1
|
Wei ZX, Cai XX, Fei YD, Wang Q, Hu XL, Li C, Hou JW, Yang YL, Chen TZ, Xu XL, Wang YP, Li YG. Zbtb16 increases susceptibility of atrial fibrillation in type 2 diabetic mice via Txnip-Trx2 signaling. Cell Mol Life Sci 2024; 81:88. [PMID: 38349408 PMCID: PMC10864461 DOI: 10.1007/s00018-024-05125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and recent epidemiological studies suggested type 2 diabetes mellitus (T2DM) is an independent risk factor for the development of AF. Zinc finger and BTB (broad-complex, tram-track and bric-a-brac) domain containing 16 (Zbtb16) serve as transcriptional factors to regulate many biological processes. However, the potential effects of Zbtb16 in AF under T2DM condition remain unclear. Here, we reported that db/db mice displayed higher AF vulnerability and Zbtb16 was identified as the most significantly enriched gene by RNA sequencing (RNA-seq) analysis in atrium. In addition, thioredoxin interacting protein (Txnip) was distinguished as the key downstream gene of Zbtb16 by Cleavage Under Targets and Tagmentation (CUT&Tag) assay. Mechanistically, increased Txnip combined with thioredoxin 2 (Trx2) in mitochondrion induced excess reactive oxygen species (ROS) release, calcium/calmodulin-dependent protein kinase II (CaMKII) overactivation, and spontaneous Ca2+ waves (SCWs) occurrence, which could be inhibited through atrial-specific knockdown (KD) of Zbtb16 or Txnip by adeno-associated virus 9 (AAV9) or Mito-TEMPO treatment. High glucose (HG)-treated HL-1 cells were used to mimic the setting of diabetic in vitro. Zbtb16-Txnip-Trx2 signaling-induced excess ROS release and CaMKII activation were also verified in HL-1 cells under HG condition. Furthermore, atrial-specific Zbtb16 or Txnip-KD reduced incidence and duration of AF in db/db mice. Altogether, we demonstrated that interrupting Zbtb16-Txnip-Trx2 signaling in atrium could decrease AF susceptibility via reducing ROS release and CaMKII activation in the setting of T2DM.
Collapse
Affiliation(s)
- Zhi-Xing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xing-Xing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yu-Dong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qian Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Liang Hu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Cheng Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jian-Wen Hou
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Li Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Tai-Zhong Chen
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Lei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yue-Peng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
2
|
Çomaklı V, Aygül İ, Sağlamtaş R, Kuzu M, Demirdağ R, Akincioğlu H, Adem Ş, Gülçin İ. Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: An In vitro and In silico Approach. Curr Comput Aided Drug Des 2024; 20:441-451. [PMID: 37202895 DOI: 10.2174/1573409919666230518151414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION This study aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. BACKGROUND Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM) are considered the most important diseases of today's world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, developing drugs with high therapeutic efficacy and better pharmacological profile is important. OBJECTIVES This study sets out to determine the related enzyme inhibitors used in treating AD and T2DM, considered amongst the most important diseases of today's world. METHODS In the current study, the in vitro and in silico effects of dienestrol, hesperetin, Lthyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α - glycosidase enzyme activities were investigated. RESULTS All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 μM and 0.83 ± 0.195 μM, respectively. In addition, dienestrol, T3, and dobutamine molecules showed a more substantial inhibition effect than tacrine. The dobutamine molecule showed the most substantial inhibition effect for the BChE enzyme, and IC50 and Ki values were determined as 1.83 μM and 0.845 ± 0.143 μM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α -glycosidase enzyme, were determined as 13.57 μM and 12.33 ± 2.57 μM, respectively. CONCLUSION According to the results obtained, the molecules used in the study may be considered potential inhibitor candidates for AChE, BChE and α-glycosidase.
Collapse
Affiliation(s)
- Veysel Çomaklı
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - İmdat Aygül
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhane, Türkiye
| | - Rüya Sağlamtaş
- Department of Medical Services and Techniques, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Karabük University, Karabük, Türkiye
| | - Ramazan Demirdağ
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Hülya Akincioğlu
- Department of Chemistry, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Şevki Adem
- Department of Chemistry, Çankırı Karatekin University, Çankırı, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
3
|
Li F, Qian LL, Wu LD, Zhang ZY, Zhang L, Liu HH, Zhao N, Zhang J, Chen JY, Yang F, Zhang ZY, Wang C, Dang SP, Zhao XX, Li KL, Zhu WQ, Yao Y, Wang RX. Glucose fluctuations aggravated the late sodium current induced ventricular arrhythmias via the activation of ROS/CaMKII pathway. Eur J Pharmacol 2023; 961:176167. [PMID: 37939994 DOI: 10.1016/j.ejphar.2023.176167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Recent evidence revealed that glucose fluctuation might be more likely to cause arrhythmia than persistent hyperglycemia, whereas its mechanisms were elusive. We aimed to investigate the effect of glucose fluctuation on the occurrence of ventricular arrhythmia and its mechanism. METHODS Streptozotocin (STZ) induced diabetic rats were randomized to five groups: the controlled blood glucose (C-STZ) group, uncontrolled blood glucose (U-STZ) group, fluctuated blood glucose (GF-STZ) group, and GF-STZ rats with 100 mg/kg Tempol (GF-STZ + Tempol) group or with 5 mg/kg KN93 (GF-STZ + KN93) group. Six weeks later, the susceptibility of ventricular arrhythmias and the electrophysiological dysfunctions of ventricular myocytes were evaluated using electrocardiogram and patch-clamp technique, respectively. The levels of reactive oxygen species (ROS) and oxidized CaMKII (ox-CaMKII) were determined by fluorescence assay and Western blot, respectively. Neonatal rat cardiomyocytes and H9C2 cells in vitro were used to explore the underlying mechanisms. RESULTS The induction rate of ventricular arrhythmias was 10%, 55%, and 90% in C-STZ group, U-STZ group, and GF-STZ group, respectively (P < 0.05). The electrophysiological dysfunctions of ventricular myocytes, including action potential duration at repolarization of 90% (APD90), APD90 short-term variability (APD90-STV), late sodium current (INa-L), early after depolarization (EAD) and delayed after depolarizations (DAD), as well as the levels of ROS and ox-CaMKII, were significantly increased in GF-STZ group. In vivo and ex vivo, inhibition of ROS or ox-CaMKII reversed these effects. Inhibition of INa-L also significantly alleviated the electrophysiological dysfunctions. In vitro, inhibition of ROS increase could significantly decrease the ox-CaMKII activation induced by glucose fluctuations. CONCLUSIONS Glucose fluctuations aggravated the INa-L induced ventricular arrhythmias though the activation of ROS/CaMKII pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Li-Da Wu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Lei Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jie Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Jia-Yi Chen
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Fan Yang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Zhi-Yuan Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Chao Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Shi-Peng Dang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Xiao-Xi Zhao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ku-Lin Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Wen-Qing Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China.
| | - Yan Yao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing, China.
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
4
|
Gómez-Viquez NL, Balderas-Villalobos J, Bello-Sánchez MD, Mayorga-Luna M, Mailloux-Salinas P, García-Castañeda M, Ríos-Pérez EB, Mártinez-Ávila MA, Camacho-Castillo LDC, Bravo G, Ávila G, Altamirano J, Carvajal K. Oxidative stress in early metabolic syndrome impairs cardiac RyR2 and SERCA2a activity and modifies the interplay of these proteins during Ca 2+ waves. Arch Physiol Biochem 2023; 129:1058-1070. [PMID: 33689540 DOI: 10.1080/13813455.2021.1895224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
We investigated how oxidative stress (OS) alters Ca2+ handling in ventricular myocytes in early metabolic syndrome (MetS) in sucrose-fed rats. The effects of N-acetyl cysteine (NAC) or dl-Dithiothreitol (DTT) on systolic Ca2+ transients (SCaTs), diastolic Ca2+ sparks (CaS) and Ca2+ waves (CaW), recorded by confocal techniques, and L-type Ca2+ current (ICa), assessed by whole-cell patch clamp, were evaluated in MetS and Control cells. MetS myocytes exhibited decreased SCaTs and CaS frequency but unaffected CaW propagation. In Control cells, NAC/DTT reduced RyR2/SERCA2a activity blunting SCaTs, CaS frequency and CaW propagation, suggesting that basal ROS optimised Ca2+ signalling by maintaining RyR2/SERCA2a function and that these proteins facilitate CaW propagation. Conversely, NAC/DTT in MetS recovered RyR2/SERCA2a function, improving SCaTs and CaS frequency, but unexpectedly decreasing CaW propagation. We hypothesised that OS decreases RyR2/SERCA2a activity at early MetS, and while decreased SERCA2a favours CaW propagation, diminished RyR2 restrains it.
Collapse
Affiliation(s)
- Norma Leticia Gómez-Viquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Jaime Balderas-Villalobos
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Ma Dolores Bello-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Maritza Mayorga-Luna
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Patrick Mailloux-Salinas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Maricela García-Castañeda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Erick Benjamín Ríos-Pérez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | | | | | - Guadalupe Bravo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Guillermo Ávila
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | - Karla Carvajal
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Ciudad de México, México
| |
Collapse
|
5
|
Velmurugan S, Liu T, Chen KC, Despa F, O'Rourke B, Despa S. Distinct Effects of Mitochondrial Na +/Ca 2+ Exchanger Inhibition and Ca 2+ Uniporter Activation on Ca 2+ Sparks and Arrhythmogenesis in Diabetic Rats. J Am Heart Assoc 2023; 12:e029997. [PMID: 37421267 PMCID: PMC10382117 DOI: 10.1161/jaha.123.029997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/26/2023] [Indexed: 07/10/2023]
Abstract
Background Mitochondrial dysfunction contributes to the cardiac remodeling triggered by type 2 diabetes (T2D). Mitochondrial Ca2+ concentration ([Ca2+]m) modulates the oxidative state and cytosolic Ca2+ regulation. Thus, we investigated how T2D affects mitochondrial Ca2+ fluxes, the downstream consequences on myocyte function, and the effects of normalizing mitochondrial Ca2+ transport. Methods and Results We compared myocytes/hearts from transgenic rats with late-onset T2D (rats that develop late-onset T2D due to heterozygous expression of human amylin in the pancreatic β-cells [HIP] model) and their nondiabetic wild-type (WT) littermates. [Ca2+]m was significantly lower in myocytes from diabetic HIP rats compared with WT cells. Ca2+ extrusion through the mitochondrial Na+/Ca2+ exchanger (mitoNCX) was elevated in HIP versus WT myocytes, particularly at moderate and high [Ca2+]m, while mitochondrial Ca2+ uptake was diminished. Mitochondrial Na+ concentration was comparable in WT and HIP rat myocytes and remained remarkably stable while manipulating mitoNCX activity. Lower [Ca2+]m was associated with oxidative stress, increased sarcoplasmic reticulum Ca2+ leak in the form of Ca2+ sparks, and mitochondrial dysfunction in T2D hearts. MitoNCX inhibition with CGP-37157 reduced oxidative stress, Ca2+ spark frequency, and stress-induced arrhythmias in HIP rat hearts while having no significant effect in WT rats. In contrast, activation of the mitochondrial Ca2+ uniporter with SB-202190 enhanced spontaneous sarcoplasmic reticulum Ca2+ release and had no significant effect on arrhythmias in both WT and HIP rat hearts. Conclusions [Ca2+]m is reduced in myocytes from rats with T2D due to a combination of exacerbated mitochondrial Ca2+ extrusion through mitoNCX and impaired mitochondrial Ca2+ uptake. Partial mitoNCX inhibition limits sarcoplasmic reticulum Ca2+ leak and arrhythmias in T2D hearts, whereas mitochondrial Ca2+ uniporter activation does not.
Collapse
Affiliation(s)
- Sathya Velmurugan
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Ting Liu
- Division of Cardiology, Department of MedicineThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Kuey C. Chen
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Florin Despa
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Brian O'Rourke
- Division of Cardiology, Department of MedicineThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Sanda Despa
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
6
|
Pharmacological mechanism of natural drugs and their active ingredients in the treatment of arrhythmia via calcium channel regulation. Biomed Pharmacother 2023; 160:114413. [PMID: 36805187 DOI: 10.1016/j.biopha.2023.114413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arrhythmia is characterized by abnormal heartbeat rhythms and frequencies caused by heart pacing and conduction dysfunction. Arrhythmia is the leading cause of death in patients with cardiovascular disease, with high morbidity and mortality rates, posing a serious risk to human health. Natural drugs and their active ingredients, such as matrine(MAT), tetrandrine(TET), dehydroevodiamine, tanshinone IIA, and ginsenosides, have been widely used for the treatment of atrial fibrillation, ventricular ectopic beats, sick sinus syndrome, and other arrhythmia-like diseases owing to their unique advantages. This review summarizes the mechanism of action of natural drugs and their active ingredients in the treatment of arrhythmia via the regulation of Ca2+, such as alkaloids, quinones, saponins, terpenoids, flavonoids, polyphenols, and lignan compounds, to provide ideas for the innovative development of natural drugs with potential antiarrhythmic efficacy.
Collapse
|
7
|
Kadosaka T, Watanabe M, Natsui H, Koizumi T, Nakao M, Koya T, Hagiwara H, Kamada R, Temma T, Karube F, Fujiyama F, Anzai T. Empagliflozin attenuates arrhythmogenesis in diabetic cardiomyopathy by normalizing intracellular Ca 2+ handling in ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol 2023; 324:H341-H354. [PMID: 36607794 DOI: 10.1152/ajpheart.00391.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diabetic cardiomyopathy has been reported to increase the risk of fatal ventricular arrhythmia. The beneficial effects of the selective sodium-glucose cotransporter-2 inhibitor have not been fully examined in the context of antiarrhythmic therapy, especially its direct cardioprotective effects despite the negligible SGLT2 expression in cardiomyocytes. We aimed to examine the antiarrhythmic effects of empagliflozin (EMPA) treatment on diabetic cardiomyocytes, with a special focus on Ca2+ handling. We conducted echocardiography and hemodynamic studies and studied electrophysiology, Ca2+ handling, and protein expression in C57BLKS/J-leprdb/db mice (db/db mice) and their nondiabetic lean heterozygous Leprdb/+ littermates (db/+ mice). Preserved systolic function with diastolic dysfunction was observed in 16-wk-old db/db mice. During arrhythmia induction, db/db mice had significantly increased premature ventricular complexes (PVCs) than controls, which was attenuated by EMPA. In protein expression analyses, calmodulin-dependent protein kinase II (CaMKII) Thr287 autophosphorylation and CaMKII-dependent RyR2 phosphorylation (S2814) were significantly increased in diabetic hearts, which were inhibited by EMPA. In addition, global O-GlcNAcylation significantly decreased with EMPA treatment. Furthermore, EMPA significantly inhibited ventricular cardiomyocyte glucose uptake. Diabetic cardiomyocytes exhibited increased spontaneous Ca2+ events and decreased sarcoplasmic reticulum (SR) Ca2+ content, along with impaired Ca2+ transient, all of which normalized with EMPA treatment. Notably, most EMPA-induced improvements in Ca2+ handling were abolished by the addition of an O-GlcNAcase (OGA) inhibitor. In conclusion, EMPA attenuated ventricular arrhythmia inducibility by normalizing the intracellular Ca2+ handling, and we speculated that this effect was, at least partly, due to the inhibition of O-GlcNAcylation via the suppression of glucose uptake into cardiomyocytes.NEW & NOTEWORTHY SGLT2is are known to improve cardiovascular outcomes regardless of the presence of diabetes and decrease traditional cardiovascular risk factors. We demonstrated, for the first time, that EMPA inhibited PVCs by normalizing Ca2+ handling in diabetic mice. Our data suggest that the effects of SGLT2is on calcium handling may occur because of suppression of O-GlcNAcylation through inhibition of glucose uptake and not because of NHE inhibition, as previously suggested.
Collapse
Affiliation(s)
- Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Fuyuki Karube
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Fumino Fujiyama
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
de Souza EG, Peixoto JVC, Rank C, Petterle RR, Fogaça RTH, Wolska BM, Dias FAL. Effects of High-Intensity Interval Training and Continuous Training on Exercise Capacity, Heart Rate Variability and Isolated Hearts in Diabetic Rats. Arq Bras Cardiol 2022; 120:e20220396. [PMID: 36629606 PMCID: PMC9833297 DOI: 10.36660/abc.20220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND High-intensity interval training (HIIT) has been suggested as an alternative for continuous training (CT) in people with diabetes mellitus (DM) due to its short duration and potential to improve adherence to exercise. However, data on its impact on heart rate variability (HRV) are scarce. OBJECTIVES To assess and compare the effects of HIIT and CT on exercise capacity, HRV and isolated hearts in diabetic rats. METHODS DM (intravenous streptozotocin, 45 mg.kg -1 ) and control (C) animals performed 20 sessions (5 days/week, 50 min, for 4 weeks) of CT on a treadmill (70% of maximal exercise capacity) or HIIT (cycles of 1:1min at 50% and 90% of maximal exercise capacity). HRV was assessed by continuous electrocardiogram, and cardiac function assessed in isolated perfused hearts. For data analysis, we used the framework of the multivariate covariance generalized linear model or one-way ANOVA followed by Tukey's test, considering p<0.05 as significant. RESULTS Higher exercise capacity (m/min) was achieved in HIIT (DM-HIIT: 36.5 [IQR 30.0-41.3]; C-HIIT: 41.5 [37.8-44.5], both n=10) compared to CT (DM-CT: 29.0 [23.8-33.0]; C-CT: 32.0 [29.5-37.0], both n=10) (p<0.001). Heart rate (bpm) was lower in DM compared to controls (p<0.001) both in vivo (DM-HIIT:348±51, C-HIIT:441±66, DM-CT:361±70, C-CT:437±38) and in isolated hearts. There were no differences in HRV between the groups. Maximum and minimal dP/dt were reduced in DM, except +dP/dt in DM-HIIT vs. C-HIIT (mean difference: 595.5±250.3, p=0.190). CONCLUSION Short-term HIIT promotes greater improvement in exercise performance compared to CT, including in DM, without causing significant changes in HRV.
Collapse
Affiliation(s)
- Eduardo Gomes de Souza
- Universidade Federal do ParanáDepartamento de FisiologiaCuritibaPRBrasil Universidade Federal do Paraná – Departamento de Fisiologia , Curitiba , PR – Brasil
| | - João Victor Capelli Peixoto
- Universidade Federal do ParanáDepartamento de FisiologiaCuritibaPRBrasil Universidade Federal do Paraná – Departamento de Fisiologia , Curitiba , PR – Brasil
| | - Claucio Rank
- Universidade Federal do ParanáDepartamento de FisiologiaCuritibaPRBrasil Universidade Federal do Paraná – Departamento de Fisiologia , Curitiba , PR – Brasil
| | - Ricardo Rasmussen Petterle
- Universidade Federal do ParanáDepartamento de Medicina IntegradaCuritibaPRBrasil Universidade Federal do Paraná – Departamento de Medicina Integrada , Curitiba , PR – Brasil
| | - Rosalvo Tadeu Hochmuller Fogaça
- Universidade Federal do ParanáDepartamento de FisiologiaCuritibaPRBrasil Universidade Federal do Paraná – Departamento de Fisiologia , Curitiba , PR – Brasil
| | - Beata Maria Wolska
- University of Illinois at ChicagoChicagoIllinoisEUA University of Illinois at Chicago – Medicine, Physiology and Biophysics, Chicago , Illinois – EUA
| | - Fernando Augusto Lavezzo Dias
- Universidade Federal do ParanáDepartamento de FisiologiaCuritibaPRBrasil Universidade Federal do Paraná – Departamento de Fisiologia , Curitiba , PR – Brasil
| |
Collapse
|
9
|
Remme CA. Sudden cardiac death in diabetes and obesity: mechanisms and therapeutic strategies. Can J Cardiol 2022; 38:418-426. [PMID: 35017043 DOI: 10.1016/j.cjca.2022.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias and sudden cardiac death (SCD) occur most frequently in the setting of coronary artery disease, cardiomyopathy and heart failure, but are also increasingly observed in individuals suffering from diabetes mellitus and obesity. The incidence of these metabolic disorders is rising in Western countries, but adequate prevention and treatment of arrhythmias and SCD in affected patients is limited due to our incomplete knowledge of the underlying disease mechanisms. Here, an overview is presented of the prevalence of electrophysiological disturbances, ventricular arrhythmias and SCD in the clinical setting of diabetes and obesity. Experimental studies are reviewed, which have identified disease pathways and associated modulatory factors, in addition to pro-arrhythmic mechanisms. Key processes are discussed, including mitochondrial dysfunction, oxidative stress, cardiac structural derangements, abnormal cardiac conduction, ion channel dysfunction, prolonged repolarization and dysregulation of intracellular sodium and calcium homeostasis. In addition, the recently identified pro-arrhythmic effects of dysregulated branched chain amino acid metabolism, a common feature in patients with metabolic disorders, are addressed. Finally, current management options are discussed, in addition to the potential development of novel preventive and therapeutic strategies based on recent insight gained from translational studies.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca 2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022; 474:33-61. [PMID: 34978597 PMCID: PMC8721633 DOI: 10.1007/s00424-021-02650-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex and intricate mechanisms involved in diabetic cardiomyopathy, Ca2+ mishandling and mitochondrial dysfunction have been described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina.
| |
Collapse
|
11
|
Hegyi B, Ko CY, Bossuyt J, Bers DM. Two-hit mechanism of cardiac arrhythmias in diabetic hyperglycaemia: reduced repolarization reserve, neurohormonal stimulation, and heart failure exacerbate susceptibility. Cardiovasc Res 2021; 117:2781-2793. [PMID: 33483728 PMCID: PMC8683706 DOI: 10.1093/cvr/cvab006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/10/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS Diabetic hyperglycaemia is associated with increased arrhythmia risk. We aimed to investigate whether hyperglycaemia alone can be accountable for arrhythmias or whether it requires the presence of additional pathological factors. METHODS AND RESULTS Action potentials (APs) and arrhythmogenic spontaneous diastolic activities were measured in isolated murine ventricular, rabbit atrial, and ventricular myocytes acutely exposed to high glucose. Acute hyperglycaemia increased the short-term variability (STV) of action potential duration (APD), enhanced delayed afterdepolarizations, and the inducibility of APD alternans during tachypacing in both murine and rabbit atrial and ventricular myocytes. Hyperglycaemia also prolonged APD in mice and rabbit atrial cells but not in rabbit ventricular myocytes. However, rabbit ventricular APD was more strongly depressed by block of late Na+ current (INaL) during hyperglycaemia, consistent with elevated INaL in hyperglycaemia. All the above proarrhythmic glucose effects were Ca2+-dependent and abolished by CaMKII inhibition. Importantly, when the repolarization reserve was reduced by pharmacological inhibition of K+ channels (either Ito, IKr, IKs, or IK1) or hypokalaemia, acute hyperglycaemia further prolonged APD and further increased STV and alternans in rabbit ventricular myocytes. Likewise, when rabbit ventricular myocytes were pretreated with isoproterenol or angiotensin II, hyperglycaemia significantly prolonged APD, increased STV and promoted alternans. Moreover, acute hyperglycaemia markedly prolonged APD and further enhanced STV in failing rabbit ventricular myocytes. CONCLUSION We conclude that even though hyperglycaemia alone can enhance cellular proarrhythmic mechanisms, a second hit which reduces the repolarization reserve or stimulates G protein-coupled receptor signalling greatly exacerbates cardiac arrhythmogenesis in diabetic hyperglycaemia.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| | - Christopher Y Ko
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| |
Collapse
|
12
|
Zou L, Collins HE, Young ME, Zhang J, Wende AR, Darley-Usmar VM, Chatham JC. The Identification of a Novel Calcium-Dependent Link Between NAD + and Glucose Deprivation-Induced Increases in Protein O-GlcNAcylation and ER Stress. Front Mol Biosci 2021; 8:780865. [PMID: 34950703 PMCID: PMC8691773 DOI: 10.3389/fmolb.2021.780865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
The modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is associated with the regulation of numerous cellular processes. Despite the importance of O-GlcNAc in mediating cellular function our understanding of the mechanisms that regulate O-GlcNAc levels is limited. One factor known to regulate protein O-GlcNAc levels is nutrient availability; however, the fact that nutrient deficient states such as ischemia increase O-GlcNAc levels suggests that other factors also contribute to regulating O-GlcNAc levels. We have previously reported that in unstressed cardiomyocytes exogenous NAD+ resulted in a time and dose dependent decrease in O-GlcNAc levels. Therefore, we postulated that NAD+ and cellular O-GlcNAc levels may be coordinately regulated. Using glucose deprivation as a model system in an immortalized human ventricular cell line, we examined the influence of extracellular NAD+ on cellular O-GlcNAc levels and ER stress in the presence and absence of glucose. We found that NAD+ completely blocked the increase in O-GlcNAc induced by glucose deprivation and suppressed the activation of ER stress. The NAD+ metabolite cyclic ADP-ribose (cADPR) had similar effects on O-GlcNAc and ER stress suggesting a common underlying mechanism. cADPR is a ryanodine receptor (RyR) agonist and like caffeine, which also activates the RyR, both mimicked the effects of NAD+. SERCA inhibition, which also reduces ER/SR Ca2+ levels had similar effects to both NAD+ and cADPR on O-GlcNAc and ER stress responses to glucose deprivation. The observation that NAD+, cADPR, and caffeine all attenuated the increase in O-GlcNAc and ER stress in response to glucose deprivation, suggests a potential common mechanism, linked to ER/SR Ca2+ levels, underlying their activation. Moreover, we showed that TRPM2, a plasma membrane cation channel was necessary for the cellular responses to glucose deprivation. Collectively, these findings support a novel Ca2+-dependent mechanism underlying glucose deprivation induced increase in O-GlcNAc and ER stress.
Collapse
Affiliation(s)
- Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Helen E. Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,Birmingham VA Medical Center, Birmingham, AL, United States
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
13
|
Kobayashi T, Kurebayashi N, Murayama T. The Ryanodine Receptor as a Sensor for Intracellular Environments in Muscles. Int J Mol Sci 2021; 22:ijms221910795. [PMID: 34639137 PMCID: PMC8509754 DOI: 10.3390/ijms221910795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
The ryanodine receptor (RyR) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal and cardiac muscles and plays a key role in excitation-contraction coupling. The activity of the RyR is regulated by the changes in the level of many intracellular factors, such as divalent cations (Ca2+ and Mg2+), nucleotides, associated proteins, and reactive oxygen species. Since these intracellular factors change depending on the condition of the muscle, e.g., exercise, fatigue, or disease states, the RyR channel activity will be altered accordingly. In this review, we describe how the RyR channel is regulated under various conditions and discuss the possibility that the RyR acts as a sensor for changes in the intracellular environments in muscles.
Collapse
|
14
|
Veitch CR, Power AS, Erickson JR. CaMKII Inhibition is a Novel Therapeutic Strategy to Prevent Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:695401. [PMID: 34381362 PMCID: PMC8350113 DOI: 10.3389/fphar.2021.695401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing prevalence of diabetes mellitus worldwide has pushed the complex disease state to the foreground of biomedical research, especially concerning its multifaceted impacts on the cardiovascular system. Current therapies for diabetic cardiomyopathy have had a positive impact, but with diabetic patients still suffering from a significantly greater burden of cardiac pathology compared to the general population, the need for novel therapeutic approaches is great. A new therapeutic target, calcium/calmodulin-dependent kinase II (CaMKII), has emerged as a potential treatment option for preventing cardiac dysfunction in the setting of diabetes. Within the last 10 years, new evidence has emerged describing the pathophysiological consequences of CaMKII activation in the diabetic heart, the mechanisms that underlie persistent CaMKII activation, and the protective effects of CaMKII inhibition to prevent diabetic cardiomyopathy. This review will examine recent evidence tying cardiac dysfunction in diabetes to CaMKII activation. It will then discuss the current understanding of the mechanisms by which CaMKII activity is enhanced during diabetes. Finally, it will examine the benefits of CaMKII inhibition to treat diabetic cardiomyopathy, including contractile dysfunction, heart failure with preserved ejection fraction, and arrhythmogenesis. We intend this review to serve as a critical examination of CaMKII inhibition as a therapeutic strategy, including potential drawbacks of this approach.
Collapse
Affiliation(s)
- Christopher R Veitch
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Amelia S Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Pershina E, Azarov J, Vaykshnorayte M, Bernikova O, Ovechkin A. Prolongation of experimental diabetes mellitus increased susceptibility to reperfusion ventricular tachyarrhythmias. Can J Physiol Pharmacol 2021; 99:1097-1101. [PMID: 33951401 DOI: 10.1139/cjpp-2020-0743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is associated with increased risk of sudden cardiac death, but its role in arrhythmogenesis is not clear. We evaluated contributions of DM duration and hyperglycemia level to development of proarrhythmic electrophysiological changes in the experimental ischemia/reperfusion model. Ventricular epicardial 64-lead mapping and arrhythmia susceptibility burst-pacing testing were performed in 43 healthy and 55 diabetic (alloxan model) anesthetized rabbits undergoing 15 min left anterior descending coronary artery occlusion, followed by 15 min reperfusion. During ischemia, arrhythmia inducibility did not differ between the groups, but the number of reperfusion ventricular tachycardias and (or) fibrillations (VT/VFs) were higher in the DM group (14 out of 55) as compared with control (3 out of 43, p = 0.017). In the diabetic animals, both DM duration and glucose concentration were associated with reperfusion VT/VF development in univariate logistic regression analysis (odds ratio (OR) 1.058, 95% confidence interval (CI) 1.025-1.092, p < 0.001; and OR 1.119, 95% CI 1.045-1.198, p = 0.001, respectively). Only the DM duration, however, remained an independent predictor of reperfusion VT/VF in multivariate logistic regression analysis (OR 1.060, 95% CI 1.006-1.117, p = 0.029). Among mapping parameters, DM duration was associated with the prolongation of total ventricular activation duration (regression coefficient 0.152, 95% CI 0.049-0.255, p = 0.005) and activation-repolarization intervals (ARIs) (regression coefficient 0.900, 95% CI 0.315-1.484, p = 0.003). The prolonged ARI was the only mapping characteristic predicting reperfusion VT/VF development (OR 1.028, 95% CI 1.009-1.048, p = 0.004). The DM duration-dependent prolongation of ventricular repolarization presents a link between DM development and reperfusion VT/VF inducibility.
Collapse
Affiliation(s)
- Ekaterina Pershina
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 50 Pervomayskaya Street, 167982 Syktyvkar, Russia.,Department of Therapy, Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Jan Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 50 Pervomayskaya Street, 167982 Syktyvkar, Russia.,Department of Biochemistry and Physiology, Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Marina Vaykshnorayte
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 50 Pervomayskaya Street, 167982 Syktyvkar, Russia
| | - Olesya Bernikova
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 50 Pervomayskaya Street, 167982 Syktyvkar, Russia
| | - Alexey Ovechkin
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 50 Pervomayskaya Street, 167982 Syktyvkar, Russia.,Department of Therapy, Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| |
Collapse
|
16
|
Ma K, Ma G, Guo Z, Liu G, Liang W. Regulatory mechanism of calcium/calmodulin-dependent protein kinase II in the occurrence and development of ventricular arrhythmia (Review). Exp Ther Med 2021; 21:656. [PMID: 33968186 PMCID: PMC8097202 DOI: 10.3892/etm.2021.10088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ventricular arrhythmia (VA) is a highly fatal arrhythmia that involves multiple ion channels. Of all sudden cardiac death events, ~85% result from VAs, including ventricular tachycardia and ventricular fibrillation. Calcium/calmodulin-dependent pro-tein kinase II (CaMKII) is an important ion channel regulator that participates in the excitation-contraction coupling of the heart, and as such is important for regulating its electrophysiological function. CaMKII can be activated in a Ca2+/calmodulin (CaM)-dependent or Ca2+/CaM-independent manner, serving a key role in the occurrence and development of VA. The present review aimed to determine whether activated CaMKII induces early afterdepolarizations and delayed afterdepolarizations that result in VA by regulating sodium, potassium and calcium ions. Assessing VA mechanisms based on the CaMKII pathway is of great significance to the clinical treatment of VA and the de-velopment of effective drugs for use in clinical practice.
Collapse
Affiliation(s)
- Kexin Ma
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Guoping Ma
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zijing Guo
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Gang Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenjie Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
17
|
Lo ACY, Bai J, Gladding PA, Fedorov VV, Zhao J. Afterdepolarizations and abnormal calcium handling in atrial myocytes with modulated SERCA uptake: a sensitivity analysis of calcium handling channels. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190557. [PMID: 32448059 PMCID: PMC7287332 DOI: 10.1098/rsta.2019.0557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 05/21/2023]
Abstract
Delayed afterdepolarizations (DADs) and spontaneous depolarizations (SDs) are typically triggered by spontaneous diastolic Ca2+ release from the sarcoplasmic reticulum (SR) which is caused by an elevated SR Ca2+-ATPase (SERCA) uptake and dysfunctional ryanodine receptors. However, recent studies on the T-box transcription factor gene (TBX5) demonstrated that abnormal depolarizations could occur despite a reduced SERCA uptake. Similar findings have also been reported in experimental or clinical studies of diabetes and heart failure. To investigate the sensitivity of SERCA in the genesis of DADs/SDs as well as its dependence on other Ca2+ handling channels, we performed systematic analyses using the Maleckar et al. model. Results showed that the modulation of SERCA alone cannot trigger abnormal depolarizations, but can instead affect the interdependency of other Ca2+ handling channels in triggering DADs/SDs. Furthermore, we discovered the existence of a threshold value for the intracellular concentration of Ca2+ ([Ca2+]i) for abnormal depolarizations, which is modulated by the maximum SERCA uptake and the concentration of Ca2+ in the uptake and release compartments in the SR ([Ca2+]up and [Ca2+]rel). For the first time, our modelling study reconciles different mechanisms of abnormal depolarizations in the setting of 'lone' AF, reduced TBX5, diabetes and heart failure, and may lead to more targeted treatment for these patients. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Andy C. Y. Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jieyun Bai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, People's Republic of China
| | - Patrick A. Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | - Vadim V. Fedorov
- Department of Physiology and Cell Biology and Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- e-mail:
| |
Collapse
|