1
|
Gong Y, Jiang X, Zheng Y, Li Y, Bao X, Zhu W, Li Y, Wu X, Liang B, Zhang T, He J. HLA alleles, blocks, and haplotypes associated with the hematological diseases of AML, ALL, MDS, and AA in the Han population of Southeastern China. Chin Med J (Engl) 2025; 138:877-879. [PMID: 40090952 PMCID: PMC11970826 DOI: 10.1097/cm9.0000000000003521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Indexed: 03/19/2025] Open
Affiliation(s)
- Yuxi Gong
- Department of Haematology, The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases (NCRCH), Suzhou, Jiangsu 215006, China
| | - Xue Jiang
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215031, China
| | - Yuqian Zheng
- Basecare Medical Device Co., Ltd., Suzhou Life Intelligence Industry Research Institute, Suzhou, Jiangsu 215125, China
| | - Yang Li
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215031, China
| | - Xiaojing Bao
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215031, China
| | - Wenjuan Zhu
- Department of Haematology, The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases (NCRCH), Suzhou, Jiangsu 215006, China
| | - Ying Li
- Department of Haematology, The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases (NCRCH), Suzhou, Jiangsu 215006, China
| | - Xiaojin Wu
- Department of Haematology, The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases (NCRCH), Suzhou, Jiangsu 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tengteng Zhang
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215031, China
| | - Jun He
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215031, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
2
|
Qi J, Wang T, Wang M, He P, Li Y, Shang L, Chen L, Wang X, Xu H, Ma C. Comparative study of the diversity of amino acids on human leucocyte antigen class II molecules in patients with acquired aplastic anaemia. Br J Haematol 2025; 206:735-748. [PMID: 39538961 DOI: 10.1111/bjh.19899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Human leucocyte antigen (HLA) class II molecules are critically involved in the pathology of acquired aplastic anaemia (AA) by regulating the immune response and autoreactive T cell-mediated haematopoietic cell death. In the study, amino acid residue variation and molecular structure of HLA class II have been initially investigated in 96 patients with AA. The frequencies of residues 9 and 57 in pocket 9 (P9) in DQB1, and amino acid positions 9, 11, 13, 16, 26, 38, 67 and 71 in the P4, P6 and P9 pockets in DRB1 were more prevalent among AA patients. By applying a multivariate recursive approach, the DRβ-Gln-16 (OR = 3.003, 95% CI = 1.468-6.145, pc = 0.003), DRβ-Ala-71 (OR = 1.924, 95% CI = 1.233-3.002, pc = 0.004) in P4/P7 and DQβ-Asp-57 (OR = 3.483, 95% CI = 1.079-11.242, pc = 0.037) in P9, these critical residues were significantly discovered as risk amino acid residues on the onset of AA, as well as associated with PNH-type cells and pathological somatic or cytogenetic mutations. In silico structural model analysis showed that identified DRβ-Ala-71 and DQβ-Asp-57 within the antigen-binding groove interacting with a more variable antigenic segments, may impact the repertoire of peptides presented, influence the interface HLA-antigen-T-cell receptor β (TCR β). These findings provided light on the immunogenetic pathophysiology of AA aetiology and their potential impact on upcoming immunotherapies.
Collapse
Affiliation(s)
- Jun Qi
- HLA Laboratory, Shaanxi Province Blood Center, Institute of Xi'an Blood Bank, Xi'an, Shaanxi Province, China
| | - Tianju Wang
- HLA Laboratory, Shaanxi Province Blood Center, Institute of Xi'an Blood Bank, Xi'an, Shaanxi Province, China
| | - Manni Wang
- HLA Laboratory, Shaanxi Province Blood Center, Institute of Xi'an Blood Bank, Xi'an, Shaanxi Province, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi Province, China
| | - Yuhui Li
- HLA Laboratory, Shaanxi Province Blood Center, Institute of Xi'an Blood Bank, Xi'an, Shaanxi Province, China
| | - Lixia Shang
- HLA Laboratory, Shaanxi Province Blood Center, Institute of Xi'an Blood Bank, Xi'an, Shaanxi Province, China
| | - Le Chen
- HLA Laboratory, Shaanxi Province Blood Center, Institute of Xi'an Blood Bank, Xi'an, Shaanxi Province, China
| | - Xiaofang Wang
- HLA Laboratory, Shaanxi Province Blood Center, Institute of Xi'an Blood Bank, Xi'an, Shaanxi Province, China
| | - Hua Xu
- HLA Laboratory, Shaanxi Province Blood Center, Institute of Xi'an Blood Bank, Xi'an, Shaanxi Province, China
| | - Chaofeng Ma
- HLA Laboratory, Shaanxi Province Blood Center, Institute of Xi'an Blood Bank, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Benmoussa A, Assernannas I, Maatoui-Belabbes H, Dahmaoui N, Qachouh M, Cherkaoui S, Lamchaheb M, Rachid M, Madani A, Khoubila N. [Acquired bone marrow aplasia in children and young adults under the age of 30: Experience of the Pediatric Hematology and Oncology Department of the 20 August Hospital, Casablanca]. Bull Cancer 2024; 111:944-954. [PMID: 39242252 DOI: 10.1016/j.bulcan.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 09/09/2024]
Abstract
Bone marrow aplasia is a rare and serious hematologic disorder. Although benign, it is a hematologic disorder whose prognosis can be poor and whose spontaneous development can be fatal. Treatment is long, difficult and costly. In developing countries, the mortality rate is high due to the difficulties of therapeutic management, both supportive and specific. We conducted a retrospective study of 92 cases of AM identified in the Pediatric Hematology and Oncology Department of the 20 Août University Hospital in Casablanca over a 10-year period (January 2010-January 2020). In this work, we present an overview of the situation and highlight the difficulties encountered in the management of AM in the Pediatric Hematology and Oncology Department of the University Hospital of Casablanca. In our study, the mean age was 19 years, ranging from 3 months to 29 years, with a peak in the 15-20 age group. The sex ratio (M/F) was 2.06, with a male predominance of 67%. In our series, only 35% of patients had complete bone marrow failure. An anemic syndrome was present in 92% of patients, and hemorrhagic and infectious syndromes were present in 70% and 41% of patients, respectively. The median time from diagnosis to treatment was 82 days. According to the Camitta score, 31% of our patients had mild AM, 41% had severe AM, and 28% had very severe AM. After etiologic evaluation, we concluded that 90% of the patients had idiopathic bone marrow aplasia, 2% had constitutional bone marrow aplasia, and 8% of the patients were suspected to have secondary bone marrow aplasia: post-hepatitis (3 cases), toxic (2 cases), drug-induced (1 case), and aplastic PNH (1 case). Mortality in the first three months after diagnosis was 21%. Sixty-nine percent of our patients received specific treatment: 28 were treated with cyclosporin (CIS) alone as first-line therapy, 20 received a combination of antilymphocyte serum (ALS) and cyclosporin, 2 received hematopoietic stem cell transplantation (HSCT), while 3 were treated with androgens alone. The overall response rate was 30% with CIS, 42% with ALS+CIS and 100% with HSCT. In our study, the overall death rate was 44%, while the one-year survival rate was 40%. It is important to note that septic shock was the leading cause of death (53% of deaths), followed by hemorrhagic shock (24%). This highlights the lack of hemodynamic resuscitation and symptomatic treatment. Our multivariate study defined the following risk factors as predictive of worse survival: age greater than 16 years (RR: 3.28; CI: 1.29-8.33; P=0.012), PNN less than 200 or very severe bone marrow aplasia (RR: 3.01; 1.1-8.08; P=0.028), and failure to receive any specific treatment (RR: 4.07; 1.77-9.35; P=0.0003). The high overall mortality in our series was due to several factors: inaccessibility to effective therapies, delayed diagnosis, failure to initiate specific treatment, inadequate symptomatic treatment, and geographical and financial inaccessibility.
Collapse
Affiliation(s)
- Amine Benmoussa
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc.
| | - Imane Assernannas
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc
| | - Hajar Maatoui-Belabbes
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc
| | - Nizar Dahmaoui
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc
| | - Maryam Qachouh
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc
| | - Siham Cherkaoui
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc
| | - Mouna Lamchaheb
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc
| | - Mohamed Rachid
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc
| | - Abdellah Madani
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc
| | - Nisrine Khoubila
- Service d'hématologie clinique et d'oncologie pédiatrique, faculté de médecine et de pharmacie de Casablanca, centre hospitalier universitaire 20 Août de Casablanca, Casablanca, Maroc
| |
Collapse
|
4
|
Zhang Z, Hu Q, Yang C, Chen M, Han B. Comparison of human leukocyte antigen in patients with paroxysmal nocturnal hemoglobinuria of different clone sizes. Ann Hematol 2024; 103:1897-1907. [PMID: 38616191 DOI: 10.1007/s00277-024-05740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Glycosylphosphatidylinositol-anchored protein-deficient hematopoietic stem and progenitor cell development caused by PIGA mutations cannot fully explain the pathogenesis of paroxysmal nocturnal hemoglobinuria (PNH). Herein, patients newly diagnosed with PNH at our hospital between April 2019 and April 2021 were recruited. The human leukocyte antigen (HLA) class I and II loci were analyzed, and patients were stratified by PNH clone sizes: small (< 50%) and large (≥ 50%). In 40 patients (29 males; 72.5%), the median PNH clone size was 72%. Thirteen (32.5%) and twenty-seven (67.5%) patients harbored small and large PNH clones, respectively. DRB1*15:01 and DQB1*06:02 had higher frequencies in patients with PNH than in healthy controls (adjusted P-value = 4.10 × 10-4 and 4.10 × 10-4, respectively). Whole HLA class I and II allele contributions differed (P = 0.046 and 0.065, not significant difference) when comparing patients with small and large PNH clones. B*13:01 and C*04:01 allelic frequencies were significantly higher in patients with small clones (P = 0.032 and P = 0.032, respectively). Patients with small clones had higher class II HLA evolutionary divergence (HED) (P = 0.041) and global class I and II HED (P = 0.019). In the entire cohort, 17 HLA aberrations were found in 11 (27.5%) patients. No significant differences in HLA aberrations were found between patients with small or large clones. In conclusion, patients with small clones tended to have a higher frequency of immune attack-associated alleles. A higher HED in patients with small clones may reflect a propensity for T cell-mediated autoimmunity. HLA aberrations were similar between patients with small and large clones.
Collapse
Affiliation(s)
- Zhuxin Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qinglin Hu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
5
|
Li YM, Li YX, Li DY, Zhou Y, An L, Yuan ZY, Du KM, Zheng ZZ. Investigation of HLA susceptibility alleles and genotypes with hematological disease among Chinese Han population. PLoS One 2024; 19:e0281698. [PMID: 38593173 PMCID: PMC11003630 DOI: 10.1371/journal.pone.0281698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/10/2024] [Indexed: 04/11/2024] Open
Abstract
Several genes involved in the pathogenesis have been identified, with the human leukocyte antigen (HLA) system playing an essential role. However, the relationship between HLA and a cluster of hematological diseases has received little attention in China. Blood samples (n = 123913) from 43568 patients and 80345 individuals without known pathology were genotyped for HLA class I and II using sequencing-based typing. We discovered that HLA-A*11:01, B*40:01, C*01:02, DQB1*03:01, and DRB1*09:01 were prevalent in China. Furthermore, three high-frequency alleles (DQB1*03:01, DQB1*06:02, and DRB1*15:01) were found to be hazardous in malignant hematologic diseases when compared to controls. In addition, for benign hematologic disorders, 7 high-frequency risk alleles (A*01:01, B*46:01, C*01:02, DQB1*03:03, DQB1*05:02, DRB1*09:01, and DRB1*14:54) and 8 high-frequency susceptible genotypes (A*11:01-A*11:01, B*46:01-B*58:01, B*46:01-B*46:01, C*01:02-C*03:04, DQB1*03:01-DQB1*05:02, DQB1*03:03-DQB1*06:01, DRB1*09:01-DRB1*15:01, and DRB1*14:54-DRB1*15:01) were observed. To summarize, our findings indicate the association between HLA alleles/genotypes and a variety of hematological disorders, which is critical for disease surveillance.
Collapse
Affiliation(s)
- Ye-Mo Li
- Shenzhen Tissuebank Precision Medicine Co., Ltd, Shenzhen, China
| | - Yu-Xia Li
- Shanghai Tissuebank Biotechnology Co., Ltd, Shanghai, China
| | - Dai-Yang Li
- Shenzhen Tissuebank Precision Medicine Co., Ltd, Shenzhen, China
| | - Ying Zhou
- Shenzhen Tissuebank Precision Medicine Co., Ltd, Shenzhen, China
| | - Lin An
- Shanghai Tissuebank Biotechnology Co., Ltd, Shanghai, China
| | - Zhi-Yang Yuan
- Shenzhen Tissuebank Precision Medicine Co., Ltd, Shenzhen, China
| | - Ke-Ming Du
- Shenzhen Tissuebank Precision Medicine Co., Ltd, Shenzhen, China
| | | |
Collapse
|
6
|
Sangphukieo A, Thongkumkoon P, Noisagul P, Lo Piccolo L, O’Brien TE, Chaowattanapanit S, Choonhakarn C, Amornpinyo W, Chaiwarith R, Kiratikanon S, Rujiwetpongstorn R, Tovanabutra N, Chiewchanvit S, Kantaputra P, Intachai W, Dissook S, Chuamanochan M. Human Leukocyte Antigen Markers for Distinguishing Pustular Psoriasis and Adult-Onset Immunodeficiency with Pustular Reaction. Genes (Basel) 2024; 15:278. [PMID: 38540337 PMCID: PMC10970016 DOI: 10.3390/genes15030278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
Pustular skin diseases, with pustular psoriasis (PP) being the prototype, are immune-mediated diseases characterized by the presence of multiple pustules, resulting from neutrophil accumulation in the layer of epidermis. Sterile skin pustular eruption, like PP, is also observed in 20-30% of patients with adult-onset immunodeficiency syndrome (AOID) and anti-interferon γ autoantibodies (IFN-γ), leading to challenges in classification and diagnosis. While the mechanism underlying this similar phenotype remains unknown, genetic factors in relation to the immune system are suspected of playing an important role. Here, the association between human leukocyte antigen (HLA) genes, which play essential roles in antigen presentation, contributing to immune response, and the presence of skin pustules in AOID and PP was revealed. HLA genotyping of 41 patients from multiple centers in Thailand who presented with multiple sterile skin pustules (17 AOID patients and 24 PP patients) was conducted using a next-generation-sequencing-based approach. In comparison to healthy controls, HLA-B*13:01 (OR = 3.825, 95%CI: 2.08-7.035), C*03:04 (OR = 3.665, 95%CI: 2.102-6.39), and DQB1*05:02 (OR = 2.134, 95%CI: 1.326-3.434) were significantly associated with the group of aforementioned conditions having sterile cutaneous pustules, suggesting a common genetic-related mechanism. We found that DPB1*05:01 (OR = 3.851, p = 0.008) and DRB1*15:02 (OR = 3.195, p = 0.033) have a significant association with pustular reaction in AOID patients, with PP patients used as a control. A variant in the DRB1 gene, rs17885482 (OR = 9.073, p = 0.005), was observed to be a risk factor for PP when using AOID patients who had pustular reactions as a control group. DPB1*05:01 and DRB1*15:02 alleles, as well as the rs17885482 variant in the DRB1 gene, were proposed as novel biomarkers to differentiate PP and AOID patients who first present with multiple sterile skin pustules without known documented underlying conditions.
Collapse
Affiliation(s)
- Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.); (P.N.); (L.L.P.)
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.); (P.N.); (L.L.P.)
| | - Pitiporn Noisagul
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.); (P.N.); (L.L.P.)
| | - Luca Lo Piccolo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.); (P.N.); (L.L.P.)
| | - Timothy E. O’Brien
- Applied and Environmental Statistics, Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60153, USA;
| | - Suteeraporn Chaowattanapanit
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (C.C.)
| | - Charoen Choonhakarn
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (C.C.)
| | - Warayuwadee Amornpinyo
- Division of Dermatology, Department of Internal Medicine, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen 40002, Thailand;
| | - Romanee Chaiwarith
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Salin Kiratikanon
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Rujira Rujiwetpongstorn
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Napatra Tovanabutra
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Siri Chiewchanvit
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (W.I.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (W.I.)
| | - Sivamoke Dissook
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mati Chuamanochan
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| |
Collapse
|
7
|
Chen L, Ge M, Huo J, Ren X, Shao Y, Li X, Huang J, Wang M, Nie N, Zhang J, Peng J, Zheng Y. Association between human leukocyte antigen and immunosuppressive treatment outcomes in Chinese patients with aplastic anemia. Front Immunol 2023; 14:1056381. [PMID: 36793734 PMCID: PMC9923019 DOI: 10.3389/fimmu.2023.1056381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
Background Activated cytotoxic T cells (CTLs) recognize the auto-antigens presented on hematopoietic stem/progenitor cells (HSPCs) through class I human leukocyte antigen (HLA) molecules and play an important role in the immune pathogenesis of aplastic anemia (AA). Previous reports demonstrated that HLA was related to the disease susceptibility and response to immunosuppressive therapy (IST) in AA patients. Recent studies have indicated that specific HLA allele deletions, which helped AA patients to evade CTL-driven autoimmune responses and escape from immune surveillance, may lead to high-risk clonal evolution. Therefore, HLA genotyping has a particular predictive value for the response to IST and the risk of clonal evolution. However, there are limited studies on this topic in the Chinese population. Methods To explore the value of HLA genotyping in Chinese patients with AA, 95 AA patients treated with IST were retrospectively investigated. Results The alleles HLA-B*15:18 and HLA-C*04:01 were associated with a superior long-term response to IST (P = 0.025; P = 0.027, respectively), while the allele HLA-B*40:01 indicated an inferior result (P = 0.02). The allele HLA-A*01:01 and HLA-B*54:01 were associated with high-risk clonal evolution (P = 0.032; P = 0.01, respectively), and the former had a higher frequency in very severe AA (VSAA) patients than that in severe AA (SAA) patients (12.7% vs 0%, P = 0.02). The HLA-DQ*03:03 and HLA-DR*09:01 alleles were associated with high-risk clonal evolution and poor long-term survival in patients aged ≥40 years. Such patients may be recommended for early allogeneic hematopoietic stem cell transplantation rather than the routine IST treatment. Conclusion HLA genotype has crucial value in predicting the outcome of IST and long-term survival in AA patients, and thus may assist an individualized treatment strategy.
Collapse
Affiliation(s)
| | - Meili Ge
- *Correspondence: Meili Ge, ; Yizhou Zheng,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Molecular mechanisms underlying the role of HLA-DQ in systemic immune activation in severe aplastic anemia. Blood Cells Mol Dis 2023; 98:102708. [DOI: 10.1016/j.bcmd.2022.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
9
|
Chen RL, Ip PP, Shaw JJ, Wang YH, Fan LH, Shen YL, Joseph NA, Chen TE, Chen LY. Anti-Thymocyte Globulin (ATG)-Free Nonmyeloablative Haploidentical PBSCT Plus Post-Transplantation Cyclophosphamide Is a Safe and Efficient Treatment Approach for Pediatric Acquired Aplastic Anemia. Int J Mol Sci 2022; 23:ijms232315192. [PMID: 36499545 PMCID: PMC9739033 DOI: 10.3390/ijms232315192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Most cases of acquired aplastic anemia (AA) arise from autoimmune destruction of hematopoietic stem and progenitor cells. Human leukocyte antigen (HLA)-haploidentical nonmyeloablative hematopoietic stem cell transplantation (HSCT) plus post-transplantation cyclophosphamide (PTCy) is increasingly applied to salvage AA using bone marrow as graft and anti-thymocyte globulin (ATG) in conditioning. Herein, we characterize a cohort of twelve AA patients clinically and molecularly, six who possessed other immunological disorders (including two also carrying germline SAMD9L mutations). Each patient with SAMD9L mutation also carried an AA-related rare BCORL1 variant or CTLA4 p.T17A GG genotype, respectively, and both presented short telomere lengths. Six of the ten patients analyzed harbored AA-risky HLA polymorphisms. All patients recovered upon non-HSCT (n = 4) or HSCT (n = 8) treatments. Six of the eight HSCT-treated patients were subjected to a modified PTCy-based regimen involving freshly prepared peripheral blood stem cells (PBSC) as graft and exclusion of ATG. All patients were engrafted between post-transplantation days +13 and +18 and quickly reverted to normal life, displaying a sustained complete hematologic response and an absence of graft-versus-host disease. These outcomes indicate most AA cases, including of the SAMD9L-inherited subtype, are immune-mediated and the modified PTCy-based regimen we present is efficient and safe for salvage.
Collapse
Affiliation(s)
- Rong-Long Chen
- Department of Pediatric Hematology and Oncology, Koo Foundation Sun Yat-sen Cancer Center, Taipei 11259, Taiwan
- Correspondence:
| | - Peng Peng Ip
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| | - Jy-juinn Shaw
- School of Law, National Yang Ming Chiao Tung University, Hsinchu City 30093, Taiwan
| | - Yun-Hsin Wang
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 251301, Taiwan
| | - Li-Hua Fan
- Department of Pharmacy, Koo Foundation Sun Yat-sen Cancer Center, Taipei 11259, Taiwan
| | - Yi-Ling Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| | - Nithila A. Joseph
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| | - Tsen-Erh Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115024, Taiwan
| |
Collapse
|
10
|
Zaimoku Y, Patel BA, Adams SD, Shalhoub R, Groarke EM, Lee AAC, Kajigaya S, Feng X, Rios OJ, Eager H, Alemu L, Quinones Raffo D, Wu CO, Flegel WA, Young NS. HLA associations, somatic loss of HLA expression, and clinical outcomes in immune aplastic anemia. Blood 2021; 138:2799-2809. [PMID: 34724566 PMCID: PMC8718630 DOI: 10.1182/blood.2021012895] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Immune aplastic anemia (AA) features somatic loss of HLA class I allele expression on bone marrow cells, consistent with a mechanism of escape from T-cell-mediated destruction of hematopoietic stem and progenitor cells. The clinical significance of HLA abnormalities has not been well characterized. We examined the somatic loss of HLA class I alleles and correlated HLA loss and mutation-associated HLA genotypes with clinical presentation and outcomes after immunosuppressive therapy in 544 AA patients. HLA class I allele loss was detected in 92 (22%) of the 412 patients tested, in whom there were 393 somatic HLA gene mutations and 40 instances of loss of heterozygosity. Most frequently affected was HLA-B*14:02, followed by HLA-A*02:01, HLA-B*40:02, HLA-B*08:01, and HLA-B*07:02. HLA-B*14:02, HLA-B*40:02, and HLA-B*07:02 were also overrepresented in AA. High-risk clonal evolution was correlated with HLA loss, HLA-B*14:02 genotype, and older age, which yielded a valid prediction model. In 2 patients, we traced monosomy 7 clonal evolution from preexisting clones harboring somatic mutations in HLA-A*02:01 and HLA-B*40:02. Loss of HLA-B*40:02 correlated with higher blood counts. HLA-B*07:02 and HLA-B*40:01 genotypes and their loss correlated with late-onset of AA. Our results suggest the presence of specific immune mechanisms of molecular pathogenesis with clinical implications. HLA genotyping and screening for HLA loss may be of value in the management of immune AA. This study was registered at clinicaltrials.gov as NCT00001964, NCT00061360, NCT00195624, NCT00260689, NCT00944749, NCT01193283, and NCT01623167.
Collapse
Affiliation(s)
- Yoshitaka Zaimoku
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Bhavisha A Patel
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sharon D Adams
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD; and
| | - Ruba Shalhoub
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Audrey Ai Chin Lee
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD; and
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Olga Julia Rios
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Holly Eager
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lemlem Alemu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Diego Quinones Raffo
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Colin O Wu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Willy A Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD; and
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|