology, University of Cologne Cologne, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christiane J Bruns
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Kerstin Wennhold
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Hans A Schlößer
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
3
|
Afghani E, Lennon AM. What Is the Latest in Pancreatic Cysts? Gastroenterol Clin North Am 2025; 54:189-203. [PMID: 39880527 DOI: 10.1016/j.gtc.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Pancreatic cysts are common incidental findings. The understanding of pancreatic cysts has evolved tremendously over the past few decades. Molecular diagnostic and endoscopic techniques have led to more precise characterization of cyst types and interventions to improve patient outcomes. This article outlines these recent innovations in pancreatic cyst diagnosis and management.
Collapse
Affiliation(s)
- Elham Afghani
- Department of Medicine, Johns Hopkins University, 1830 East Monument Street, Room 436, Baltimore, MD 21287, USA
| | - Anne Marie Lennon
- Department of Medicine, University of Pittsburgh, 3550 Terrace Street, 1218 Scaife Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
4
|
Chen L, Lu H, Ballout F, El-Rifai W, Chen Z, Gokulan RC, McDonald OG, Peng D. Targeting NEK Kinases in Gastrointestinal Cancers: Insights into Gene Expression, Function, and Inhibitors. Int J Mol Sci 2025; 26:1992. [PMID: 40076620 PMCID: PMC11900214 DOI: 10.3390/ijms26051992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) cancers, which mainly include malignancies of the esophagus, stomach, intestine, pancreas, liver, gallbladder, and bile duct, pose a significant global health burden. Unfortunately, the prognosis for most GI cancers remains poor, particularly in advanced stages. Current treatment options, including targeted and immunotherapies, are less effective compared to those for other cancer types, highlighting an urgent need for novel molecular targets. NEK (NIMA related kinase) kinases are a group of serine/threonine kinases (NEK1-NEK11) that play a role in regulating cell cycle, mitosis, and various physiological processes. Recent studies suggest that several NEK members are overexpressed in human cancers, including gastrointestinal (GI) cancers, which can contribute to tumor progression and drug resistance. Among these, NEK2 stands out for its consistent overexpression in all types of GI cancer. Targeting NEK2 with specific inhibitors has shown promising results in preclinical studies, particularly for gastric and pancreatic cancers. The development and clinical evaluation of NEK2 inhibitors in human cancers have emerged as a promising therapeutic strategy. Specifically, an NEK2 inhibitor, T-1101 tosylate, is currently undergoing clinical trials. This review will focus on the gene expression and functional roles of NEKs in GI cancers, as well as the progress in developing NEK inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Ravindran Caspa Gokulan
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Oliver Gene McDonald
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
5
|
Campa D, Gentiluomo M, Rizzato C. Genetic landscape for screening and early diagnosis of pancreatic ductal adenocarcinoma: is there a signature? Best Pract Res Clin Gastroenterol 2025; 74:101988. [PMID: 40210334 DOI: 10.1016/j.bpg.2025.101988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
The last 15 years have seen unprecedent advancement in genomics techniques such as dense single nucleotide variants (SNVs) arrays or next generation Sequencing. In parallel, new analytical methodologies have been developed to streamline data understanding and integration. These advances have been instrumental in identifying common genetic variants associated with pancreatic ductal adenocarcinoma (PDAC) risk. The role of the individual variants is rather small, and they have no clinical utility for screening or early detection. However, their combined effect computed though polygenic risk scores (PGS) are showing promising potentiality in PDAC risk prediction. There still caveats, and limitations that need to be properly addressed however it is foreseeable that the genetic background will become a powerful tool in PDAC prediction, leveraging the advantage that it has compared to other biomarkers: germline genetics is invariable from birth to death.
Collapse
|
6
|
Lauri G, Mills K, Majumder S, Capurso G. The exposome as a target for primary prevention and a tool for early detection of pancreatic cancer. Best Pract Res Clin Gastroenterol 2025; 74:101991. [PMID: 40210335 DOI: 10.1016/j.bpg.2025.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 04/12/2025]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy with limited survival due to late stage diagnosis and scarce therapeutic options. Emerging evidence highlights the role of the "exposome," which encompasses environmental, lifestyle, and metabolic exposures, as a crucial determinant in PDAC risk and a potential avenue for early detection. This review synthesizes findings on modifiable risk factors, including smoking, obesity, diabetes, diet, and alcohol consumption, and their interplay with genetic and metabolic profiles in PDAC development. Additionally, we explore cutting-edge approaches in exposomic research, such as biobanking, electronic health record analysis, and AI-driven predictive models, to identify early biomarkers and stratify high-risk populations. This integrated framework aims to inform prevention strategies and improve early detection of PDAC.
Collapse
Affiliation(s)
- Gaetano Lauri
- Pancreatico-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Krystal Mills
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shounak Majumder
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gabriele Capurso
- Pancreatico-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
7
|
Bhattacharjee K, Ghosh A. Identification of key regulators in pancreatic ductal adenocarcinoma using network theoretical approach. PLoS One 2025; 20:e0313738. [PMID: 39869563 PMCID: PMC11771905 DOI: 10.1371/journal.pone.0313738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/30/2024] [Indexed: 01/29/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network. To address this, we examined the gene expression profile of PDAC and compared it with that of healthy controls, identifying differentially expressed genes (DEGs). These DEGs formed the basis for constructing the PDAC protein interaction network, and their network topological properties were calculated. It was found that the PDAC network self-organizes into a scale-free fractal state with weakly hierarchical organization. Newman and Girvan's algorithm (leading eigenvector (LEV) method) of community detection enumerated four communities leading to at least one motif defined by G (3,3). Our analysis revealed 33 key regulators were predominantly enriched in neuroactive ligand-receptor interaction, Cell adhesion molecules, Leukocyte transendothelial migration pathways; positive regulation of cell proliferation, positive regulation of protein kinase B signaling biological functions; G-protein beta-subunit binding, receptor binding molecular functions etc. Transcription Factor and mi-RNA of the key regulators were obtained. Recognizing the therapeutic potential and biomarker significance of PDAC Key regulators, we also identified approved drugs for specific genes. However, it is imperative to subject Key regulators to experimental validation to establish their efficacy in the context of PDAC.
Collapse
Affiliation(s)
| | - Aryya Ghosh
- Department of Chemistry, Ashoka University, Sonipat, Haryana, India
| |
Collapse
|
8
|
Shu ML, Yang WT, Li HM, Qian CJ, Teng XS, Yao J. Circ_0124346 facilitates cell proliferation of pancreatic adenocarcinoma cells by regulating lipid metabolism via miR-223-3p/ACSL3 axis. Discov Oncol 2024; 15:670. [PMID: 39556281 PMCID: PMC11574224 DOI: 10.1007/s12672-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Both lipid metabolism and cyclic RNAs (circRNAs) have been found to be involved in pancreatic adenocarcinoma (PAAD) progression, but the relationship between lipid metabolism and circRNAs remains unclear. METHODS The expression levels of miR-223-3p, circ_0124346, and acyl-CoA synthetase long chain family member 3 (ACSL3) were determined through qRT-PCR and Western blot analysis. Cell proliferation was evaluated using the CCK-8 and EdU incorporation assays. Cholesterol (CH) and triglyceride (TG) levels were quantified using relevant kits. The relationships between miR-223-3p and circ_0124346 or ACSL3 mRNA were examined by bioinformatics analysis, luciferase reporter, RNA-RNA pull-down, and RIP assays. RESULTS We observed a significant elevation in circ_0124346 expression in both pancreatic adenocarcinoma (PAAD) tissues and cell lines, and its expression level was shown to be correlated with tumor size. Circ_0124346 stimulated cell proliferation and facilitated lipid synthesis in PAAD cells. Additionally, we found that circ_0124346 functioned as a sponge for miR-223-3p, preventing miR-223-3p's binding to the 3'-UTR of ACSL3 mRNA, which subsequently led to an elevation in ACSL3 expression and promoted lipid synthesis. Accordingly, circ_0124346 knockdown resulted in a significant decrease in lipid synthesis and cell proliferation in PAAD cells, with partial reversal of these effects achieved via inhibiting miR-223-3p or overexpressing ACSL3. CONCLUSION Our study demonstrated that circ_0124346 regulates lipid metabolism in PAAD cells via the miR-223-3p/ACSL3 axis, suggesting that targeting circ_0124346 may serve as a potential strategy for treating PAAD and assisting in its diagnosis.
Collapse
Affiliation(s)
- Meng-Lu Shu
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Wan-Ting Yang
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Hui-Min Li
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Cui-Juan Qian
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Xiao-Sheng Teng
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Jun Yao
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| |
Collapse
|
9
|
Lee JE, Lee S, Park HJ, Hwang JA, Choi SY, Lee J. Imaging classification of pancreatic ductal adenocarcinoma with histological large duct pattern. Eur Radiol 2024; 34:7015-7024. [PMID: 38806802 DOI: 10.1007/s00330-024-10810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVES To investigate the imaging features of pancreatic ductal adenocarcinoma (PDAC) with histological large duct pattern. METHODS Our study included 37 patients (mean age, 66.5 years; 22 women) with surgically proven PDAC with histological large duct pattern, whose imaging features were classified into four types: Type I, solid mass; Type II, predominantly cystic mass with intracystic solid components; Type III, predominantly solid mass with intratumoral cysts; and Type IV, solid mass with peritumoral retention cysts or pseudocysts. Two radiologists independently analyzed both CT and MRI images for the morphological type, presence of abrupt main pancreatic duct (MPD) cutoff, adjacent vascular invasion, diffusion restriction, and reached consensus. RESULTS On CT, 26 patients (70.3%) had Type I tumors, five (13.5%) had Type II, three (8.1%) had Type III, and three (8.1%) had Type IV. Among the 26 patients with Type I tumors on CT, 16 had tumors with multiple intratumoral cysts within the solid mass on MRI and were subsequently classified as Type III. Accordingly, 10 patients (27.0%) were classified as Type I, five (13.5%) as Type II, 19 (51.7%) as Type III, and three (8.1%) as Type IV on MRI. Of the 37 patients, 27 (73.0%) had an abrupt MPD cutoff, 15 (40.5%) had adjacent vascular invasion, and 25 (67.6%) had diffusion restriction on MRI. CONCLUSIONS Predominantly solid pancreatic masses with small intratumoral cysts visualized on MRI may be a characteristic imaging finding of PDAC with histological large duct pattern, and differentiate it from conventional PDAC or other cystic pancreatic tumors. CLINICAL RELEVANCE STATEMENT Radiologists should be familiar with the various imaging features of PDAC with histological large duct pattern and should be aware that it may mimic other solid or cystic tumors of the pancreas. KEY POINTS Imaging features of pancreatic ductal adenocarcinoma with histological large duct pattern can be classified into four types. This pathology more frequently appears as a predominantly solid mass with intratumoral cysts on MRI than on CT. Adding MRI to CT may help identify pancreatic ductal adenocarcinoma with histological large duct pattern.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Radiology, Soonchunhyang University College of Medicine, Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Sunyoung Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hee Jun Park
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Ah Hwang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Seo-Youn Choi
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Jisun Lee
- Department of Radiology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| |
Collapse
|
10
|
Láinez Ramos-Bossini AJ, Gámez Martínez A, Luengo Gómez D, Valverde-López F, Melguizo C, Prados J. Prevalence of Sarcopenia Determined by Computed Tomography in Pancreatic Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Cancers (Basel) 2024; 16:3356. [PMID: 39409977 PMCID: PMC11475355 DOI: 10.3390/cancers16193356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction: Sarcopenia, a condition characterized by a loss of skeletal muscle mass, is increasingly recognized as a significant factor influencing patient outcomes in pancreatic cancer (PC). This systematic review and meta-analysis aimed to estimate the prevalence of sarcopenia in patients with PC using computed tomography and to explore how different measurement methods and cut-off values impact such prevalence. Materials and Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a comprehensive search of PubMed, Web of Science, and EMBASE databases was performed, identifying 48 observational studies involving 9063 patients. Results: The overall pooled prevalence of sarcopenia was 45% (95% CI, 40-50%), but varied significantly by the method used: 47% when measured with the skeletal muscle index and 33% when assessed with the total psoas area. In addition, in studies using SMI, sarcopenia prevalence was 19%, 45%, and 57% for cutoff values <40 cm2/m2, 40-50 cm2/m2, and >50 cm2/m2, respectively. Moreover, the prevalence was higher in patients receiving palliative care (50%) compared to those treated with curative intent (41%). High heterogeneity was observed across all analyses, underscoring the need for standardized criteria in sarcopenia assessment. Conclusions: Our findings highlight the substantial variability in sarcopenia prevalence, which could influence patient outcomes, and stress the importance of consensus in measurement techniques to improve clinical decision making and research comparability.
Collapse
Affiliation(s)
- Antonio Jesús Láinez Ramos-Bossini
- Department of Radiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (A.G.M.); (D.L.G.)
- Advanced Medical Imaging Group (TeCe-22), Instituto Biosanitario de Granada, 18016 Granada, Spain
| | - Antonio Gámez Martínez
- Department of Radiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (A.G.M.); (D.L.G.)
| | - David Luengo Gómez
- Department of Radiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (A.G.M.); (D.L.G.)
- Advanced Medical Imaging Group (TeCe-22), Instituto Biosanitario de Granada, 18016 Granada, Spain
| | - Francisco Valverde-López
- Department of Gastroenterology and Hepatology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain;
| | - Consolación Melguizo
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; (C.M.); (J.P.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - José Prados
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; (C.M.); (J.P.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| |
Collapse
|
11
|
Basar E, Mead H, Shum B, Rauter I, Ay C, Skaletz-Rorowski A, Brockmeyer NH. Biological Barriers for Drug Delivery and Development of Innovative Therapeutic Approaches in HIV, Pancreatic Cancer, and Hemophilia A/B. Pharmaceutics 2024; 16:1207. [PMID: 39339243 PMCID: PMC11435036 DOI: 10.3390/pharmaceutics16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Biological barriers remain a major obstacle for the development of innovative therapeutics. Depending on a disease's pathophysiology, the involved tissues, cell populations, and cellular components, drugs often have to overcome several biological barriers to reach their target cells and become effective in a specific cellular compartment. Human biological barriers are incredibly diverse and include multiple layers of protection and obstruction. Importantly, biological barriers are not only found at the organ/tissue level, but also include cellular structures such as the outer plasma membrane, the endolysosomal machinery, and the nuclear envelope. Nowadays, clinicians have access to a broad arsenal of therapeutics ranging from chemically synthesized small molecules, biologicals including recombinant proteins (such as monoclonal antibodies and hormones), nucleic-acid-based therapeutics, and antibody-drug conjugates (ADCs), to modern viral-vector-mediated gene therapy. In the past decade, the therapeutic landscape has been changing rapidly, giving rise to a multitude of innovative therapy approaches. In 2018, the FDA approval of patisiran paved the way for small interfering RNAs (siRNAs) to become a novel class of nucleic-acid-based therapeutics, which-upon effective drug delivery to their target cells-allow to elegantly regulate the post-transcriptional gene expression. The recent approvals of valoctocogene roxaparvovec and etranacogene dezaparvovec for the treatment of hemophilia A and B, respectively, mark the breakthrough of viral-vector-based gene therapy as a new tool to cure disease. A multitude of highly innovative medicines and drug delivery methods including mRNA-based cancer vaccines and exosome-targeted therapy is on the verge of entering the market and changing the treatment landscape for a broad range of conditions. In this review, we provide insights into three different disease entities, which are clinically, scientifically, and socioeconomically impactful and have given rise to many technological advancements: acquired immunodeficiency syndrome (AIDS) as a predominant infectious disease, pancreatic carcinoma as one of the most lethal solid cancers, and hemophilia A/B as a hereditary genetic disorder. Our primary objective is to highlight the overarching principles of biological barriers that can be identified across different disease areas. Our second goal is to showcase which therapeutic approaches designed to cross disease-specific biological barriers have been promising in effectively treating disease. In this context, we will exemplify how the right selection of the drug category and delivery vehicle, mode of administration, and therapeutic target(s) can help overcome various biological barriers to prevent, treat, and cure disease.
Collapse
Affiliation(s)
- Emre Basar
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | | | - Bennett Shum
- GenePath LLC, Sydney, NSW 2067, Australia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | | | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriane Skaletz-Rorowski
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | - Norbert H. Brockmeyer
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| |
Collapse
|
12
|
Hu F, Bai Z, Yan K, Zhang Z, Zhou J. A five-gene prognosis model based on lysine β-hydroxybutyrylation site genes to predict the survival and therapy response in pancreatic adenocarcinoma. Heliyon 2024; 10:e34284. [PMID: 39816360 PMCID: PMC11734053 DOI: 10.1016/j.heliyon.2024.e34284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 01/18/2025] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is one of the most malignancy diseases. Lysine β-hydroxybutyrylation (Kbhb) has been reported to involve various metabolism and cancer progression. Methods Data from online databases (TCGA and GEO) were retrieved for the selection of differential expressed Kbhb site genes (DTRGs). Univariate cox and LASSO analysis were performed to identify the prognostic DTRGs. Based on the optimal DTRGs, a prognostic risk score model was established. Kaplan-Meier and Receiver operator characteristic analysis were conducted to evaluate the predicting ability of the prognosis model. Generated with clinical data, independent analysis and nomogram model were performed. Finally, the differences of survival, immune cell levels, immunotherapy response, drug sensitivity between high- and low-risk groups were explored. Results A total of 63 DTRGs were identified in PAAD, and these genes were related to cell division and apoptosis biological functions. Through univariate cox regression and LASSO analysis, 30 DTRGs were selected to be related to prognosis and five (KRT18, ANLN, ECT2, RBM5, and RBM6) were identified as the optimal DTRGs in PAAD. Based on the five optimal DTRGs, a prognostic risk score model was constructed, with promising predictive ability in PAAD survival (AUC >0.70). High-risk group showed lower survival rate (P < 0.05). Moreover, based on the risk score, a nomogram model was also established, which possessed perfect stability. Finally, lower risk score was related to higher immune cell levels, indicating an immune activation in low-risk status, which maybe the reason for the better survival in low-risk group. Furthermore, the immunotherapy response and drug sensitivity were all higher than that in low-risk groups (P < 0.05). Conclusion A five-gene prognosis risk model which exhibit promising predictive ability in survival is constructed for patients with PAAD.
Collapse
Affiliation(s)
- Fangfang Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zhibin Bai
- Center of interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Kai Yan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zheng Zhang
- Medical School, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jiahua Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
13
|
Topkan E, Senyurek S, Kılic Durankus N, Ozturk D, Selek U. Novel Somay's GLUCAR Index Efficiently Predicts Survival Outcomes in Locally Advanced Pancreas Cancer Patients Receiving Definitive Chemoradiotherapy: A Propensity-Score-Matched Cohort Analysis. J Pers Med 2024; 14:746. [PMID: 39064000 PMCID: PMC11278407 DOI: 10.3390/jpm14070746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Propensity score matching (PSM) was used to investigate the prognostic value of a novel GLUCAR index [Glucose × (C-reactive protein ÷ albumin)] in unresectable locally advanced pancreatic cancer (LA-NPC) patients who received definitive concurrent chemoradiotherapy (CCRT). METHODS The PSM analysis comprised 142 LA-PAC patients subjected to definitive CCRT. Receiver operating characteristic (ROC) curve analysis was utilized to identify relevant pre-CCRT cutoffs that could effectively stratify survival results. The primary and secondary objectives were the correlations between the pre-CCRT GLUCAR measures and overall survival (OS) and progression-free survival (PFS). RESULTS The ROC analysis revealed significance at 43.3 for PFS [area under the curve (AUC): 85.1%; sensitivity: 76.8%; specificity: 74.2%; J-index: 0.510)] and 42.8 for OS (AUC: 81.8%; sensitivity: 74.2%; specificity: 71.7%; J-index: 0.459). Given that these cutoff points were close, the standard cutoff point, 42.8, was selected for further analysis. Comparative survival analyses showed that pre-CCRT GLUCAR ≥ 42.8 (n = 71) measures were associated with significantly shorter median PFS (4.7 vs. 15.8 months; p < 0.001) and OS (10.1 vs. 25.4 months; p < 0.001) durations compared to GLUCAR < 42.8 measures (n = 71). The multivariate analysis results confirmed the independent significance of the GLUCAR index on PFS (p < 0.001) and OS (p < 0.001) outcomes. CONCLUSIONS Elevated pre-CCRT GLUCAR levels are robustly and independently linked to significantly poorer PFS and OS outcomes in unresectable LA-PAC patients treated with definitive CCRT.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana 01120, Turkey
| | - Sukran Senyurek
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul 34450, Turkey; (S.S.); (N.K.D.); (U.S.)
| | - Nulifer Kılic Durankus
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul 34450, Turkey; (S.S.); (N.K.D.); (U.S.)
| | - Duriye Ozturk
- Department of Radiation Oncology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| | - Ugur Selek
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul 34450, Turkey; (S.S.); (N.K.D.); (U.S.)
| |
Collapse
|
14
|
Zhu H, Choi J, Kui N, Yang T, Wei P, Li D, Sun R. Identification of Pancreatic Cancer Germline Risk Variants With Effects That Are Modified by Smoking. JCO Precis Oncol 2024; 8:e2300355. [PMID: 38564682 PMCID: PMC11000774 DOI: 10.1200/po.23.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Pancreatic cancer (PC) is a deadly disease most often diagnosed in late stages. Identification of high-risk subjects could both contribute to preventative measures and help diagnose the disease at earlier timepoints. However, known risk factors, assessed independently, are currently insufficient for accurately stratifying patients. We use large-scale data from the UK Biobank (UKB) to identify genetic variant-smoking interaction effects and show their importance in risk assessment. METHODS We draw data from 15,086,830 genetic variants and 315,512 individuals in the UKB. There are 765 cases of PC. Crucially, robust resampling corrections are used to overcome well-known challenges in hypothesis testing for interactions. Replication analysis is conducted in two independent cohorts totaling 793 cases and 570 controls. Integration of functional annotation data and construction of polygenic risk scores (PRS) demonstrate the additional insight provided by interaction effects. RESULTS We identify the genome-wide significant variant rs77196339 on chromosome 2 (per minor allele odds ratio in never-smokers, 2.31 [95% CI, 1.69 to 3.15]; per minor allele odds ratio in ever-smokers, 0.53 [95% CI, 0.30 to 0.91]; P = 3.54 × 10-8) as well as eight other loci with suggestive evidence of interaction effects (P < 5 × 10-6). The rs77196339 region association is validated (P < .05) in the replication sample. PRS incorporating interaction effects show improved discriminatory ability over PRS of main effects alone. CONCLUSION This study of genome-wide germline variants identified smoking to modify the effect of rs77196339 on PC risk. Interactions between known risk factors can provide critical information for identifying high-risk subjects, given the relative inadequacy of models considering only main effects, as demonstrated in PRS. Further studies are necessary to advance toward comprehensive risk prediction approaches for PC.
Collapse
Affiliation(s)
- Huili Zhu
- Section of Hematology and Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jaihee Choi
- Department of Statistics, Rice University, Houston, Texas
| | - Naishu Kui
- Department of Biostatistics, University of Texas School of Public Health, Houston, Texas
| | - Tianzhong Yang
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Peng Wei
- Department of Biostatistics, Division of Basic Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ryan Sun
- Department of Biostatistics, Division of Basic Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Wang X, Ren T, Liao C, Xie Y, Cao J. An immunogenic cell death-related gene expression signature in predicting prognosis of pancreatic ductal adenocarcinoma. BMC Genomics 2024; 25:205. [PMID: 38395786 PMCID: PMC10885505 DOI: 10.1186/s12864-024-10106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) has been identified as regulated cell death, which is sufficient to activate the adaptive immune response. This study aimed to research ICD-related genes and create a gene model to predict pancreatic ductal adenocarcinoma (PAAD) patients' prognosis. METHODS The RNA sequencing and clinical data were downloaded from the TGCA and GEO databases. The PAAD samples were classified into two subtypes based on the expression levels of ICD-related genes using consensus clustering. Based on the differentially expressed genes (DEGs), a prognostic scoring model was constructed using LASSO regression and Cox regression, and the scoring model was used to predict the prognosis of PAAD patients. Moreover, colony formation assay was performed to confirm the prognostic value of those genes. RESULTS We identified two ICD cluster by consensus clustering, and found that the the ICD-high group was closely associated with immune-hot phenotype, favorable clinical outcomes. We established an ICD-related prognostic model which can predict the prognosis of pancreatic ductal adenocarcinoma. Moreover, depletion of NT5E, ATG5, FOXP3, and IFNG inhibited the colony formation ability of pancreatic cancer cell. CONCLUSION We identified a novel classification for PAAD based on the expression of ICD-related genes, which may provide a potential strategy for therapeutics against PAAD.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| | | | - Chuting Liao
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Xie
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Jing Cao
- Department of Breast Surgery, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
16
|
Ünal P, Lu Y, Bueno-de-Mesquita B, van Eijck CHJ, Talar-Wojnarowska R, Szentesi A, Gazouli M, Kreivenaite E, Tavano F, Małecka-Wojciesko E, Erőss B, Oliverius M, Bunduc S, Nóbrega Aoki M, Vodickova L, Boggi U, Giaccherini M, Kondrackiene J, Chammas R, Palmieri O, Theodoropoulos GE, Bijlsma MF, Basso D, Mohelnikova-Duchonova B, Soucek P, Izbicki JR, Kiudelis V, Vanella G, Arcidiacono PG, Włodarczyk B, Hackert T, Schöttker B, Uzunoglu FG, Bambi F, Goetz M, Hlavac V, Brenner H, Perri F, Carrara S, Landi S, Hegyi P, Dijk F, Maiello E, Capretti G, Testoni SGG, Petrone MC, Stocker H, Ermini S, Archibugi L, Gentiluomo M, Cavestro GM, Pezzilli R, Di Franco G, Milanetto AC, Sperti C, Neoptolemos JP, Morelli L, Vokacova K, Pasquali C, Lawlor RT, Bazzocchi F, Kupcinskas J, Capurso G, Campa D, Canzian F. Polymorphisms in transcription factor binding sites and enhancer regions and pancreatic ductal adenocarcinoma risk. Hum Genomics 2024; 18:12. [PMID: 38308339 PMCID: PMC10837899 DOI: 10.1186/s40246-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
Genome-wide association studies (GWAS) are a powerful tool for detecting variants associated with complex traits and can help risk stratification and prevention strategies against pancreatic ductal adenocarcinoma (PDAC). However, the strict significance threshold commonly used makes it likely that many true risk loci are missed. Functional annotation of GWAS polymorphisms is a proven strategy to identify additional risk loci. We aimed to investigate single-nucleotide polymorphisms (SNP) in regulatory regions [transcription factor binding sites (TFBSs) and enhancers] that could change the expression profile of multiple genes they act upon and thereby modify PDAC risk. We analyzed a total of 12,636 PDAC cases and 43,443 controls from PanScan/PanC4 and the East Asian GWAS (discovery populations), and the PANDoRA consortium (replication population). We identified four associations that reached study-wide statistical significance in the overall meta-analysis: rs2472632(A) (enhancer variant, OR 1.10, 95%CI 1.06,1.13, p = 5.5 × 10-8), rs17358295(G) (enhancer variant, OR 1.16, 95%CI 1.10,1.22, p = 6.1 × 10-7), rs2232079(T) (TFBS variant, OR 0.88, 95%CI 0.83,0.93, p = 6.4 × 10-6) and rs10025845(A) (TFBS variant, OR 1.88, 95%CI 1.50,1.12, p = 1.32 × 10-5). The SNP with the most significant association, rs2472632, is located in an enhancer predicted to target the coiled-coil domain containing 34 oncogene. Our results provide new insights into genetic risk factors for PDAC by a focused analysis of polymorphisms in regulatory regions and demonstrating the usefulness of functional prioritization to identify loci associated with PDAC risk.
Collapse
Affiliation(s)
- Pelin Ünal
- Genomic Epidemiology Group, German Cancer Research Center, In Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ye Lu
- Genomic Epidemiology Group, German Cancer Research Center, In Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Edita Kreivenaite
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | | | - Bálint Erőss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Curitiba, PR, Brazil
| | - Ludmila Vodickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzeň, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | | | - Jurate Kondrackiene
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Roger Chammas
- Department of Radiology and Oncology, Institute of Cancer of São Paulo, São Paulo, Brazil
| | - Orazio Palmieri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | - George E Theodoropoulos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center of Experimental Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Daniela Basso
- Department of Medicine, Laboratory Medicine, University of Padova, Padua, Italy
| | | | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzeň, Czech Republic
| | - Jakob R Izbicki
- Department of General Visceral and Thoracic Surgery, University of Hamburg Medical Institutions, Hamburg, Germany
| | - Vytautas Kiudelis
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giuseppe Vanella
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, S. Andrea Hospital, Rome, Italy
| | - Paolo Giorgio Arcidiacono
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Włodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Thilo Hackert
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Faik G Uzunoglu
- Department of General Visceral and Thoracic Surgery, University of Hamburg Medical Institutions, Hamburg, Germany
| | - Franco Bambi
- Blood Transfusion Service, Meyer Children's Hospital, Florence, Italy
| | - Mara Goetz
- Department of General Visceral and Thoracic Surgery, University of Hamburg Medical Institutions, Hamburg, Germany
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzeň, Czech Republic
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | - Silvia Carrara
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Frederike Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | - Giovanni Capretti
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sabrina Gloria Giulia Testoni
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Petrone
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Stefano Ermini
- Blood Transfusion Service, Meyer Children's Hospital, Florence, Italy
| | - Livia Archibugi
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, S. Andrea Hospital, Rome, Italy
| | | | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - John P Neoptolemos
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Klara Vokacova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Rita T Lawlor
- Department of Diagnostics and Public Health, ARC-Net Centre for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Francesca Bazzocchi
- Department of Surgery, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | - Juozas Kupcinskas
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gabriele Capurso
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, S. Andrea Hospital, Rome, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, In Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Shu ML, Xia JK, Yan J, Feng YJ, Qian CJ, Teng XS, Yao J. Circ_0002395 promotes aerobic glycolysis and proliferation in pancreatic adenocarcinoma cells via miR-548c-3p/PDK1 axis. J Bioenerg Biomembr 2024; 56:55-71. [PMID: 38041751 DOI: 10.1007/s10863-023-09995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Circular RNAs (circRNAs) showing unusual expressions have been discovered in pancreatic adenocarcinoma (PAAD). However, the functions and underlying mechanisms of these circRNAs still remain largely unclear. Our current study discovered a notable increase in the expression of circRNA hsa_circ_0002395 (circ_0002395) in both PAAD tissues and cell lines. This up-regulation of circ_0002395 was found to be associated with larger tumor sizes and lymph node metastasis. Furthermore, our findings showed that circ_0002395 facilitated aerobic glycolysis and cell proliferation in PAAD cells by regulating the miR-548c-3p/PDK1 axis. Mechanistically, we identified circ_0002395 as a competing endogenous RNA (ceRNA) that sponged miR-548c-3p, thereby promoting PDK1 expression and aerobic glycolysis, and ultimately resulting in the enhancement of cell proliferation. Our findings found that circ_0002395 promoted proliferation of PAAD cells by enhancing PDK1 expression and aerobic glycolysis by sponging miR-548c-3p.
Collapse
Affiliation(s)
- Meng-Lu Shu
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jun-Kai Xia
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jing Yan
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yu-Jie Feng
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Cui-Juan Qian
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Xiao-Sheng Teng
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Jun Yao
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| |
Collapse
|
18
|
Srilatha M, Malla R, Adem MP, Foote JB, Nagaraju GP. Obesity associated pancreatic ductal adenocarcinoma: Therapeutic challenges. Semin Cancer Biol 2023; 97:12-20. [PMID: 37926347 DOI: 10.1016/j.semcancer.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Obesity is a prominent health issue worldwide and directly impacts pancreatic health, with obese individuals exhibiting a significant risk for increasing pancreatic ductal adenocarcinoma (PDAC). Several factors potentially explain the increased risk for the development of PDAC, including obesity-induced chronic inflammation within and outside of the pancreas, development of insulin resistance and metabolic dysfunction, promotion of immune suppression within the pancreas during inflammation, pre- and malignant stages, variations in hormones levels (adiponectin, ghrelin, and leptin) produced from the adipose tissue, and acquisition of somatic mutations in tumor once- and suppressor proteins critical for pancreatic tumorigenesis. In this manuscript, we will explore the broad impact of these obesity-induced risk factors on the development and progression of PDAC, focusing on changes within the tumor microenvironment (TME) as they pertain to prevention, current therapeutic strategies, and future directions for targeting obesity management as they relate to the prevention of pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | - Ramarao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Megha Priya Adem
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh 517502, India
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | |
Collapse
|
19
|
Hamdy Gad E. Pancreatic Cancer: Updates in Pathogenesis and Therapies. PANCREATIC CANCER- UPDATES IN PATHOGENESIS, DIAGNOSIS AND THERAPIES 2023. [DOI: 10.5772/intechopen.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Despite the progress in pancreatic cancer (PC) chemo/radiotherapies, immunotherapies, and novel targeted therapies and the improvement in its peri-operative management policies, it still has a dismal catastrophic prognosis due to delayed detection, early neural and vascular invasions, early micro-metastatic spread, tumour heterogeneities, drug resistance either intrinsic or acquired, unique desmoplastic stroma, and tumour microenvironment (TME). Understanding tumour pathogenesis at the detailed genetic/epigenetic/metabolic/molecular levels as well as studying the tumour risk factors and its known precancerous lesions aggressively is required for getting a more successful therapy for this challenging tumour. For a better outcome of this catastrophic tumour, it should be diagnosed early and treated through multidisciplinary teams of surgeons, gastroenterologists/interventional upper endoscopists, medical/radiation oncologists, diagnostic/intervention radiologists, and pathologists at high-volume centres. Moreover, surgical resection with a negative margin (R0) is the only cure for it. In this chapter; we discuss the recently updated knowledge of PC pathogenesis, risk factors, and precancerous lesions as well as its different management tools (i.e. surgery, chemo/radiotherapies, immunotherapies, novel targeted therapies, local ablative therapies, etc.).
Collapse
|
20
|
Miller FH, Lopes Vendrami C, Hammond NA, Mittal PK, Nikolaidis P, Jawahar A. Pancreatic Cancer and Its Mimics. Radiographics 2023; 43:e230054. [PMID: 37824413 DOI: 10.1148/rg.230054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common primary pancreatic malignancy, ranking fourth in cancer-related mortality in the United States. Typically, PDAC appears on images as a hypovascular mass with upstream pancreatic duct dilatation and abrupt duct cutoff, distal pancreatic atrophy, and vascular encasement, with metastatic involvement including lymphadenopathy. However, atypical manifestations that may limit detection of the underlying PDAC may also occur. Atypical PDAC features include findings related to associated conditions such as acute or chronic pancreatitis, a mass that is isointense to the parenchyma, multiplicity, diffuse tumor infiltration, associated calcifications, and cystic components. Several neoplastic and inflammatory conditions can mimic PDAC, such as paraduodenal "groove" pancreatitis, autoimmune pancreatitis, focal acute and chronic pancreatitis, neuroendocrine tumors, solid pseudopapillary neoplasms, metastases, and lymphoma. Differentiation of these conditions from PDAC can be challenging due to overlapping CT and MRI features; however, certain findings can help in differentiation. Diffusion-weighted MRI can be helpful but also can be nonspecific. Accurate diagnosis is pivotal for guiding therapeutic planning and potential outcomes in PDAC and avoiding biopsy or surgical treatment of some of these mimics. Biopsy may still be required for diagnosis in some cases. The authors describe the typical and atypical imaging findings of PDAC and features that may help to differentiate PDAC from its mimics. ©RSNA, 2023 Online supplemental material is available for this article. Quiz questions for this article are available through the Online Learning Center. See the invited commentary by Zins in this issue.
Collapse
Affiliation(s)
- Frank H Miller
- From the Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Chicago, IL 60611 (F.H.M., C.L.V., N.A.H., P.N., A.J.); and Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA (P.K.M.)
| | - Camila Lopes Vendrami
- From the Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Chicago, IL 60611 (F.H.M., C.L.V., N.A.H., P.N., A.J.); and Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA (P.K.M.)
| | - Nancy A Hammond
- From the Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Chicago, IL 60611 (F.H.M., C.L.V., N.A.H., P.N., A.J.); and Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA (P.K.M.)
| | - Pardeep K Mittal
- From the Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Chicago, IL 60611 (F.H.M., C.L.V., N.A.H., P.N., A.J.); and Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA (P.K.M.)
| | - Paul Nikolaidis
- From the Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Chicago, IL 60611 (F.H.M., C.L.V., N.A.H., P.N., A.J.); and Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA (P.K.M.)
| | - Anugayathri Jawahar
- From the Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Chicago, IL 60611 (F.H.M., C.L.V., N.A.H., P.N., A.J.); and Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA (P.K.M.)
| |
Collapse
|
21
|
Wall NR, Fuller RN, Morcos A, De Leon M. Pancreatic Cancer Health Disparity: Pharmacologic Anthropology. Cancers (Basel) 2023; 15:5070. [PMID: 37894437 PMCID: PMC10605341 DOI: 10.3390/cancers15205070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic cancer (PCa) remains a formidable global health challenge, with high mortality rates and limited treatment options. While advancements in pharmacology have led to improved outcomes for various cancers, PCa continues to exhibit significant health disparities, disproportionately affecting certain populations. This paper explores the intersection of pharmacology and anthropology in understanding the health disparities associated with PCa. By considering the socio-cultural, economic, and behavioral factors that influence the development, diagnosis, treatment, and outcomes of PCa, pharmacologic anthropology provides a comprehensive framework to address these disparities and improve patient care.
Collapse
Affiliation(s)
- Nathan R. Wall
- Division of Biochemistry, Department of Basic Science, Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (R.N.F.); (A.M.)
| | - Ryan N. Fuller
- Division of Biochemistry, Department of Basic Science, Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (R.N.F.); (A.M.)
| | - Ann Morcos
- Division of Biochemistry, Department of Basic Science, Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (R.N.F.); (A.M.)
| | - Marino De Leon
- Division of Physiology, Department of Basic Science, Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| |
Collapse
|
22
|
Jiang X, Lee MJ, Luo T, Tillman L, Lin W. Co-delivery of three synergistic chemotherapeutics in a core-shell nanoscale coordination polymer for the treatment of pancreatic cancer. Biomaterials 2023; 301:122235. [PMID: 37441902 PMCID: PMC10528488 DOI: 10.1016/j.biomaterials.2023.122235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
The combination chemotherapy regimen FOLFIRINOX comprising folinic acid, 5-fluorouracil, irinotecan, and oxaliplatin is the first-line treatment for patients with advanced pancreatic cancer, but its use remains prohibitive for the majority of patients due to severe side effects. Here, we report a core-shell nanoscale coordination polymer (NCP) nanoparticle co-delivering a potent and synergistic combination of oxaliplatin, gemcitabine, and SN38 (OGS), for the treatment of pancreatic cancer in mouse models. OGS contains key synergistic components of FOLFIRINOX in a controllable drug ratio., It exhibited particle stability in blood circulation and enhanced deposition of the drugs in acidic tumor environments. In vitro, OGS showed superior cytotoxicity over free drug combinations and robust cytotoxic synergism among its three components. In vivo, OGS improved drug circulation, increased tumor deposition, and exhibited superior antitumor efficacy over the free drug combination in both subcutaneous and orthotopic pancreatic tumor models. OGS treatment achieved 75-91% tumor growth inhibition and prolonged mouse survival by 1.6- to 2.8-folds while minimizing systemic toxicities such as neutropenia, hepatotoxicity, and renal toxicity. This work uncovers a novel and clinically relevant nanomedicine strategy to co-deliver synergistic combination chemotherapies for difficult-to-treat cancers.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Morten J Lee
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758, S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|