1
|
Parente A, Kasahara M, De Meijer VE, Hashimoto K, Schlegel A. Efficiency of machine perfusion in pediatric liver transplantation. Liver Transpl 2024; 30:1188-1199. [PMID: 38619390 PMCID: PMC11472901 DOI: 10.1097/lvt.0000000000000381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Liver transplantation is the only life-saving procedure for children with end-stage liver disease. The field is however heterogenic with various graft types, recipient age, weight, and underlying diseases. Despite recently improved overall outcomes and the expanded use of living donors, waiting list mortality remains unacceptable, particularly in small children and infants. Based on the known negative effects of elevated donor age, higher body mass index, and prolonged cold ischemia time, the number of available donors for pediatric recipients is limited. Machine perfusion has regained significant interest in the adult liver transplant population during the last decade. Ten randomized controlled trials are published with an overall advantage of machine perfusion techniques over cold storage regarding postoperative outcomes, including graft survival. The concept of hypothermic oxygenated perfusion (HOPE) was the first and only perfusion technique used for pediatric liver transplantation today. In 2018 the first pediatric candidate received a full-size graft donated after circulatory death with cold storage and HOPE, followed by a few split liver transplants after HOPE with an overall limited case number until today. One series of split procedures during HOPE was recently presented by colleagues from France with excellent results, reduced complications, and better graft survival. Such early experience paves the way for more systematic use of machine perfusion techniques for different graft types for pediatric recipients. Clinical reports of pediatric liver transplants with other perfusion techniques are awaited. Strong collaborative efforts are needed to explore the effect of perfusion techniques in this vulnerable population impacting not only the immediate posttransplant outcome but the development and success of an entire life.
Collapse
Affiliation(s)
- Alessandro Parente
- Department of Surgery, Division of Transplantation, University of Alberta, Edmonton, Alberta, Canada
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, Rome, Italy
| | - Mureo Kasahara
- Department of Surgery, Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Vincent E. De Meijer
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Koji Hashimoto
- Department of Surgery, Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrea Schlegel
- Department of Surgery, Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Maspero M, Yilmaz S, Cazzaniga B, Raj R, Ali K, Mazzaferro V, Schlegel A. The role of ischaemia-reperfusion injury and liver regeneration in hepatic tumour recurrence. JHEP Rep 2023; 5:100846. [PMID: 37771368 PMCID: PMC10523008 DOI: 10.1016/j.jhepr.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 09/30/2023] Open
Abstract
The risk of cancer recurrence after liver surgery mainly depends on tumour biology, but preclinical and clinical evidence suggests that the degree of perioperative liver injury plays a role in creating a favourable microenvironment for tumour cell engraftment or proliferation of dormant micro-metastases. Understanding the contribution of perioperative liver injury to tumour recurrence is imperative, as these pathways are potentially actionable. In this review, we examine the key mechanisms of perioperative liver injury, which comprise mechanical handling and surgical stress, ischaemia-reperfusion injury, and parenchymal loss leading to liver regeneration. We explore how these processes can trigger downstream cascades leading to the activation of the immune system and the pro-inflammatory response, cellular proliferation, angiogenesis, anti-apoptotic signals, and release of circulating tumour cells. Finally, we discuss the novel therapies under investigation to decrease ischaemia-reperfusion injury and increase regeneration after liver surgery, including pharmaceutical agents, inflow modulation, and machine perfusion.
Collapse
Affiliation(s)
- Marianna Maspero
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, Milan, Italy
| | - Sumeyye Yilmaz
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beatrice Cazzaniga
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Roma Raj
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Khaled Ali
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincenzo Mazzaferro
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Parente A, Cho HD, Kim KH, Schlegel A. Association between Hepatocellular Carcinoma Recurrence and Graft Size in Living Donor Liver Transplantation: A Systematic Review. Int J Mol Sci 2023; 24:6224. [PMID: 37047199 PMCID: PMC10093934 DOI: 10.3390/ijms24076224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this work was to assess the association between graft-to-recipient weight ratio (GRWR) in adult-to-adult living donor liver transplantation (LDLT) and hepatocellular carcinoma (HCC) recurrence. A search of the MEDLINE and EMBASE databases was performed until December 2022 for studies comparing different GRWRs in the prognosis of HCC recipients in LDLT. Data were pooled to evaluate 1- and 3-year survival rates. We identified three studies, including a total of 782 patients (168 GRWR < 0.8 vs. 614 GRWR ≥ 0.8%). The pooled overall survival was 85% and 77% at one year and 90% and 83% at three years for GRWR < 0.8 and GRWR ≥ 0.8, respectively. The largest series found that, in patients within Milan criteria, the GRWR was not associated with lower oncological outcomes. However, patients with HCC outside the Milan criteria with a GRWR < 0.8% had lower survival and higher tumor recurrence rates. The GRWR < 0.8% appears to be associated with lower survival rates in HCC recipients, particularly for candidates with tumors outside established HCC criteria. Although the data are scarce, the results of this study suggest that considering the individual GRWR not only as risk factor for small-for-size-syndrome but also as contributor to HCC recurrence in patients undergoing LDLT would be beneficial. Novel perfusion technologies and pharmacological interventions may contribute to improving outcomes.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hwui-Dong Cho
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ki-Hun Kim
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Andrea Schlegel
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
4
|
Goikoetxea‐Usandizaga N, Serrano‐Maciá M, Delgado TC, Simón J, Fernández Ramos D, Barriales D, Cornide M, Jiménez M, Pérez‐Redondo M, Lachiondo‐Ortega S, Rodríguez‐Agudo R, Bizkarguenaga M, Zalamea JD, Pasco ST, Caballero‐Díaz D, Alfano B, Bravo M, González‐Recio I, Mercado‐Gómez M, Gil‐Pitarch C, Mabe J, Gracia‐Sancho J, Abecia L, Lorenzo Ó, Martín‐Sanz P, Abrescia NGA, Sabio G, Rincón M, Anguita J, Miñambres E, Martín C, Berenguer M, Fabregat I, Casado M, Peralta C, Varela‐Rey M, Martínez‐Chantar ML. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals. Hepatology 2022; 75:550-566. [PMID: 34510498 PMCID: PMC9300136 DOI: 10.1002/hep.32149] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.
Collapse
Affiliation(s)
- Naroa Goikoetxea‐Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Marina Serrano‐Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - David Fernández Ramos
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria E. Cornide
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Mónica Jiménez
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | | | - Sofia Lachiondo‐Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Rubén Rodríguez‐Agudo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maider Bizkarguenaga
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Samuel T. Pasco
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Daniel Caballero‐Díaz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain
| | - Benedetta Alfano
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Miren Bravo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Irene González‐Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria Mercado‐Gómez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Clàudia Gil‐Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jon Mabe
- Electronics and Communications Unit, IK4‐TeknikerEibarSpain
| | - Jordi Gracia‐Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- Liver Vascular Biology Research GroupIDIBAPSBarcelonaSpain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- Immunology, Microbiology and Parasitology Department, Medicine and Nursing FacultyUniversity of the Basque CountryLeioaSpain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular PathologyIIS‐Fundación Jiménez Díaz‐Universidad Autónoma de Madrid, Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) NetworkMadridSpain
| | - Paloma Martín‐Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- Cell Signalling and Metabolism DepartmentInstituto de Investigaciones Biomédicas “Alberto Sols,” CSIC‐UAMMadridSpain
| | - Nicola G. A. Abrescia
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones CardiovascularesStress Kinases in Diabetes, Cancer and BiochemistryMadridSpain
| | - Mercedes Rincón
- Department of MedicineImmunobiology DivisionUniversity of VermontBurlingtonVermontUSA
| | - Juan Anguita
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Eduardo Miñambres
- Transplant Coordination Unit, Marqués de Valdecilla University Hospital–IDIVAL, Cantabria UniversitySantanderSpain
| | - César Martín
- Biofisika Institute, Centro Superior de Investigaciones Científicas, and Department of Biochemisty, Faculty of Science and TechnologyUniversity of Basque CountryLeioaSpain
| | - Marina Berenguer
- Liver UnitHospital Universitario y Politécnico La FeValenciaSpain
| | - Isabel Fabregat
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain
- Faculty of Medicine and Health SciencesUniversity of BarcelonaL’HospitaletBarcelonaSpain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
- Experimental Metabolic Pathology DepartmentInstituto de Biomedicina de ValenciaIBV‐CSICValenciaSpain
| | - Carmen Peralta
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Marta Varela‐Rey
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - María Luz Martínez‐Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| |
Collapse
|
5
|
Xie S, Qiu C, Sun Y, Yu Y, Hu Z, Zhang K, Chen L, Cheng Y, Bao M, Zhang Q, Zhu J, Grimm R, Shen W. Assessment of Fibrotic Liver Regeneration After Partial Hepatectomy With Intravoxel Incoherent Motion Diffusion-Weighted Imaging: An Experimental Study in a Rat Model With Carbon Tetrachloride Induced Liver Injury. Front Physiol 2022; 13:822763. [PMID: 35250624 PMCID: PMC8894856 DOI: 10.3389/fphys.2022.822763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To determine whether intravoxel incoherent motion (IVIM) parameters correlate with liver regeneration and function recovery after partial hepatectomy (PH) in rats with carbon tetrachloride (CCl4)-induced liver fibrosis. Methods Sixty-two adult Sprague-Dawley rats were divided into the control group and the fibrosis group with CCl4 injection for 8 weeks. At the end of the 8th week, all rats received left lateral lobe liver resection. Within each group, IVIM imaging (n = 10/group) and histologic and biochemical analyses (n = 3/group/time point) were performed pre- and post-PH (on days 1, 2, 3, 5, 7, 14, and 21). Differences in liver IVIM parameters and correlation between IVIM parameters and Ki-67 indices, hepatocyte diameter, alanine transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBil) values were analyzed. Results Post-PH, liver true diffusion coefficient (D) values decreased and pseudodiffusion coefficient (D*) and perfusion fraction (PF) values increased, then recovered to pre-PH levels gradually in both fibrosis and control rats. PF in fibrosis group were significantly higher than in controls from 3 to 21 days (P < 0.05). In fibrosis rats, both Ki-67 indices and hepatocyte diameters increased, and a strong correlation was found between PF and Ki-67 indices (r = −0.756; P = 0.03), D* and PF values and ALT, AST, and TBil values (r = −0.762 to −0.905; P < 0.05). In control rats, only hepatocyte diameters increased, and all IVIM parameters correlated well with hepatocyte diameters, ALT, AST and TBil values (r = 0.810 to −1.000; P < 0.05). Conclusion The regeneration pattern in fibrotic liver tissue was different compared with control livers. IVIM parameters can monitor liver regeneration and functional recovery non-invasively after PH.
Collapse
Affiliation(s)
- Shuangshuang Xie
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Caixin Qiu
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yajie Sun
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yongquan Yu
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Zhandong Hu
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Kun Zhang
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Lihua Chen
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yue Cheng
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Mingzhu Bao
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Quansheng Zhang
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Jinxia Zhu
- Siemens Healthcare (China), Beijing, China
| | | | - Wen Shen
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
- *Correspondence: Wen Shen,
| |
Collapse
|
6
|
Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:cells11040688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
|
7
|
Oliveira RP, Machado IF, Palmeira CM, Rolo AP. The potential role of sestrin 2 in liver regeneration. Free Radic Biol Med 2021; 163:255-267. [PMID: 33359262 DOI: 10.1016/j.freeradbiomed.2020.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Abstract
Liver regeneration is a remarkably complex phenomenon conserved across all vertebrates, enabling the restoration of lost liver mass in a matter of days. Unfortunately, extensive damage to the liver may compromise this process, often leading to the death of affected individuals. Ischemia/reperfusion injury (IRI) is a common source of damage preceding regeneration, often present during liver transplantation, resection, trauma, or hemorrhagic shock. Increased oxidative stress and mitochondrial dysfunction are key hallmarks of IRI, which can jeopardize the liver's ability to regenerate. Therefore, a better understanding of both liver regeneration and IRI is of important clinical significance. In the current review, we discuss the potential role of sestrin 2 (SESN2), a novel anti-aging protein, in liver regeneration and ischemia/reperfusion preceding regeneration. We highlight its beneficial role in protecting cells from mitochondrial dysfunction and oxidative stress as key aspects of its involvement in liver regeneration. Additionally, we describe how its ability to promote the expression of Nrf2 bears significant importance in this context. Finally, we focus on a potential novel link between SESN2, mitohormesis and ischemic preconditioning, which could explain some of the protective effects of preconditioning.
Collapse
Affiliation(s)
- Raúl P Oliveira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ivo F Machado
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Anabela P Rolo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
8
|
Alexandrino H, Palmeira C. Correspondence. Br J Surg 2018; 106:152. [PMID: 30582645 DOI: 10.1002/bjs.11055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- H Alexandrino
- Serviço de Cirurgia A dos Hospitais da Universidade de Coimbra - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculdade de Medicina - Universidade de Coimbra, Coimbra, Portugal
| | - C Palmeira
- Departamento de Ciências da Vida - Faculdade de Ciências e Tecnologia - Universidade de Coimbra, Coimbra, Portugal.,Centro de Neurociências e Biologia Celular - Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Adlbrecht C, Blanco-Verea A, Bouzas-Mosquera MC, Brion M, Burtscher M, Carbone F, Chang TT, Charmandari E, Chen JW, Correia-Costa L, Dullaart RPF, Eleftheriades M, Fernandez-Fernandez B, Goliasch G, Gremmel T, Groeneveld ME, Henrique A, Huelsmann M, Jung C, Lichtenauer M, Montecucco F, Nicolaides NC, Niessner A, Palmeira C, Pirklbauer M, Sanchez-Niño MD, Sotiriadis A, Sousa T, Sulzgruber P, van Beek AP, Veronese N, Winter MP, Yeung KK, Bouzas-Mosquera A. Research update for articles published in EJCI in 2016. Eur J Clin Invest 2018; 48:e13016. [PMID: 30099749 DOI: 10.1111/eci.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher Adlbrecht
- Fourth Medical Department, Hietzing Hospital, Karl Landsteiner Institute for Cardiovascular and Intensive Care Research, Vienna, Austria
| | - Alejandro Blanco-Verea
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Servicio de Cardiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain.,Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | | | - María Brion
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Servicio de Cardiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain.,Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | | | - Federico Carbone
- First Clinical of Internal Medicine Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Ting-Ting Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jaw-Wen Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Liane Correia-Costa
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Department of Pediatric Nephrology, Centro Materno-Infantil do Norte, Centro Hospitalar do Porto, Porto, Portugal
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, Groningen, the Netherlands.,University Medical Center, Groningen, the Netherlands
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Menno Evert Groeneveld
- Department of Vascular Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands.,Department of Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Alexandrino Henrique
- Serviço de Cirurgia A - Centro Hospitalar e Universitário de Coimbra, Faculdade de Medicina - Universidade de Coimbra, Coimbra, Portugal
| | - Martin Huelsmann
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alexander Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Carlos Palmeira
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Markus Pirklbauer
- Department for Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | | | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynecology, "Hippokrateion" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Teresa Sousa
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Patrick Sulzgruber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - André P van Beek
- Department of Endocrinology, University of Groningen, Groningen, the Netherlands.,University Medical Center, Groningen, the Netherlands
| | - Nicola Veronese
- Neuroscience Institute, National Research Council, Padova, Italy
| | - Max-Paul Winter
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Kak Khee Yeung
- Department of Vascular Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands.,Department of Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Alberto Bouzas-Mosquera
- Unidad de Imagen y Función Cardiacas, Servicio de Cardiología, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| |
Collapse
|
10
|
Effects of hepatic blood inflow on liver ultrastructure and regeneration after extensive liver resection in rats with cirrhosis. Exp Ther Med 2018; 16:2573-2583. [PMID: 30210605 PMCID: PMC6122590 DOI: 10.3892/etm.2018.6467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/06/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the effects of hepatic blood inflow on liver function, liver ultrastructure and the regeneration of future liver remnant (FLR) following major hepatectomy in rats with liver cirrhosis. A rat model of cirrhosis was established through intraperitoneal injection of carbon tetrachloride for 8 consecutive weeks. Extensive liver resection and different blood inflow models by portal vein (PV) and/or hepatic artery (HA) stenosis were conducted on the cirrhosis rats. Animal models were constructed as follows: Control (group A), low-flow PV + high-flow HA (group B), low-flow PV + low-flow HA (group C), high-flow PV + high-flow HA (group D) and high-flow PV + low-flow HA (group E). Hepatic blood inflow was detected by laser speckle contrast analysis, liver function and pathological changes were analyzed, Masson staining was used to identify the fibrosis of the liver and Periodic acid-Schiff staining was used to identify glycogen synthesis and hepatocyte function. The liver cell ultrastructure was evaluated by transmission electron microscopy, and the expression of Ki-67 in hepatocytes and the weight of the FLR were recorded to determine the regeneration of the FLR. Five days after major hepatectomy and liver blood inflow modulation, pathological examination of the livers from groups B and C revealed less congestion and less extensive hepatocellular injury. The serum alanine aminotransferase level of group B at 1, 3 and 5 days after hepatectomy and blood inflow modulation was 460.9±31.7, 331.0±22.0 and 285.6±15.8 U/l, respectively (control group: 676.9±41.7, 574.9±28.0 and 436.1±32.7 U/l, respectively; P<0.05); the total bilirubin of group B at 1, 3 and 5 days was 20.4±1.5, 16.1±1.0 and 13.5±0.6 µmol/l, respectively (control group: 30.3±1.4, 26.5±0.8 and 22.1±1.2 µmol/l, respectively; P<0.05). The size of the endoplasmic reticulum in the low-flow PV groups increased significantly and the mitochondrial swelling was alleviated. The positive rate of Ki-67 in the hepatocytes of groups B, C and D was 23.9±3.6, 15.7±2.3 and 12.9±2.4%, respectively (control group: 10.1±2.1%, P<0.05), and the positive rate of Ki-67 in group E was 6.1±1.4% (compared with that of the control group, P<0.05). The remnant liver weight of group B was 15.4±1.0 g (compared with that of the control group, P<0.05). Therefore, decreased portal blood flow combined with increased hepatic arterial blood flow alleviated the congestion in the liver following major hepatectomy in cirrhotic rats, improved the pathological status and liver function, increased the expression of Ki-67 and promoted liver regeneration.
Collapse
|