1
|
Kumari S, Bodhale N, Sarode A, Jha MK, Bhadange S, Pandey SP, Selvaraj S, Chande AG, Mukhopadhyaya R, Ghosh SK, Singh S, Mukherjee D, Duffin R, Andrews P, Saha B. Leishmania major MAPK4 intercepts and redirects CD40 signaling promoting infection. Int Immunopharmacol 2024; 134:112100. [PMID: 38728877 DOI: 10.1016/j.intimp.2024.112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.
Collapse
Affiliation(s)
- Sangeeta Kumari
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Aditya Sarode
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Mukesh Kumar Jha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Sagar Bhadange
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | | | - Ajit G Chande
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | | | - Shailza Singh
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | - Rebekah Duffin
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Philip Andrews
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
2
|
Vijayakumar S, Kumar LL, Borkotoky S, Murali A. The Application of MD Simulation to Lead Identification, Vaccine Design, and Structural Studies in Combat against Leishmaniasis - A Review. Mini Rev Med Chem 2024; 24:1089-1111. [PMID: 37680156 DOI: 10.2174/1389557523666230901105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023]
Abstract
Drug discovery, vaccine design, and protein interaction studies are rapidly moving toward the routine use of molecular dynamics simulations (MDS) and related methods. As a result of MDS, it is possible to gain insights into the dynamics and function of identified drug targets, antibody-antigen interactions, potential vaccine candidates, intrinsically disordered proteins, and essential proteins. The MDS appears to be used in all possible ways in combating diseases such as cancer, however, it has not been well documented as to how effectively it is applied to infectious diseases such as Leishmaniasis. As a result, this review aims to survey the application of MDS in combating leishmaniasis. We have systematically collected articles that illustrate the implementation of MDS in drug discovery, vaccine development, and structural studies related to Leishmaniasis. Of all the articles reviewed, we identified that only a limited number of studies focused on the development of vaccines against Leishmaniasis through MDS. Also, the PCA and FEL studies were not carried out in most of the studies. These two were globally accepted utilities to understand the conformational changes and hence it is recommended that this analysis should be taken up in similar approaches in the future.
Collapse
Affiliation(s)
| | | | - Subhomoi Borkotoky
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
3
|
Bandyopadhyay S, Gurjar D, Saha B, Bodhale N. Decoding the contextual duality of CD40 functions. Hum Immunol 2023; 84:590-599. [PMID: 37596136 DOI: 10.1016/j.humimm.2023.08.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Previously, we established that as a function of its mode of interaction with its ligand or cellular conditions such as membrane lipids, preexisting signaling intermediates activation status, a transmembrane receptor, as represented here with CD40, can induce counteractive cellular responses. Using CD40-binding peptides, recombinant mutated CD40-ligands, and an agonistic antibody, we have established the functional duality of CD40. CD40 builds up two constitutionally different signalosomes on lipid raft and non-raft membrane domains initiating two different signaling pathways. Although this initial signaling may be modified by the pre-existing signaling conditions downstream and may be subjected to feed-forward or negative signaling effects, the initial CD40-CD40L interaction plays a crucial role in the functional outcome of CD40. Herein, we have reviewed the influence of interaction between the CD40-CD40L evoking the functional duality of CD40 contingent upon different physiological states of the cells.
Collapse
Affiliation(s)
| | - Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| |
Collapse
|
4
|
Sloth AB, Bakhshinejad B, Jensen M, Stavnsbjerg C, Liisberg MB, Rossing M, Kjaer A. Analysis of Compositional Bias in a Commercial Phage Display Peptide Library by Next-Generation Sequencing. Viruses 2022; 14:v14112402. [PMID: 36366500 PMCID: PMC9697088 DOI: 10.3390/v14112402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 01/31/2023] Open
Abstract
The principal presumption of phage display biopanning is that the naïve library contains an unbiased repertoire of peptides, and thus, the enriched variants derive from the affinity selection of an entirely random peptide pool. In the current study, we utilized deep sequencing to characterize the widely used Ph.DTM-12 phage display peptide library (New England Biolabs). The next-generation sequencing (NGS) data indicated the presence of stop codons and a high abundance of wild-type clones in the naïve library, which collectively result in a reduced effective size of the library. The analysis of the DNA sequence logo and global and position-specific frequency of amino acids demonstrated significant bias in the nucleotide and amino acid composition of the library inserts. Principal component analysis (PCA) uncovered the existence of four distinct clusters in the naïve library and the investigation of peptide frequency distribution revealed a broad range of unequal abundances for peptides. Taken together, our data provide strong evidence for the notion that the naïve library represents substantial departures from randomness at the nucleotide, amino acid, and peptide levels, though not undergoing any selective pressure for target binding. This non-uniform sequence representation arises from both the M13 phage biology and technical errors of the library construction. Our findings highlight the paramount importance of the qualitative assessment of the naïve phage display libraries prior to biopanning.
Collapse
Affiliation(s)
- Ane Beth Sloth
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Babak Bakhshinejad
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Malte Jensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Camilla Stavnsbjerg
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikkel Baldtzer Liisberg
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
5
|
Sarode AY, Jha MK, Zutshi S, Ghosh SK, Mahor H, Sarma U, Saha B. Residue-Specific Message Encoding in CD40-Ligand. iScience 2020; 23:101441. [PMID: 32827854 PMCID: PMC7452233 DOI: 10.1016/j.isci.2020.101441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 11/15/2022] Open
Abstract
CD40-Ligand (CD40L)-CD40 interaction regulates immune responses against pathogens, autoantigens, and tumor and transplantation antigens. Single amino acid mutations within the 115-155 amino acids stretch, which is responsible for CD40L functions, result in XIgM syndrome. We hypothesize that each of these amino acids of CD40L encodes specific message that, when decoded by CD40 signaling, induces a specific profile of functions. We observed that every single substitution in the XIgM-related amino acids in the 115-155 41-mer peptide in CD40L selectively altered CD40 signaling and effector functions-cytokine productions, HMGCoA reductase, ceramide synthase, inducible nitric oxide synthase and arginase expression, survival of B cells, and control of Leishmania infection and anti-leishmanial T cell response-suggesting residue-specific encoding of a distinct set of messages that collectively define CD40L pleiotropy, serve as a target for engineering the ligand to generate superagonists as immunotherapeutic, and implicate the evolutionary diversification of functions among the ligands in a protein superfamily.
Collapse
Affiliation(s)
- Aditya Yashwant Sarode
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Mukesh Kumar Jha
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Shubhranshu Zutshi
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Soumya Kanti Ghosh
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Hima Mahor
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Uddipan Sarma
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
- Trident Academy of Creative Technology, Bhubaneswar, Orissa 751024, India
| |
Collapse
|
6
|
Bandyopadhyay S, Chandel HS, Singh S, Roy S, Krishnasastry MV, Saha B. Counteractive functions are encrypted in the residues of CD154. Hum Immunol 2015; 76:673-80. [PMID: 26429321 DOI: 10.1016/j.humimm.2015.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/21/2015] [Accepted: 09/27/2015] [Indexed: 10/23/2022]
Abstract
CD40, as a single receptor that binds CD154 (CD40-ligand or CD40L), regulates counteractive effector functions such as production of pro- and anti-inflammatory cytokines. Therefore, we examined whether such dual messages are encrypted in CD40L. As such message encryption was never investigated, we hypothesized that mutation of certain amino acid residues should in principle enhance pro-inflammatory cytokine production whereas mutation of some others would enhance anti-inflammatory cytokine secretion. We mutated six such residues, which were previously showed to participate in CD40L function. Here, we report that the mutant CD154 129E→V was superior to the wild-type CD154 in killing of Leishmania donovani, induction of inducible nitric oxide synthase (iNOS) and production of IL-12 and relative phosphorylation of p38MAPK and ERK-1/2 in PBMC-derived macrophages. By contrast, 128S→V promoted L. donovani survival, reducing iNOS, but increasing IL-10 expression and predominant ERK-1/2 phosphorylation. The mutant 144G→V did not have significant effects. Other mutants (142E→V, 143K→A, 145Y→F) mimicked the wild-type CD154. Molecular dynamics simulation suggested that these mutations induced differential conformational changes in the CD40-CD154 complex. Therefore, assortment of the contrasting messages encrypted in a given ligand performing counteractive functions presents a novel fundamental biological principle that can be used for devising various therapies.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Somenath Roy
- Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, India
| | | | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|