1
|
Zeppenfeld K, Rademaker R, Al-Ahmad A, Carbucicchio C, De Chillou C, Cvek J, Ebert M, Ho G, Kautzner J, Lambiase P, Merino JL, Lloyd M, Misra S, Pruvot E, Sapp J, Schiappacasse L, Sramko M, Stevenson WG, Zei PC. Patient selection, ventricular tachycardia substrate delineation, and data transfer for stereotactic arrhythmia radioablation: a clinical consensus statement of the European Heart Rhythm Association of the European Society of Cardiology and the Heart Rhythm Society. Europace 2025; 27:euae214. [PMID: 39177652 PMCID: PMC12041921 DOI: 10.1093/europace/euae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Stereotactic arrhythmia radioablation (STAR) is a novel, non-invasive, and promising treatment option for ventricular arrhythmias (VAs). It has been applied in highly selected patients mainly as bailout procedure, when (multiple) catheter ablations, together with anti-arrhythmic drugs, were unable to control the VAs. Despite the increasing clinical use, there is still limited knowledge of the acute and long-term response of normal and diseased myocardium to STAR. Acute toxicity appeared to be reasonably low, but potential late adverse effects may be underreported. Among published studies, the provided methodological information is often limited, and patient selection, target volume definition, methods for determination and transfer of target volume, and techniques for treatment planning and execution differ across studies, hampering the pooling of data and comparison across studies. In addition, STAR requires close and new collaboration between clinical electrophysiologists and radiation oncologists, which is facilitated by shared knowledge in each collaborator's area of expertise and a common language. This clinical consensus statement provides uniform definition of cardiac target volumes. It aims to provide advice in patient selection for STAR including aetiology-specific aspects and advice in optimal cardiac target volume identification based on available evidence. Safety concerns and the advice for acute and long-term monitoring including the importance of standardized reporting and follow-up are covered by this document. Areas of uncertainty are listed, which require high-quality, reliable pre-clinical and clinical evidence before the expansion of STAR beyond clinical scenarios in which proven therapies are ineffective or unavailable.
Collapse
Affiliation(s)
- Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert Rademaker
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Amin Al-Ahmad
- Electrophysiology, Texas Cardiac Arrhythmia Institute, Austin, TX, USA
| | | | - Christian De Chillou
- CHU de Nancy, Cardiology, Institut Lorrain du Coeur et des Vaisseaux, Vandoeuvre Les Nancy, France
| | - Jakub Cvek
- Radiation Oncology, University of Ostrava, Ostrava, Czech Republic
| | - Micaela Ebert
- Electrophysiology, Heart Center Leipzig, Leipzig, Germany
| | - Gordon Ho
- Division of Cardiology, Section of Cardiac Electrophysiology, University of California San Diego, La Jolla, CA, USA
| | - Josef Kautzner
- Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Pier Lambiase
- Cardiology Department, University College London, London, UK
| | | | - Michael Lloyd
- Emory Electrophysiology, Electrophysiology Lab Director, EUH, Emory University Hospital, Atlanta, GA, USA
| | - Satish Misra
- Atrium Health Sanger Heart Vascular Institute Kenilworth, Charlotte, NC, USA
| | - Etienne Pruvot
- Department of Cardiology, Lausanne University Hospital, CHUV, Lausanne, Switzerland
| | - John Sapp
- QEII Health Sciences Center, Halifax Infirmary Site, Halifax, NS, Canada
| | - Luis Schiappacasse
- Department of Cardiology, Service de Radio-Oncologie, Lausanne University Hospital, CHUV, Lausanne, Switzerland
| | - Marek Sramko
- Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Paul C Zei
- Professor of Medicine, Cardiac Electrophysiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan N, Chen M, Chen S, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim Y, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak H, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Arrhythm 2024; 40:1217-1354. [PMID: 39669937 PMCID: PMC11632303 DOI: 10.1002/joa3.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 12/14/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
| | | | - Jonathan Kalman
- Department of CardiologyRoyal Melbourne HospitalMelbourneAustralia
- Department of MedicineUniversity of Melbourne and Baker Research InstituteMelbourneAustralia
| | - Eduardo B. Saad
- Electrophysiology and PacingHospital Samaritano BotafogoRio de JaneiroBrazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | | | - Jason G. Andrade
- Department of MedicineVancouver General HospitalVancouverBritish ColumbiaCanada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Serge Boveda
- Heart Rhythm Management DepartmentClinique PasteurToulouseFrance
- Universiteit Brussel (VUB)BrusselsBelgium
| | - Hugh Calkins
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Ngai‐Yin Chan
- Department of Medicine and GeriatricsPrincess Margaret Hospital, Hong Kong Special Administrative RegionChina
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Shih‐Ann Chen
- Heart Rhythm CenterTaipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General HospitalTaichungTaiwan
| | | | - Ralph J. Damiano
- Division of Cardiothoracic Surgery, Department of SurgeryWashington University School of Medicine, Barnes‐Jewish HospitalSt. LouisMOUSA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center MunichTechnical University of Munich (TUM) School of Medicine and HealthMunichGermany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation DepartmentFondation Bordeaux Université and Bordeaux University Hospital (CHU)Pessac‐BordeauxFrance
| | - Luigi Di Biase
- Montefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation DepartmentFondation Bordeaux Université and Bordeaux University Hospital (CHU)Pessac‐BordeauxFrance
| | - Young‐Hoon Kim
- Division of CardiologyKorea University College of Medicine and Korea University Medical CenterSeoulRepublic of Korea
| | - Mark la Meir
- Cardiac Surgery DepartmentVrije Universiteit Brussel, Universitair Ziekenhuis BrusselBrusselsBelgium
| | - Jose Luis Merino
- La Paz University Hospital, IdipazUniversidad AutonomaMadridSpain
- Hospital Viamed Santa ElenaMadridSpain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia InstituteSt. David's Medical CenterAustinTXUSA
- Case Western Reserve UniversityClevelandOHUSA
- Interventional ElectrophysiologyScripps ClinicSan DiegoCAUSA
- Department of Biomedicine and Prevention, Division of CardiologyUniversity of Tor VergataRomeItaly
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ)QuebecCanada
| | - Santiago Nava
- Departamento de ElectrocardiologíaInstituto Nacional de Cardiología ‘Ignacio Chávez’Ciudad de MéxicoMéxico
| | - Takashi Nitta
- Department of Cardiovascular SurgeryNippon Medical SchoolTokyoJapan
| | - Mark O’Neill
- Cardiovascular DirectorateSt. Thomas’ Hospital and King's CollegeLondonUK
| | - Hui‐Nam Pak
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital BernBern University Hospital, University of BernBernSwitzerland
| | - Luis Carlos Saenz
- International Arrhythmia CenterCardioinfantil FoundationBogotaColombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm DisordersUniversity of Adelaide and Royal Adelaide HospitalAdelaideAustralia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum BethanienMedizinische Klinik III, Agaplesion MarkuskrankenhausFrankfurtGermany
| | - Gregory E. Supple
- Cardiac Electrophysiology SectionUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico MonzinoIRCCSMilanItaly
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Atul Verma
- McGill University Health CentreMcGill UniversityMontrealCanada
| | - Elaine Y. Wan
- Department of Medicine, Division of CardiologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| |
Collapse
|
3
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
4
|
Di Cori A, Pistelli L, Parollo M, Zaurino N, Segreti L, Zucchelli G. Approaching Ventricular Tachycardia Ablation in 2024: An Update on Mapping and Ablation Strategies, Timing, and Future Directions. J Clin Med 2024; 13:5017. [PMID: 39274230 PMCID: PMC11396273 DOI: 10.3390/jcm13175017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
This review provides insights into mapping and ablation strategies for VT, offering a comprehensive overview of contemporary approaches and future perspectives in the field. The strengths and limitations of classical mapping strategies, namely activation mapping, pace mapping, entrainment mapping, and substrate mapping, are deeply discussed. The increasing pivotal relevance of CMR and MDCT in substrate definition is highlighted, particularly in defining the border zone, tissue channels, and fat. The integration of CMR and MDCT images with EAM is explored, with a special focus on their role in enhancing effectiveness and procedure safety. The abstract concludes by illustrating the Pisa workflow for the VT ablation procedure.
Collapse
Affiliation(s)
- Andrea Di Cori
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| | - Lorenzo Pistelli
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| | - Matteo Parollo
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| | - Nicola Zaurino
- Biosense Webster, Johnson & Johnson Medial SpA, 00071 Pomezia, Italy
| | - Luca Segreti
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| | - Giulio Zucchelli
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
6
|
Kancharla K, Olson A, Salavatian S, Kuwabara Y, Martynyuk Y, Dutta P, Vasamsetti S, Mahajan A, Howard-Quijano K, Saba S. Ventricular arrhythmia inducibility in porcine infarct model after stereotactic body radiation therapy. Heart Rhythm 2024; 21:1154-1160. [PMID: 38395245 DOI: 10.1016/j.hrthm.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Ventricular arrhythmia (VA) is the primary mechanism of sudden death in patients with structural heart disease. Cardiac stereotactic body radiation therapy (SBRT) delivered to the scar in the left ventricle significantly reduces the burden of VA. OBJECTIVE The goal of this study was to investigate the impact of SBRT on scar morphology and VA inducibility in a porcine infarct model. METHODS Myocardial infarction (MI) was created in 10 Yorkshire pigs involving the left anterior descending artery territory. Cardiac positron emission tomography and computed tomography were performed for targeted SBRT. Alternative pigs received SBRT at 25 Gy in a single fraction. The terminal experiment included endocardial mapping, programmed ventricular stimulation, and tissue harvesting. RESULTS Of the 10 pigs infarcted, 2 died prematurely after MI and 8 (4 MI and 4 MI+SBRT) survived. Mean time from MI to SBRT was 48 ± 12 days, and mean time from SBRT to harvest was 32 ± 12 days. Scar was localized on intracardiac mapping in all pigs, and the scar was denser in the MI+SBRT compared with the MI-only group (33% ± 20% vs 14% ± 11%; P = .07). All 4 MI pigs had inducible VA during programmed stimulation, whereas only 1 of 4 pigs had inducible VA in the MI+SBRT arm (100% vs 25%; P = .07). No myocardial fibrosis was seen in the remote areas in either group. CONCLUSION SBRT reduced VA inducibility in pigs with scarring after MI. Endocardial mapping revealed denser scar in pigs receiving SBRT compared with those that did not, suggesting that SBRT suppresses VA inducibility through better scar homogenization.
Collapse
Affiliation(s)
- Krishna Kancharla
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. https://twitter.com/Krishkancharla
| | - Adam Olson
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. https://twitter.com/AdamOlsonMD
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Partha Dutta
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sathish Vasamsetti
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kimberley Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Samir Saba
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
7
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024; 26:euae043. [PMID: 38587017 PMCID: PMC11000153 DOI: 10.1093/europace/euae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society .
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología ‘Ignacio Chávez’, Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O’Neill
- Cardiovascular Directorate, St. Thomas’ Hospital and King’s College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
8
|
van der Ree MH, Hoeksema WF, Luca A, Visser J, Balgobind BV, Zumbrink M, Spier R, Herrera-Siklody C, Lee J, Bates M, Daniel J, Peedell C, Boda-Heggemann J, Rudic B, Merten R, Dieleman EM, Rinaldi CA, Ahmad S, Whitaker J, Bhagirath P, Hatton MQ, Riley S, Grehn M, Schiappacasse L, Blanck O, Hohmann S, Pruvot E, Postema PG. Stereotactic arrhythmia radioablation: A multicenter pre-post intervention safety evaluation of the implantable cardioverter-defibrillator function. Radiother Oncol 2023; 189:109910. [PMID: 37709052 DOI: 10.1016/j.radonc.2023.109910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Stereotactic arrhythmia radioablation (STAR) appears to be beneficial in selected patients with therapy-refractory ventricular tachycardia (VT). However, high-dose radiotherapy used for STAR-treatment may affect functioning of the patients' implantable cardioverter defibrillator (ICD) by direct effects of radiation on ICD components or cardiac tissue. Currently, the effect of STAR on ICD functioning remains unknown. METHODS A retrospective pre-post multicenter study evaluating ICD functioning in the 12-month before and after STAR was performed. Patients with (non)ischemic cardiomyopathies with therapy-refractory VT and ICD who underwent STAR were included and the occurrence of ICD-related adverse events was collected. Evaluated ICD parameters included sensing, capture threshold and impedance. A linear mixed-effects model was used to investigate the association between STAR, radiotherapy dose and changes in lead parameters over time. RESULTS In total, 43 patients (88% male) were included in this study. All patients had an ICD with an additional right atrial lead in 34 (79%) and a ventricular lead in 17 (40%) patients. Median ICD-generator dose was 0.1 Gy and lead tip dose ranged from 0-32 Gy. In one patient (2%), a reset occurred during treatment, but otherwise, STAR and radiotherapy dose were not associated with clinically relevant alterations in ICD leads parameters. CONCLUSIONS STAR treatment did not result in major ICD malfunction. Only one radiotherapy related adverse event occurred during the study follow-up without patient harm. No clinically relevant alterations in ICD functioning were observed after STAR in any of the leads. With the reported doses STAR appears to be safe.
Collapse
Affiliation(s)
- Martijn H van der Ree
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands; Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Wiert F Hoeksema
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Adrian Luca
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jorrit Visser
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Brian V Balgobind
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Michiel Zumbrink
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Raymond Spier
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Meibergdreef 9, Amsterdam, the Netherlands
| | | | - Justin Lee
- Department of Cardiology, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Matthew Bates
- Department of Cardiology, South Tees Hospitals NHS Foundation Trust, Middleborough, UK
| | - Jim Daniel
- Department of Radiation Oncology, South Tees Hospitals NHS Foundation Trust, Middlesborough, UK
| | - Clive Peedell
- Department of Radiation Oncology, South Tees Hospitals NHS Foundation Trust, Middlesborough, UK
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim University of Heidelberg, Mannheim, Germany
| | - Boris Rudic
- Department of Cardiology, University Medical Center Mannheim University of Heidelberg, Mannheim, Germany
| | - Roland Merten
- Department of Radiation Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Edith M Dieleman
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Cristopher A Rinaldi
- Department of Cardiology, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Shahreen Ahmad
- Department of Radiation Oncology, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - John Whitaker
- Department of Cardiology, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Pranav Bhagirath
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Meibergdreef 9, Amsterdam, the Netherlands; Department of Cardiology, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Matthew Q Hatton
- Department of Clinical Oncology, Weston Park Hospital, Sheffield, UK
| | - Stephen Riley
- Department of Clinical Oncology, Weston Park Hospital, Sheffield, UK
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Luis Schiappacasse
- Department of Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Hohmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Etienne Pruvot
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Pieter G Postema
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Whitaker J, Zei PC, Ahmad S, Niederer S, O'Neill M, Rinaldi CA. The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review. Front Cardiovasc Med 2022; 9:989886. [PMID: 36186961 PMCID: PMC9520407 DOI: 10.3389/fcvm.2022.989886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac stereotactic body radiation therapy (cSBRT) is a non-invasive treatment modality that has been recently reported as an effective treatment for ventricular arrhythmias refractory to medical therapy and catheter ablation. The approach leverages tools developed and refined in radiation oncology, where experience has been accumulated in the treatment of a wide variety of malignant conditions. However, important differences exist between rapidly dividing malignant tumor cells and fully differentiated myocytes in pathologically remodeled ventricular myocardium, which represent the respective radiation targets. Despite its initial success, little is known about the radiobiology of the anti-arrhythmic effect cSBRT. Pre-clinical data indicates a late fibrotic effect of that appears between 3 and 4 months following cSBRT, which may result in conduction slowing and block. However, there is clear clinical evidence of an anti-arrhythmic effect of cSBRT that precedes the appearance of radiation induced fibrosis for which the mechanism is unclear. In addition, the data to date suggests that even the late anti-arrhythmic effect of cSBRT is not fully attributable to radiation.-induced fibrosis. Pre-clinical data has identified upregulation of proteins expected to result in both increased cell-to-cell coupling and excitability in the early post cSBRT period and demonstrated an associated increase in myocardial conduction velocity. These observations indicate a complex response to radiotherapy and highlight the lack of clarity regarding the different stages of the anti-arrhythmic mechanism of cSBRT. It may be speculated that in the future cSBRT therapy could be planned to deliver both early and late radiation effects titrated to optimize the combined anti-arrhythmic efficacy of the treatment. In addition to these outstanding mechanistic questions, the optimal patient selection, radiation modality, radiation dose and treatment planning strategy are currently being investigated. In this review, we consider the structural and functional effect of radiation on myocardium and the possible anti-arrhythmic mechanisms of cSBRT. Review of the published data highlights the exciting prospects for the development of knowledge and understanding in this area in which so many outstanding questions exist.
Collapse
Affiliation(s)
- John Whitaker
- Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical Schools, Boston, MA, United States
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
- *Correspondence: John Whitaker
| | - Paul C. Zei
- Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical Schools, Boston, MA, United States
| | - Shahreen Ahmad
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
- Guy's and St. Thomas's NHS Foundation Trust, London, United Kingdom
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| |
Collapse
|
10
|
Hayase J, Chin R, Cao M, Hu P, Shivkumar K, Bradfield JS. Non-invasive Stereotactic Body Radiation Therapy for Refractory Ventricular Arrhythmias: Venturing into the Unknown. J Innov Card Rhythm Manag 2022; 13:4894-4899. [PMID: 35251759 PMCID: PMC8887931 DOI: 10.19102/icrm.2022.130202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) is a promising new method for non-invasive management of life-threatening ventricular arrhythmias. Numerous case reports and case series have provided encouraging short-term results suggesting good efficacy and safety, but randomized data and long-term outcomes are not yet available. The primary hypothesis as to the mechanism of action for SBRT relates to the development of cardiac fibrosis in arrhythmogenic myocardial substrate; however, limited animal model data offer conflicting insights into this theory. The use of SBRT for patients with refractory ventricular arrhythmias is rapidly increasing, but ongoing translational science work and randomized clinical trials will be critical to address many outstanding questions regarding this novel therapy.
Collapse
Affiliation(s)
- Justin Hayase
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Robert Chin
- Radiation Oncology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Minsong Cao
- Radiation Oncology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiological Services, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Jason S Bradfield
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Hohmann S, Hillmann HAK, Müller-Leisse J, Eiringhaus J, Zormpas C, Merten R, Veltmann C, Duncker D. Stereotactic radioablation for ventricular tachycardia. Herzschrittmacherther Elektrophysiol 2021; 33:49-54. [PMID: 34825951 DOI: 10.1007/s00399-021-00830-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Non-invasive stereotactic radioablation of ventricular tachycardia (VT) substrate has been proposed as a novel treatment modality for patients not eligible for catheter-based ablation or in whom this approach has failed. Initial clinical results are promising with good short-term efficacy in VT suppression and tolerable side effects. This article reviews the current clinical evidence for cardiac radioablation and gives an overview of important preclinical and translational results. Practical guidance is provided, and a cardiac radioablation planning and treatment workflow based on expert consensus and the authors' institutional experience is set out.
Collapse
Affiliation(s)
- Stephan Hohmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Henrike A K Hillmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanna Müller-Leisse
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jörg Eiringhaus
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christos Zormpas
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Roland Merten
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Christian Veltmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
12
|
Siedow M, Brownstein J, Prasad RN, Loccoh E, Harfi TT, Okabe T, Tong MS, Afzal MR, Williams T. Cardiac radioablation in the treatment of ventricular tachycardia. Clin Transl Radiat Oncol 2021; 31:71-79. [PMID: 34646951 PMCID: PMC8498093 DOI: 10.1016/j.ctro.2021.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Cardiac radioablation with SBRT is a very promising non-invasive modality for the treatment of refractory VT and potentially other cardiac arrhythmias. Initial reports indicate that it is relatively safe and associated with excellent responses, particularly in reduction of ICD-related events, need for anti-arrhythmic medications, and resulting in significantly improved quality of life for patients. Establishment of objective criteria for candidates for cardiac radioablation will accelerate the adoption of this important radiation therapy modality in the treatment of refractory VT and other cardiac arrhythmias in the coming years. In addition, in order to develop more prospective safety and efficacy data, treatment of patients should ideally be performed in the context of clinical trials or prospective registries at, or in collaboration with, experienced centers. Taken together, the future of cardiac radioablation is rich and worthy of further investigation to become a standard treatment in the armamentarium against refractory VT.
Collapse
Affiliation(s)
- Michael Siedow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeremy Brownstein
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rahul N. Prasad
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Emefah Loccoh
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thura T. Harfi
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Toshimasa Okabe
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Matthew S. Tong
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Muhammad R. Afzal
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
13
|
Cardiac stereotactic ablative radiotherapy for refractory ventricular arrhythmias: A radical alternative? A narrative review of rationale and cardiological aspects. J Med Imaging Radiat Sci 2021; 52:626-635. [PMID: 34593358 DOI: 10.1016/j.jmir.2021.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Ventricular arrhythmias are serious life-threatening cardiac disorders. Despite many technological improvements, a non-negligible number of patients present refractory ventricular tachycardias, resistant to a catheter ablation procedure, placing these patients in a therapeutic impasse. Recently, a cardiac stereotactic radioablative technique has been developed to treat patients with refractory ventricular arrhythmias, as a bail out strategy. This new therapeutic option historically brings together two fields of expertise unknown to each other, pointing out the necessity of an optimal partnership between cardiologists and radiation oncologists. As described in this narrative review, the understanding of cardiological aspects of the technique for radiation oncologists and treatment technical aspects comprehension for cardiologists represent a major challenge for the application and the future development of this promising treatment.
Collapse
|
14
|
Wei C, Qian PC, Boeck M, Bredfeldt JS, Blankstein R, Tedrow UB, Mak R, Zei PC. Cardiac stereotactic body radiation therapy for ventricular tachycardia: Current experience and technical gaps. J Cardiovasc Electrophysiol 2021; 32:2901-2914. [PMID: 34587335 DOI: 10.1111/jce.15259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Despite advances in drug and catheter ablation therapy, long-term recurrence rates for ventricular tachycardia remain suboptimal. Cardiac stereotactic body radiotherapy (SBRT) is a novel treatment that has demonstrated reduction of arrhythmia episodes and favorable short-term safety profile in treatment-refractory patients. Nevertheless, the current clinical experience is early and limited. Recent studies have highlighted variable duration of treatment effect and substantial recurrence rates several months postradiation. Contributing to these differential outcomes are disparate approaches groups have taken in planning and delivering radiation, owing to both technical and knowledge gaps limiting optimization and standardization of cardiac SBRT. METHODS AND FINDINGS In this report, we review the historical basis for cardiac SBRT and existing clinical data. We then elucidate the current technical gaps in cardiac radioablation, incorporating the current clinical experience, and summarize the ongoing and needed efforts to resolve them. CONCLUSION Cardiac SBRT is an emerging therapy that holds promise for the treatment of ventricular tachycardia. Technical gaps remain, to be addressed by ongoing research and growing clincial experience.
Collapse
Affiliation(s)
- Chen Wei
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre C Qian
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michelle Boeck
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jeremy S Bredfeldt
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Usha B Tedrow
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raymond Mak
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paul C Zei
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Whitaker J, Mak RH, Zei PC. Non-invasive ablation of arrhythmias with stereotactic ablative radiotherapy. Trends Cardiovasc Med 2021; 32:287-296. [PMID: 33951498 DOI: 10.1016/j.tcm.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
Stereotactic ablative radiotherapy (SABR), or stereotactic body radiotherapy (SBRT), has recently been applied in the field of arrhythmia management. It has been most widely assessed in the treatment of ventricular tachycardia (VT) but may also have potential in the treatment of other arrhythmias as well, often termed stereotactic arrhythmia radiotherapy (STAR). The non-invasive delivery of treatment for VT has the potential to spare an often physiologically vulnerable group of patients the burden of long catheter ablation procedures with the potential for prolonged periods of hemodynamic instability. Cardiac SABR also has the capacity to direct ablative therapy at substrate that is inaccessible using current transchatheter techniques. For these reasons cardiac SABR has generated significant enthusiasm as an emerging treatment modality for VT. We consider in review the pre-clinical data pertaining to the use of SABR in cardiac tissue and recent clinical evidence regarding the application of SABR in the field of arrhythmia management.
Collapse
Affiliation(s)
- John Whitaker
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Raymond H Mak
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Paul C Zei
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| |
Collapse
|
16
|
Takami M, Hara T, Okimoto T, Suga M, Fukuzawa K, Kiuchi K, Suehiro H, Akita T, Takemoto M, Nakamura T, Sakai J, Yatomi A, Nakasone K, Sonoda Y, Yamamoto K, Takahara H, Hirata K. Electrophysiological and Pathological Impact of Medium-Dose External Carbon Ion and Proton Beam Radiation on the Left Ventricle in an Animal Model. J Am Heart Assoc 2021; 10:e019687. [PMID: 33759547 PMCID: PMC8174335 DOI: 10.1161/jaha.120.019687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/18/2021] [Indexed: 01/12/2023]
Abstract
Background Medium-dose (25 gray) x-ray radiation therapy has recently been performed on patients with refractory ventricular tachyarrhythmias. Unlike x-ray, carbon ion and proton beam radiation can deliver most of their energy to the target tissues. This study investigated the electrophysiological and pathological changes caused by medium-dose carbon ion and proton beam radiation in the left ventricle (LV). Methods and Results External beam radiation in the whole LV was performed in 32 rabbits. A total of 9 rabbits were not irradiated (control). At the 3-month or 6-month follow-up, the animals underwent an open-chest electrophysiological study and were euthanized for histological analyses. No acute death occurred. Significant LV dysfunction was not seen. The surface ECG revealed a significant reduction in the P and QRS wave voltages in the radiation groups. The electrophysiological study showed that the local conduction times in each LV site were significantly longer and that the local LV bipolar voltages were significantly lower in the radiation groups than in the control rabbits. Histologically, apoptosis, fibrotic changes, and a decrease in the expression of the connexin 43 protein were seen in the LV myocardium. These changes were obvious at 3 months, and the effects were sustained 6 months after radiation. No histological changes were seen in the coronary artery and esophagus, but partial radiation pneumonitis was observed. Conclusions Medium-dose carbon ion and proton beam radiation in the whole LV resulted in a significant electrophysiological disturbance and pathological changes in the myocardium. Radiation of the arrhythmogenic substrate would modify the electrical status and potentially induce the antiarrhythmic effect.
Collapse
Affiliation(s)
- Mitsuru Takami
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Tetsuya Hara
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Tomoaki Okimoto
- Department of RadiologyHyogo Ion Beam Medical CenterTatsunoHyogoJapan
| | - Masaki Suga
- Department of Radiation PhysicsHyogo Ion Beam Medical CenterTatsunoHyogoJapan
| | - Koji Fukuzawa
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Kunihiko Kiuchi
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Hideya Suehiro
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Tomomi Akita
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Makoto Takemoto
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Toshihiro Nakamura
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Jun Sakai
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Atsusuke Yatomi
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Kazutaka Nakasone
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Yusuke Sonoda
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Kyoko Yamamoto
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Hiroyuki Takahara
- Division of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Ken‐ichi Hirata
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| |
Collapse
|
17
|
Dickow J, Suzuki A, Henz BD, Madhavan M, Lehmann HI, Wang S, Parker KD, Monahan KH, Rettmann ME, Curley MG, Packer DL. Characterization of Lesions Created by a Heated, Saline Irrigated Needle-Tip Catheter in the Normal and Infarcted Canine Heart. Circ Arrhythm Electrophysiol 2020; 13:e009090. [PMID: 33198498 DOI: 10.1161/circep.120.009090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inability to eliminate intramural arrhythmogenic substrate may lead to recurrent ventricular tachycardia after catheter ablation. The aim of the present study was to evaluate intramural and full thickness lesion formation using a heated saline-enhanced radiofrequency (SERF) needle-tip catheter, compared with a conventional ablation catheter in normal and infarcted myocardium. METHODS Twenty-two adult mongrel dogs (30-40 kg, 15 normal and 7 myocardial infarct group) were studied. Lesions were created using the SERF catheter (40 W/50 °C) or a standard contact force (CF) catheter in both groups. RESULTS Comparing SERF to CF ablation, the SERF catheter produced larger lesion volumes than the standard CF catheter-even with >20 g of CF-in both normal (983.1±905.8 versus 461.9±178.3 mm3; P=0.023) and infarcted left ventricular myocardium (1052.3±543.0 versus 340.3±160.5 mm3; P=0.001). SERF catheter lesions were more often transmural than standard CF lesions with >20 g of CF in both groups (59.1% versus 7.7%; P<0.001 and 60.0% versus 12.5%; P=0.017, respectively). Using the SERF catheter, mean depth of ablated lesions reached 90% of the left ventricular wall in both normal and infarcted myocardium. CONCLUSIONS The SERF catheter created more transmural and larger ablative lesions in both normal and infarcted canine myocardium. SERF ablation is a promising new approach for endocardial intramural and full thickness ablation of ventricular tachycardia substrate that is not accessible with current techniques.
Collapse
Affiliation(s)
- Jannis Dickow
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| | - Atsushi Suzuki
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| | - Benhur D Henz
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| | - Malini Madhavan
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| | - H Immo Lehmann
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| | - Songyun Wang
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| | - Kay D Parker
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| | - Kristi H Monahan
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| | - Maryam E Rettmann
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| | | | - Douglas L Packer
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic, Rochester, MN (J.D., A.S., B.D.H., M.M., H.I.L., S.W., K.D.P., K.H.M., M.E.R., D.L.P.)
| |
Collapse
|