1
|
De Pastina R, Chiarella SG, Simione L, Raffone A, Pazzaglia M. The remapping of peripersonal space after stroke, spinal cord injury and amputation: A PRISMA systematic review. Neurosci Biobehav Rev 2025; 173:106168. [PMID: 40252881 DOI: 10.1016/j.neubiorev.2025.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Peripersonal space (PPS) is the body-centered area where interactions occur and objects can be reached. Its boundaries are dynamic, modulated by ongoing sensorimotor experiences: limb immobilization shrinks PPS, whereas tool use expands it. However, consistent clinical information on PPS alterations remains limited due to methodological heterogeneity, varying types and severities of sensorimotor disorders, and diverse experimental paradigms. This review explores the causal mechanisms of PPS processing by integrating findings from brain-lesioned patients and individuals with body deafferentation, such as amputees and spinal cord injury (SCI) patients. By comparing the effects of brain lesions and sensorimotor deafferentation, it clarifies how PPS is encoded, maintained, and reorganized following central nervous system damage, bodily changes, and the use of assistive devices. A systematic search of Scopus, Web of Science, and PubMed identified 17 studies: 4 on stroke patients (N = 100), 6 on SCI patients (N = 104), and 7 on amputees (N = 65). Risk of bias was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Despite the limited number of studies and methodological variability, findings consistently show that sensorimotor changes significantly affect PPS. Notably, a contraction of PPS around the affected limb was observed in stroke, SCI patients, and amputees. Assistive devices were able to restore PPS after training, or even immediately in the case of prosthesis use. A shared neurophysiological mechanism across these conditions may underlie PPS as an online construct, continuously updated to reflect the body's current state and its interaction with the environment.
Collapse
Affiliation(s)
- Riccardo De Pastina
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy.
| | - Salvatore Gaetano Chiarella
- International School for Advanced Studies (SISSA), Trieste 34136, Italy; Dipartimento di Scienze Umanistiche e Sociali Internazionali, UNINT, Università degli Studi Internazionali di Roma, Rome 00147, Italy
| | - Luca Simione
- Dipartimento di Scienze Umanistiche e Sociali Internazionali, UNINT, Università degli Studi Internazionali di Roma, Rome 00147, Italy; Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Rome 00185, Italy
| | - Antonino Raffone
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy; Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome 00179, Italy
| |
Collapse
|
2
|
Piergiovanni S, Terrier P. Validity of Linear and Nonlinear Measures of Gait Variability to Characterize Aging Gait with a Single Lower Back Accelerometer. SENSORS (BASEL, SWITZERLAND) 2024; 24:7427. [PMID: 39685964 DOI: 10.3390/s24237427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
The attractor complexity index (ACI) is a recently developed gait analysis tool based on nonlinear dynamics. This study assesses ACI's sensitivity to attentional demands in gait control and its potential for characterizing age-related changes in gait patterns. Furthermore, we compare ACI with classical gait metrics to determine its efficacy relative to established methods. A 4 × 200 m indoor walking test with a triaxial accelerometer attached to the lower back was used to compare gait patterns of younger (N = 42) and older adults (N = 60) during normal and metronome walking. The other linear and non-linear gait metrics were movement intensity, gait regularity, local dynamic stability (maximal Lyapunov exponents), and scaling exponent (detrended fluctuation analysis). In contrast to other gait metrics, ACI demonstrated a specific sensitivity to metronome walking, with both young and old participants exhibiting altered stride interval correlations. Furthermore, there was a significant difference between the young and old groups (standardized effect size: -0.77). Additionally, older participants exhibited slower walking speeds, a reduced movement intensity, and a lower gait regularity. The ACI is likely a sensitive marker for attentional load and can effectively discriminate age-related changes in gait patterns. Its ease of measurement makes it a promising tool for gait analysis in unsupervised (free-living) conditions.
Collapse
Affiliation(s)
- Sophia Piergiovanni
- Haute-Ecole Arc Santé, HES-SO University of Applied Sciences and Arts Western Switzerland, 2000 Neuchâtel, Switzerland
| | - Philippe Terrier
- Haute-Ecole Arc Santé, HES-SO University of Applied Sciences and Arts Western Switzerland, 2000 Neuchâtel, Switzerland
| |
Collapse
|
3
|
Piergiovanni S, Terrier P. Effects of metronome walking on long-term attractor divergence and correlation structure of gait: a validation study in older people. Sci Rep 2024; 14:15784. [PMID: 38982219 PMCID: PMC11233570 DOI: 10.1038/s41598-024-65662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
This study investigates the effects of metronome walking on gait dynamics in older adults, focusing on long-range correlation structures and long-range attractor divergence (assessed by maximum Lyapunov exponents). Sixty older adults participated in indoor walking tests with and without metronome cues. Gait parameters were recorded using two triaxial accelerometers attached to the lumbar region and to the foot. We analyzed logarithmic divergence of lumbar acceleration using Rosenstein's algorithm and scaling exponents for stride intervals from foot accelerometers using detrended fluctuation analysis (DFA). Results indicated a concomitant reduction in long-term divergence exponents and scaling exponents during metronome walking, while short-term divergence remained largely unchanged. Furthermore, long-term divergence exponents and scaling exponents were significantly correlated. Reliability analysis revealed moderate intrasession consistency for long-term divergence exponents, but poor reliability for scaling exponents. Our results suggest that long-term divergence exponents could effectively replace scaling exponents for unsupervised gait quality assessment in older adults. This approach may improve the assessment of attentional involvement in gait control and enhance fall risk assessment.
Collapse
Affiliation(s)
- Sophia Piergiovanni
- Haute-Ecole Arc Santé, HES-SO University of Applied Sciences and Arts Western Switzerland, Espace de l'Europe 11, 2000, Neuchâtel, Switzerland
| | - Philippe Terrier
- Haute-Ecole Arc Santé, HES-SO University of Applied Sciences and Arts Western Switzerland, Espace de l'Europe 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
4
|
Couto AGB, Vaz MAP, Pinho L, Félix J, Moreira J, Pinho F, Mesquita IA, Mesquita Montes A, Crasto C, Sousa ASP. Interlimb Coordination during Double Support Phase of Gait in People with and without Stroke. J Mot Behav 2023; 56:195-210. [PMID: 37990958 DOI: 10.1080/00222895.2023.2282088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023]
Abstract
This study aims to identify differences between participants with and without stroke regarding the ipsilesional and contralesional lower limbs kinematics, kinetics, muscle activity and their variability during double support phase of gait. Eleven post-stroke and thirteen healthy participants performed 10 gait trials at a self-selected speed while being monitored by an optoelectronic motion capture system, two force plates and an electromyographic system. The following outcomes were evaluated during the double support: the time and the joint position; the external mechanical work on the centre of mass; and the relative electromyographic activity. Both, contralesional/ipsilesional and dominant/non-dominant of participants with and without stroke, respectively, were evaluated during double support phase of gait in trailing or leading positions. The average value of each parameter and the coefficient of variation of the 10 trials were analysed. Post-stroke participants present bilateral decreased mechanical work on the centre of mass and increased variability, decreased contralesional knee and ankle flexion in trailing position, increased ipsilesional knee flexion in leading position and increased variability. Increased relative muscle activity was observed in post-stroke participants with decreased variability. Mechanical work on the centre of mass seems to be the most relevant parameter to identify interlimb coordination impairments in post-stroke subjects.
Collapse
Affiliation(s)
- Ana G B Couto
- Department of Physiotherapy and Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
- Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| | - Mário A P Vaz
- Institute of Mechanical Engineering and Industrial Management, Faculty of Engineering, University of Porto, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Liliana Pinho
- Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- College of Health Sciences - Escola Superior de Saúde do Vale do Ave, Cooperative for Higher, Polytechnic and University Education, Vila Nova de Famalicão, Portugal
- Faculty of Sport, University of Porto, Porto, Portugal
| | - José Félix
- Department of Physics and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Juliana Moreira
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Francisco Pinho
- College of Health Sciences - Escola Superior de Saúde do Vale do Ave and Health and Human Movement Unit (H2M), Cooperative for Higher, Polytechnic and University Education, Vila Nova de Famalicão, Portugal
| | - Inês Albuquerque Mesquita
- Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
- Department of Functional Sciences and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - António Mesquita Montes
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
| | - Carlos Crasto
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
| | - Andreia S P Sousa
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
5
|
Gigonzac M, Terrier P. Restoring walking ability in older adults with arm-in-arm gait training: study protocol for the AAGaTT randomized controlled trial. BMC Geriatr 2023; 23:542. [PMID: 37674129 PMCID: PMC10481504 DOI: 10.1186/s12877-023-04255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
CONTEXT Falls are a significant problem among older adults. While balance and functional exercises have been shown to be effective, it remains unclear whether regular walking has specific effects on reducing the risk of falls. RATIONALE Older people who fall frequently have impaired gait patterns. Recent studies have suggested using interpersonal synchronization: while walking arm-in-arm, an older person synchronizes steps with a younger person to reinstate a better gait pattern. This method of gait training may reduce the risk of falls. OBJECTIVE The aim is to assess the efficacy of an arm-in-arm gait-training program in older people. DESIGN The arm-in-arm gait training trial (AAGaTT) is a single-site, open label, two-arm, randomized controlled trial. PARTICIPANTS We will enroll 66 dyads of older people and their younger "gait instructors". The older participants must be > 70 years old with adequate walking ability. They must have experienced a fall in the year prior to study entry. INTERVENTION Dyads will walk an indoor course for 30 min either side-by-side without contact (control group) or arm-in-arm while synchronizing their gait (intervention group). The gait training will be repeated three times a week for four weeks. OUTCOMES The main outcome will be the walking speed measured in five-minute walking trials performed at baseline and at the end of each intervention week (week 1 - week 4), and at week 7. Gait quality will be assessed using accelerometers. We will also assess perceived physical activity and health using questionnaires. Finally, we will monitor fall incidence over 18 months. We will evaluate whether outcomes are more improved in the intervention group compared to the control group. In addition, interviews will be conducted to assess the perception of the gait training. EXPECTED RESULTS Recent advances in the neurophysiology of motor control have shown that synchronizing gait to external cues or to a human partner can increase the efficiency of gait training. The expected benefits of arm-in-arm gait training are: reduced risk of falls, safe treatment with no adverse effects, and high adherence. This gait training program could be a low-cost intervention with positive effects on the health and well-being of seniors. TRIAL REGISTRATION ClinicalTrials.gov NCT05627453. Date of registration: 11.25.2022.
Collapse
Affiliation(s)
- Mathilde Gigonzac
- Haute Ecole Arc Santé, HES-SO University of Applied Sciences and Arts Western Switzerland, Neuchâtel, Switzerland
| | - Philippe Terrier
- Haute Ecole Arc Santé, HES-SO University of Applied Sciences and Arts Western Switzerland, Neuchâtel, Switzerland.
| |
Collapse
|
6
|
Vandamme C, Otlet V, Ronsse R, Crevecoeur F. Model of Gait Control in Parkinson's Disease and Prediction of Robotic Assistance. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1374-1383. [PMID: 37022872 DOI: 10.1109/tnsre.2023.3245286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Gait variability of healthy adults exhibits Long-Range Autocorrelations (LRA), meaning that the stride interval at any time statistically depends on previous gait cycles; and this dependency spans over several hundreds of strides. Previous works have shown that this property is altered in patients with Parkinson's disease, such that their gait pattern corresponds to a more random process. Here, we adapted a model of gait control to interpret the reduction in LRA that characterized patients in a computational framework. Gait regulation was modeled as a Linear-Quadratic-Gaussian control problem where the objective was to maintain a fixed velocity through the coordinated regulation of stride duration and length. This objective offers a degree of redundancy in the way the controller can maintain a given velocity, resulting in the emergence of LRA. In this framework, the model suggested that patients exploited less the task redundancy, likely to compensate for an increased stride-to-stride variability. Furthermore, we used this model to predict the potential benefit of an active orthosis on the gait pattern of patients. The orthosis was embedded in the model as a low-pass filter on the series of stride parameters. We show in simulations that, with a suitable level of assistance, the orthosis could help patients recovering a gait pattern with LRA comparable to that of healthy controls. Assuming that the presence of LRA in a stride series is a marker of healthy gait control, our study provides a rationale for developing gait assistance technology to reduce the fall risk associated with Parkinson's disease.
Collapse
|
7
|
Couto AGB, Vaz MAP, Pinho L, Félix J, Moreira J, Pinho F, Mesquita IA, Montes AM, Crasto C, Sousa ASP. Repeatability and Temporal Consistency of Lower Limb Biomechanical Variables Expressing Interlimb Coordination during the Double-Support Phase in People with and without Stroke Sequelae. SENSORS (BASEL, SWITZERLAND) 2023; 23:2526. [PMID: 36904730 PMCID: PMC10007500 DOI: 10.3390/s23052526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Reliable biomechanical methods to assess interlimb coordination during the double-support phase in post-stroke subjects are needed for assessing movement dysfunction and related variability. The data obtained could provide a significant contribution for designing rehabilitation programs and for their monitorisation. The present study aimed to determine the minimum number of gait cycles needed to obtain adequate values of repeatability and temporal consistency of lower limb kinematic, kinetic, and electromyographic parameters during the double support of walking in people with and without stroke sequelae. Eleven post-stroke and thirteen healthy participants performed 20 gait trials at self-selected speed in two separate moments with an interval between 72 h and 7 days. The joint position, the external mechanical work on the centre of mass, and the surface electromyographic activity of the tibialis anterior, soleus, gastrocnemius medialis, rectus femoris, vastus medialis, biceps femoris, and gluteus maximus muscles were extracted for analysis. Both the contralesional and ipsilesional and dominant and non-dominant limbs of participants with and without stroke sequelae, respectively, were evaluated either in trailing or leading positions. The intraclass correlation coefficient was used for assessing intra-session and inter-session consistency analysis. For most of the kinematic and the kinetic variables studied in each session, two to three trials were required for both groups, limbs, and positions. The electromyographic variables presented higher variability, requiring, therefore, a number of trials ranging from 2 to >10. Globally, the number of trials required inter-session ranged from 1 to >10 for kinematic, from 1 to 9 for kinetic, and 1 to >10 for electromyographic variables. Thus, for the double support analysis, three gait trials were required in order to assess the kinematic and kinetic variables in cross-sectional studies, while for longitudinal studies, a higher number of trials (>10) were required for kinematic, kinetic, and electromyographic variables.
Collapse
Affiliation(s)
- Ana G. B. Couto
- Department of Physiotherapy, Santa Maria Health School, 4049-024 Porto, Portugal
- Centre for Rehabilitation Research (CIR), School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
- Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Research Centre and Projects (NIP), Santa Maria Health School, 4049-024 Porto, Portugal
| | - Mário A. P. Vaz
- Institute of Mechanical Engineering and Industrial Management, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, 4200-450 Porto, Portugal
| | - Liliana Pinho
- Centre for Rehabilitation Research (CIR), School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
- College of Health Sciences—Escola Superior de Saúde do Vale do Ave, Cooperative for Higher, Polytechnic and University Education, 4760-409 Vila Nova de Famalicão, Portugal
- Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - José Félix
- Centre for Rehabilitation Research (CIR), School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
- Department of Physics, School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Juliana Moreira
- Centre for Rehabilitation Research (CIR), School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
- Department of Physiotherapy, School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Francisco Pinho
- College of Health Sciences—Escola Superior de Saúde do Vale do Ave, Cooperative for Higher, Polytechnic and University Education, 4760-409 Vila Nova de Famalicão, Portugal
- Human Movement Unit (H2M), Cooperative for Higher, Polytechnic and University Education, 4760-409 Vila Nova de Famalicão, Portugal
| | - Inês Albuquerque Mesquita
- Centre for Rehabilitation Research (CIR), School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
- Research Centre and Projects (NIP), Santa Maria Health School, 4049-024 Porto, Portugal
- Department of Functional Sciences, School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - António Mesquita Montes
- Department of Physiotherapy, Santa Maria Health School, 4049-024 Porto, Portugal
- Research Centre and Projects (NIP), Santa Maria Health School, 4049-024 Porto, Portugal
- Department of Physiotherapy, School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Carlos Crasto
- Department of Physiotherapy, Santa Maria Health School, 4049-024 Porto, Portugal
- Research Centre and Projects (NIP), Santa Maria Health School, 4049-024 Porto, Portugal
- Department of Physiotherapy, School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Andreia S. P. Sousa
- Department of Physiotherapy, School of Health of Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| |
Collapse
|
8
|
Synchronization performance affects gait variability measures during cued walking. Gait Posture 2022; 96:351-356. [PMID: 35820239 DOI: 10.1016/j.gaitpost.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Incorporating variability within gait rehabilitation offers a promising approach to restore functional capacity. However, it's success requires adequate synchronization, a parameter that lacks report in most of the literature regarding cued gait training. RESEARCH QUESTION How changes to synchronization performance during fractal-like and isochronous cueing impacts gait variability measures? METHODS We asked twelve young male participants to walk in synchronization to two different temporally structure cueing (isochronous [ISO] and fractal [FRC]). We have also manipulated the cueing's tempo by increasing and decreasing it by 5% to manipulate synchronization, resulting in six conditions (stimuli [ISO,FRC] x tempo [SLOW, NORMAL, FAST]). The normal condition was set from an uncued trial through the participant's self-paced stride time. Synchronization performance (ASYNC) and gait variability (fractal scaling and coefficient of variation) were calculated from stride time data ( -ISIs,CV-ISIs). Repeated measures analysis of variance or Aligned Rank Transform were conducted to determine significant differences between metronome tempo and stimuli for the dependent variables RESULTS: Our results showed a FAST tempo decreases synchronization performance (ASYNC) and leads to lower -ISIs, for both ISO and FRC stimuli. This indicates that when an individual exhibits poor synchronization during cued gait training, his/her gait variability patterns will not follow the temporal structure of the presented metronome. Specifically, if the individual poorly synchronizes to the cues, the gait patterns become more random, a condition typically observed in older adults and neurological patients, which runs contrary to the hypothesis when using fractal-like metronomes. SIGNIFICANCE This study provides supporting evidence that measuring synchronization performance in cued training is fundamental for a proper clinical interpretation of its effects. This is particularly relevant for the recent and ongoing clinical research using fractal-like metronomes since the expected gait patterns are dependent on the synchronization performance. Randomized control trials must incorporate synchronization performance related measures.
Collapse
|
9
|
Patil NS, Dingwell JB, Cusumano JP. Viability, task switching, and fall avoidance of the simplest dynamic walker. Sci Rep 2022; 12:8993. [PMID: 35637216 PMCID: PMC9151905 DOI: 10.1038/s41598-022-11966-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Walking humans display great versatility when achieving task goals, like avoiding obstacles or walking alongside others, but the relevance of this to fall avoidance remains unknown. We recently demonstrated a functional connection between the motor regulation needed to achieve task goals (e.g., maintaining walking speed) and a simple walker's ability to reject large disturbances. Here, for the same model, we identify the viability kernel-the largest state-space region where the walker can step forever via at least one sequence of push-off inputs per state. We further find that only a few basins of attraction of the speed-regulated walker's steady-state gaits can fully cover the viability kernel. This highlights a potentially important role of task-level motor regulation in fall avoidance. Therefore, we posit an adaptive hierarchical control/regulation strategy that switches between different task-level regulators to avoid falls. Our task switching controller only requires a target value of the regulated observable-a "task switch"-at every walking step, each chosen from a small, predetermined collection. Because humans have typically already learned to perform such goal-directed tasks during nominal walking conditions, this suggests that the "information cost" of biologically implementing such controllers for the nervous system, including cognitive demands in humans, could be quite low.
Collapse
Affiliation(s)
- Navendu S Patil
- Department of Kinesiology, Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jonathan B Dingwell
- Department of Kinesiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Joseph P Cusumano
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
10
|
Pratt JS, Ross SA, Wakeling JM, Hodson-Tole EF. EMG Signals Can Reveal Information Sharing between Consecutive Pedal Cycles. Med Sci Sports Exerc 2021; 53:2436-2444. [PMID: 34115729 DOI: 10.1249/mss.0000000000002727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Producing a steady cadence and power while cycling results in fairly consistent average pedal forces for every revolution, although small fluctuations about an average force do occur. This force can be generated by several combinations of muscles, each with slight fluctuations in excitation for every pedal cycle. Fluctuations such as these are commonly thought of as random variation about average values. However, research into fluctuations of stride length and stride time during walking shows information can be contained in the order of fluctuations. This order, or structure, is thought to reveal underlying motor control strategies. Previously, we found persistent structure in the fluctuations of EMG signals during cycling using entropic half-life analysis. These EMG signals contained fluctuations across multiple timescales, such as those within a burst of excitation, between the burst and quiescent period of a cycle, and across multiple cycles. It was not clear which sources of variation contributed to the persistent structure in the EMG. METHODS In this study, we manipulated variation at different timescales in EMG intensity signals to identify the sources of structure observed during cycling. Nine participants cycled at a constant power and cadence for 30 min while EMG was collected from six muscles of the leg. RESULTS We found persistent structure across multiple pedal cycles of average EMG intensities, as well as average pedal forces and durations. In addition, we found the entropic half-life did not quantify fluctuations within a burst of EMG intensity; instead, it detected unstructured variation between the burst and quiescent period within a cycle. CONCLUSIONS The persistent structure in average EMG intensities suggests that fluctuations in muscle excitation are regulated from cycle to cycle.
Collapse
Affiliation(s)
- Jaylene S Pratt
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, CANADA
| | - Stephanie A Ross
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, CANADA
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, CANADA
| | - Emma F Hodson-Tole
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UNITED KINGDOM
| |
Collapse
|
11
|
Castano CR, Huang HJ. Speed-related but not detrended gait variability increases with more sensitive self-paced treadmill controllers at multiple slopes. PLoS One 2021; 16:e0251229. [PMID: 33961654 PMCID: PMC8104374 DOI: 10.1371/journal.pone.0251229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
Self-paced treadmills are being used more frequently to study humans walking with their self-selected gaits on a range of slopes. There are multiple options to purchase a treadmill with a built-in controller, or implement a custom written self-paced controller, which raises questions about how self-paced controller affect treadmill speed and gait biomechanics on multiple slopes. This study investigated how different self-paced treadmill controller sensitivities affected gait parameters and variability on decline, level, and incline slopes. We hypothesized that increasing self-paced controller sensitivity would increase gait variability on each slope. We also hypothesized that detrended variability could help mitigate differences in variability that arise from differences in speed fluctuations created by the self-paced controllers. Ten young adults walked on a self-paced treadmill using three controller sensitivities (low, medium, and high) and fixed speeds at three slopes (decline, -10°; level, 0°; incline, +10°). Within each slope, average walking speeds and spatiotemporal gait parameters were similar regardless of self-paced controller sensitivity. With higher controller sensitivities on each slope, speed fluctuations, speed variance, and step length variance increased whereas step frequency variance and step width variance were unaffected. Detrended variance was not affected by controller sensitivity suggesting that detrending variability helps mitigate differences associated with treadmill speed fluctuations. Speed-trend step length variances, however, increased with more sensitive controllers. Further, detrended step length variances were similar for self-paced and fixed speed walking, whereas self-paced walking included substantial speed-trend step length variance not present in fixed speed walking. In addition, regardless of the self-paced controller, subjects walked fastest on the level slope with the longest steps, narrowest steps, and least variance. Overall, our findings suggest that separating gait variability into speed-trend and detrended variability could be beneficial for interpreting gait variability among multiple self-paced treadmill studies and when comparing self-paced walking with fixed speed walking.
Collapse
Affiliation(s)
- Cesar R. Castano
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| | - Helen J. Huang
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, United States of America
- Disability, Aging, and Technology Cluster, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
12
|
Gouelle A, Norman S, Sharot B, Salabarria S, Subramony S, Corti M. Gauging Gait Disorders with a Method Inspired by Motor Control Theories: A Pilot Study in Friedreich's Ataxia. SENSORS 2021; 21:s21041144. [PMID: 33562027 PMCID: PMC7915675 DOI: 10.3390/s21041144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
To date, it has been challenging for clinicians and researchers alike to use the multiple outcome measures available to create a meaningful clinical picture and perform effective longitudinal follow-up. It has been found that instrumented gait analysis can provide information associated with a patient’s performance and help to remedy the shortcomings of the currently available outcome measures. The goal of this methodological article is to set the background and justify a new outcome measure inspired by the motor control theories to analyze gait using spatiotemporal parameters. The method is applied in a population of individuals living with Friedreich’s ataxia (FRDA), a neurodegenerative disease. The sample population consisted of 19 subjects, 11 to 65 years of age with FRDA, who either ambulated independently, with a cane, or with a rollator. Three scores based on the distance from healthy normative data were used: Organization Score, Variability Score, and an overall measurement, the Global Ambulation Score. The scores were then compared to the Scale for Assessment and Rating of Ataxia (SARA) Gait Score (SARA-GS), a clinical scale currently being used for gait analysis in FRDA. Organization Scores demonstrated a longitudinal deterioration in the gait characteristics from independent ambulators to those who ambulated with a rollator. Variability Scores mostly reflected dynamic instability, which became greater as the requirement of an ambulation aid or the switch from a cane to a rollator was imminent. The global value given by the Global Ambulation Score, which takes into consideration both the Organization Score, the Variability Score, and the level of assistive device, demonstrated a logarithmic relationship with the SARA-GS. Overall, these results highlight that both components introduced should be analyzed concurrently and suggest that the Global Ambulation Score may be a valuable outcome measure for longitudinal disease progression.
Collapse
Affiliation(s)
- Arnaud Gouelle
- Gait and Balance Academy, ProtoKinetics, Havertown, PA 19083, USA
- Laboratory Performance, Santé, Métrologie, Société (PSMS), UFR STAPS (University of Sport Sciences), 51100 Reims, France
- Correspondence:
| | - Samantha Norman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.N.); (B.S.); (S.S.); (M.C.)
| | - Bryanna Sharot
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.N.); (B.S.); (S.S.); (M.C.)
| | - Stephanie Salabarria
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.N.); (B.S.); (S.S.); (M.C.)
| | - Sub Subramony
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.N.); (B.S.); (S.S.); (M.C.)
| |
Collapse
|
13
|
Vaz JR, Knarr BA, Stergiou N. Gait complexity is acutely restored in older adults when walking to a fractal-like visual stimulus. Hum Mov Sci 2020; 74:102677. [PMID: 33069099 DOI: 10.1016/j.humov.2020.102677] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/01/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022]
Abstract
Typically, gait rehabilitation uses an invariant stimulus paradigm to improve gait related deficiencies. However, this approach may not be optimal as it does not incorporate gait complexity, or in more precise words, the variable fractal-like nature found in the gait fluctuations commonly observed in healthy populations. Aging which also affects gait complexity, resulting in a loss of adaptability to the surrounding environment, could benefit from gait rehabilitation that incorporates a variable fractal-like stimulus paradigm. Therefore, the present study aimed to investigate the effect of a variable fractal-like visual stimulus on the stride-to-stride fluctuations of older adults during overground walking. Additionally, our study aimed to investigate potential retention effects by instructing the participants to continue walking after turning off the stimulus. Older adults walked 8 min with i) no stimulus (self-paced), ii) a variable fractal-like visual stimulus and iii) an invariant visual stimulus. In the two visual stimuli conditions, the participants walked 8 additional minutes after the stimulus was turned off. Gait complexity was evaluated with the widely used fractal scaling exponent calculated through the detrended fluctuation analysis of the stride time intervals. We found a significant ~20% increase in the scaling exponent from the no stimulus to the variable fractal-like stimulus condition. However, no differences were found when the older adults walked to the invariant stimulus. The observed increase was towards the values found in the past to characterize healthy young adults. We have also observed that these positive effects were retained even when the stimulus was turned off for the fractal condition, practically, acutely restoring gait complexity of older adults. These very promising results should motivate researchers and clinicians to perform clinical trials in order to investigate the potential of visual variable fractal-like stimulus for gait rehabilitation.
Collapse
Affiliation(s)
- João R Vaz
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, USA; CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal.
| | - Brian A Knarr
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, USA
| | - Nick Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, USA; College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
14
|
Kozlowska K, Latka M, West BJ. Significance of trends in gait dynamics. PLoS Comput Biol 2020; 16:e1007180. [PMID: 33104692 PMCID: PMC7644100 DOI: 10.1371/journal.pcbi.1007180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/05/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
Trends in time series generated by physiological control systems are ubiquitous. Determining whether trends arise from intrinsic system dynamics or originate outside of the system is a fundamental problem of fractal series analysis. In the latter case, it is necessary to filter out the trends before attempting to quantify correlations in the noise (residuals). For over two decades, detrended fluctuation analysis (DFA) has been used to calculate scaling exponents of stride time (ST), stride length (SL), and stride speed (SS) of human gait. Herein, rather than relying on the very specific form of detrending characteristic of DFA, we adopt Multivariate Adaptive Regression Splines (MARS) to explicitly determine trends in spatio-temporal gait parameters during treadmill walking. Then, we use the madogram estimator to calculate the scaling exponent of the corresponding MARS residuals. The durations of ST and SL trends are determined to be independent of treadmill speed and have distributions with exponential tails. At all speeds considered, the trends of ST and SL are strongly correlated and are statistically independent of their corresponding residuals. The averages of scaling exponents of ST and SL MARS residuals are slightly smaller than 0.5. Thus, contrary to the interpretation prevalent in the literature, the statistical properties of ST and SL time series originate from the superposition of large scale trends and small scale fluctuations. We show that trends serve as the control manifolds about which ST and SL fluctuate. Moreover, the trend speed, defined as the ratio of instantaneous values of SL and ST trends, is tightly controlled about the treadmill speed. The strong coupling between the ST and SL trends ensures that the concomitant changes of their values correspond to movement along the constant speed goal equivalent manifold as postulated by Dingwell et al. 10.1371/journal.pcbi.1000856.
Collapse
Affiliation(s)
- Klaudia Kozlowska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Miroslaw Latka
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Bruce J. West
- Office of the Director, Army Research Office, Research Triangle Park, USA
| |
Collapse
|
15
|
Krajewski KT, Dever DE, Johnson CC, Mi Q, Simpson RJ, Graham SM, Moir GL, Ahamed NU, Flanagan SD, Anderst WJ, Connaboy C. Load Magnitude and Locomotion Pattern Alter Locomotor System Function in Healthy Young Adult Women. Front Bioeng Biotechnol 2020; 8:582219. [PMID: 33042981 PMCID: PMC7525027 DOI: 10.3389/fbioe.2020.582219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction During cyclical steady state ambulation, such as walking, variability in stride intervals can indicate the state of the system. In order to define locomotor system function, observed variability in motor patterns, stride regulation and gait complexity must be assessed in the presence of a perturbation. Common perturbations, especially for military populations, are load carriage and an imposed locomotion pattern known as forced marching (FM). We examined the interactive effects of load magnitude and locomotion pattern on motor variability, stride regulation and gait complexity during bipedal ambulation in recruit-aged females. Methods Eleven healthy physically active females (18–30 years) completed 1-min trials of running and FM at three load conditions: no additional weight/bodyweight (BW), an additional 25% of BW (BW + 25%), and an additional 45% of BW (BW + 45%). A goal equivalent manifold (GEM) approach was used to assess motor variability yielding relative variability (RV; ratio of “good” to “bad” variability) and detrended fluctuation analysis (DFA) to determine gait complexity on stride length (SL) and stride time (ST) parameters. DFA was also used on GEM outcomes to calculate stride regulation. Results There was a main effect of load (p = 0.01) on RV; as load increased, RV decreased. There was a main effect of locomotion (p = 0.01), with FM exhibiting greater RV than running. Strides were regulated more tightly and corrected quicker at BW + 45% compared (p < 0.05) to BW. Stride regulation was greater for FM compared to running. There was a main effect of load for gait complexity (p = 0.002); as load increased gait complexity decreased, likewise FM had less (p = 0.02) gait complexity than running. Discussion This study is the first to employ a GEM approach and a complexity analysis to gait tasks under load carriage. Reduction in “good” variability as load increases potentially exposes anatomical structures to repetitive site-specific loading. Furthermore, load carriage magnitudes of BW + 45% potentially destabilize the system making individuals less adaptable to additional perturbations. This is further evidenced by the decrease in gait complexity, which all participants demonstrated values similarly observed in neurologically impaired populations during the BW + 45% load condition.
Collapse
Affiliation(s)
- Kellen T Krajewski
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dennis E Dever
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Camille C Johnson
- Biodynamics Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard J Simpson
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Scott M Graham
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Gavin L Moir
- Exercise Science Department, East Stroudsburg University, East Stroudsburg, PA, United States
| | - Nizam U Ahamed
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - William J Anderst
- Biodynamics Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chris Connaboy
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
On the application of entropic half-life and statistical persistence decay for quantification of time dependency in human gait. J Biomech 2020; 108:109893. [PMID: 32636006 DOI: 10.1016/j.jbiomech.2020.109893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 06/06/2020] [Indexed: 11/21/2022]
Abstract
Entropic half-life (ENT½) and statistical persistence decay (SPD) was recently introduced as measures of time dependency in stride time intervals during walking. The present study investigated the effect of data length on ENT½ and SPD and additionally applied these measures to stride length and stride speed intervals. First, stride times were collected from subjects during one hour of treadmill walking. ENT½ and SPD were calculated from a range of stride numbers between 250 and 2500. Secondly, stride times, stride lengths and stride speeds were collected from subjects during 16 min of treadmill walking. ENT½ and SPD were calculated from the stride times, stride lengths and stride speeds. The ENT½ values reached a plateau between 1000 and 2500 strides whereas the SPD increased linearly with the number of included strides. This suggests that ENT½ can be compared if 1000 strides or more are included, but only SPD obtained from same number of strides should be compared. The ENT½ and SPD of the stride times were significantly longer compared to that of the stride lengths and stride speeds. This indicates that the time dependency is greater in the motor control of stride time compared to that of stride lengths and stride speeds.
Collapse
|
17
|
Marmelat V, Duncan A, Meltz S, Meidinger RL, Hellman AM. Fractal auditory stimulation has greater benefit for people with Parkinson's disease showing more random gait pattern. Gait Posture 2020; 80:234-239. [PMID: 32554147 PMCID: PMC7375405 DOI: 10.1016/j.gaitpost.2020.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/20/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Healthy gait dynamics are characterized by the presence of fractal, persistent stride-to-stride variations, which become more random with Parkinson's disease (PD). Rhythmic auditory stimulation with fractal beat-to-beat variations can change gait dynamics in people with PD toward more persistence. RESEARCH QUESTION How does gait in people with PD change when synchronizing steps with fractal melodic metronomes with different step-to-beat ratios, and which stimulus do they prefer? METHODS In this cross-sectional study, 15 people with PD and 15 healthy older adults walked over-ground in three conditions: self-paced, paced by a fractal auditory stimulus with a 1:1 step-to-beat ratio ('metronome'), and fractal auditory stimulus with a 1:2 step-to-beat ratio ('music'). Gait dynamics were recorded with instrumented insoles, and detrended fluctuation analysis (DFA) was applied to the series of stride time intervals. Stimuli preference was assessed using Likert-like scales and open-ended questions. ANOVAs were used to compare mean, coefficient of variation, α-DFA, and the responses from the continuous Likert scales. Pearson correlations were used to assess the relationship between 'music' and 'metronome' enjoyment or difficulty with gait outcomes, and to determine the association between baseline α-DFA and changes due to the stimuli. RESULTS Our major findings are that (i) stride-to-stride variations were more persistent with the 'metronome' compared to baseline for both groups, (ii) the effect was greater for people with lower α-DFA at baseline (i.e., more random stride-to-stride variations), and (iii) both groups found the 'metronome' less difficult to synchronize with. SIGNIFICANCE This study showed that people with PD and healthy older adults walk with higher statistical persistence in their stride-to-stride variations when instructed to synchronize their steps with a fractal stimulus. Participants with lower persistence at baseline benefited the most from the fractal 'metronome', highlighting the importance to develop patient-centered tests and interventions.
Collapse
Affiliation(s)
- Vivien Marmelat
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States of America
| | - Austin Duncan
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America
| | - Shane Meltz
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America
| | - Ryan L. Meidinger
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America
| | - Amy M. Hellman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States of America
| |
Collapse
|
18
|
Ravi DK, Marmelat V, Taylor WR, Newell KM, Stergiou N, Singh NB. Assessing the Temporal Organization of Walking Variability: A Systematic Review and Consensus Guidelines on Detrended Fluctuation Analysis. Front Physiol 2020; 11:562. [PMID: 32655400 PMCID: PMC7324754 DOI: 10.3389/fphys.2020.00562] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Human physiological signals are inherently rhythmic and have a hallmark feature in that even distant intrasignal measurements are related to each other. This relationship is termed long-range correlation and has been recognized as an indicator of the optimal state of the observed physiological systems, among which the locomotor system. Loss of long-range correlations has been found as a result of aging as well as disease, which can be evaluated with detrended fluctuation analysis (DFA). Recently, DFA and the scaling exponent α have been employed for understanding the degeneration of temporal regulation of human walking biorhythms in, for example, Parkinson disease (PD). However, heterogeneous evidence on scaling exponent α values reported in the literature across different population groups has put into question what constitutes a healthy physiological pattern. Therefore, the purpose of this systematic review was to investigate the functional thresholds of scaling exponent α in young vs. older adults, as well as between patients with PD and age-matched asymptomatic controls. Aging and PD exhibited a negative effect size (i.e., led to decreased long-range correlations) of -0.20 and -0.53, respectively. Our meta-analysis based on 14 studies provides evidence that a mean scaling exponent α threshold of 0.86 [2 standard error (0.76, 0.96)] is able to optimally discriminate temporal organization of stride interval between young and old, whereas 0.82 (0.72, 0.92) differentiates patients with PD and age-matched asymptomatic controls. The optimal thresholds presented in this review together with the consensus guidelines for using DFA might allow a more sensitive and reliable application of this metric for understanding human walking physiology than has been achieved to date.
Collapse
Affiliation(s)
- Deepak K Ravi
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Vivien Marmelat
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States
| | | | - Karl M Newell
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Nick Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States
| | - Navrag B Singh
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Gait Recognition via Deep Learning of the Center-of-Pressure Trajectory. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-six adults walked for 30 min on a treadmill equipped with a force platform that continuously recorded the positions of the COP. The raw two-dimensional signals were sliced into segments of two gait cycles. A set of 20,250 segments from 30 subjects was used to configure and train convolutional neural networks (CNNs). The best CNN classified a separate set containing 2250 segments with an overall accuracy of 99.9%. A second set of 4500 segments from the six remaining subjects was then used for transfer learning. Several small subsamples of this set were selected randomly and used to fine tune the pretrained CNNs. Training with two segments per subject was sufficient to achieve 100% accuracy. The results suggest that every person produces a unique trajectory of underfoot pressures while walking and that CNNs can learn the distinctive features of these trajectories. By applying a pretrained CNN (transfer learning), a couple of strides seem enough to learn and identify new gaits. However, these promising results should be confirmed in a larger sample under realistic conditions.
Collapse
|
20
|
Gilfriche P, Arsac LM, Blons E, Deschodt-Arsac V. Fractal properties and short-term correlations in motor control in cycling: influence of a cognitive challenge. Hum Mov Sci 2019; 67:102518. [PMID: 31542675 DOI: 10.1016/j.humov.2019.102518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
Fluctuations in cyclic tasks periods is a known characteristic of human motor control. Specifically, long-range fractal fluctuations have been evidenced in the temporal structure of these variations in human locomotion and thought to be the outcome of a multicomponent physiologic system in which control is distributed across intricate cortical, spinal and neuromuscular regulation loops. Combined with long-range correlation analyses, short-range autocorrelations have proven their use to describe control distribution across central and motor components. We used relevant tools to characterize long- and short-range correlations in revolution time series during cycling on an ergometer in 19 healthy young adults. We evaluated the impact of introducing a cognitive task (PASAT) to assess the role of central structures in control organization. Autocorrelation function and detrending fluctuation analysis (DFA) demonstrated the presence of fractal scaling. PSD in the short range revealed a singular behavior which cannot be explained by the usual models of even-based and emergent timing. The main outcomes are that (1) timing in cycling is a fractal process, (2) this long-range fractal behavior increases in persistence with dual-task condition, which has not been previously observed, (3) short-range behavior is highly persistent and unaffected by dual-task. Relying on the inertia of the oscillator may be a way to distribute more control to the periphery, thereby allocating less resources to central process and better managing additional cognitive demands. This original behavior in cycling may explain the high short-range persistence unaffected by dual-task, and the increase in long-range persistence with dual-task.
Collapse
Affiliation(s)
- Pierre Gilfriche
- CATIE - Centre Aquitain des Technologies de l'Information et Electroniques, Talence, France; Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France.
| | - Laurent M Arsac
- Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France
| | - Estelle Blons
- Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France
| | | |
Collapse
|
21
|
Terrier P. Complexity of human walking: the attractor complexity index is sensitive to gait synchronization with visual and auditory cues. PeerJ 2019; 7:e7417. [PMID: 31396452 PMCID: PMC6679905 DOI: 10.7717/peerj.7417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022] Open
Abstract
Background During steady walking, gait parameters fluctuate from one stride to another with complex fractal patterns and long-range statistical persistence. When a metronome is used to pace the gait (sensorimotor synchronization), long-range persistence is replaced by stochastic oscillations (anti-persistence). Fractal patterns present in gait fluctuations are most often analyzed using detrended fluctuation analysis (DFA). This method requires the use of a discrete times series, such as intervals between consecutive heel strikes, as an input. Recently, a new nonlinear method, the attractor complexity index (ACI), has been shown to respond to complexity changes like DFA, while being computed from continuous signals without preliminary discretization. Its use would facilitate complexity analysis from a larger variety of gait measures, such as body accelerations. The aim of this study was to further compare DFA and ACI in a treadmill experiment that induced complexity changes through sensorimotor synchronization. Methods Thirty-six healthy adults walked 30 min on an instrumented treadmill under three conditions: no cueing, auditory cueing (metronome walking), and visual cueing (stepping stones). The center-of-pressure trajectory was discretized into time series of gait parameters, after which a complexity index (scaling exponent alpha) was computed via DFA. Continuous pressure position signals were used to compute the ACI. Correlations between ACI and DFA were then analyzed. The predictive ability of DFA and ACI to differentiate between cueing and no-cueing conditions was assessed using regularized logistic regressions and areas under the receiver operating characteristic curves (AUC). Results DFA and ACI were both significantly different among the cueing conditions. DFA and ACI were correlated (Pearson’s r = 0.86). Logistic regressions showed that DFA and ACI could differentiate between cueing/no cueing conditions with a high degree of confidence (AUC = 1.00 and 0.97, respectively). Conclusion Both DFA and ACI responded similarly to changes in cueing conditions and had comparable predictive power. This support the assumption that ACI could be used instead of DFA to assess the long-range complexity of continuous gait signals. However, future studies are needed to investigate the theoretical relationship between DFA and ACI.
Collapse
Affiliation(s)
- Philippe Terrier
- Haute Ecole Arc Santé, HES-SO University of Applied Sciences and Arts Western Switzerland, Neuchâtel, Switzerland.,Clinique romande de réadaptation SUVA, Sion, Switzerland.,Department of Thoracic and Endocrine Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Marmelat V, Meidinger RL. Fractal analysis of gait in people with Parkinson's disease: three minutes is not enough. Gait Posture 2019; 70:229-234. [PMID: 30909002 PMCID: PMC6545579 DOI: 10.1016/j.gaitpost.2019.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/20/2018] [Accepted: 02/23/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The fractal dynamics of gait variability in people with Parkinson's disease has been studied by applying the detrended fluctuation analysis (DFA) to short time series (<200 strides). However, DFA is sensitive to time series length, and it is unclear if DFA results from short time series are reliable and if they reflect the fractal dynamics of longer time series. RESEARCH QUESTION Is DFA reliable when applied to short time series? METHODS We applied DFA to stride time series from five 3-min trials and one 15-min trial in 12 people with Parkinson's disease, 14 healthy older adults and 14 healthy young adults walking overground. Within each group, intraclass correlations (ICC 3,1) were performed to assess the reliability of i) the five 3-min trials together, ii) each 3-min trials to the 15-min trial, and iii) the first 150 strides from the 15-min trial to the full 15-min trial. RESULTS Our three main findings are that 1) stride time α-DFA values are not consistent from trial-to-trial for short stride time series, 2) stride time α-DFA values from each 3-min trials are not consistent when compared to stride time α-DFA values from a 15-min trial, and 3) stride time α-DFA values from the first 150 strides of the 15-min trial are not consistent when compared to α-DFA values from the full 15-min trial. SIGNIFICANCE Our results confirm that α-DFA values from 3-min walking trials are not reliable, and that they do not reflect the scale invariant properties of longer time series. This suggests that previous studies assessing the fractal dynamics of gait variability from about 3-min walking must be interpreted with caution. A major clinical implication is that DFA cannot be used to study gait in people unable to perform 500 strides continuously.
Collapse
Affiliation(s)
- Vivien Marmelat
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America
| | - Ryan L. Meidinger
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, 68184, United States of America
| |
Collapse
|
23
|
Do intentionality constraints shape the relationship between motor variability and performance? PLoS One 2019; 14:e0214237. [PMID: 30995243 PMCID: PMC6469761 DOI: 10.1371/journal.pone.0214237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of this experiment was to assess if the previously supported relationship between the structure of motor variability and performance changes when the task or organismic constraints encourage individuals to adjust their movement to achieve a goal. Forty-two healthy volunteers (aged 26.05 ± 5.02 years) performed three sets of cyclic pointing movements, 600 cycles each. Every set was performed under different conditions: 1) without a target; 2) with a target; 3) with a target and a financial reward. The amount of performance variability was analysed using the standard deviation of the medial-lateral (ML) and anterior-posterior (AP) axes and the bivariate variable error. The structure of the variability was assessed by Detrended Fluctuation Analysis (DFA) of the following time series: the coordinate values of the endpoint in ML, AP axes and resultant distance (RD), the hand orientation and the movement time. The performance of the task constrained with a target, or a target and reward, required higher implication to adjust an individual’s movements to achieve the task goal, showing a decrease in dispersions and lower autocorrelation. Under the condition without a target, variability dispersion was positively related to autocorrelation of the movement values from ML axis and RD time series, and negatively related to the values from the hand orientation time series. There was a loss of the relationship between variability structure and performance when the task was constrained by the target and the reward. That could indicate different strategies of the participants to achieve the objective. Considering the results and previous studies, the relationship between variability structure and performance could depend on task constraints such as feedback, difficulty or the skill level of participants and it is mediated by individual constraints such as implication or intentionality.
Collapse
|
24
|
Raffalt PC, Kent JA, Wurdeman SR, Stergiou N. Selection Procedures for the Largest Lyapunov Exponent in Gait Biomechanics. Ann Biomed Eng 2019; 47:913-923. [PMID: 30701396 PMCID: PMC6438190 DOI: 10.1007/s10439-019-02216-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/19/2019] [Indexed: 11/25/2022]
Abstract
The present study was aimed at investigating the effectiveness of the Wolf et al. (LyE_W) and Rosenstein et al. largest Lyapunov Exponent (LyE_R) algorithms to differentiate data sets with distinctly different temporal structures. The three-dimensional displacement of the sacrum was recorded from healthy subjects during walking and running at two speeds; one low speed close to the preferred walking speed and one high speed close to the preferred running speed. LyE_R and LyE_W were calculated using four different time series normalization procedures. The performance of the algorithms were evaluated based on their ability to return relative low values for slow walking and fast running and relative high values for fast walking and slow running. Neither of the two algorithms outperformed the other; however, the effectiveness of the two algorithms was highly dependent on the applied time series normalization procedure. Future studies using the LyE_R should normalize the time series to a fixed number of strides and a fixed number of data points per stride or data points per time series while the LyE_W should be applied to time series normalized to a fixed number of data points or a fixed number of strides.
Collapse
Affiliation(s)
- Peter C Raffalt
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA
| | - Jenny A Kent
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA
| | - Shane R Wurdeman
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA
- Department of Clinical and Scientific Affairs, Hanger Clinic, 11155 S. Main St, Houston, TX, 77025, USA
| | - Nicholas Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA.
- College of Public Health, 984355 University of Nebraska Medical Center, Omaha, NE, 68198-4355, USA.
| |
Collapse
|
25
|
Vaz JR, Groff BR, Rowen DA, Knarr BA, Stergiou N. Synchronization dynamics modulates stride-to-stride fluctuations when walking to an invariant but not to a fractal-like stimulus. Neurosci Lett 2019; 704:28-35. [PMID: 30922850 DOI: 10.1016/j.neulet.2019.03.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/24/2018] [Accepted: 03/23/2019] [Indexed: 01/13/2023]
Abstract
Walking with different types of cueing/stimulus (i.e. auditory, visual) has been shown to alter gait variability, thus emerging as an innovative therapeutical tool to restore abnormal gait variability in clinical populations. However, the majority of the research in this area has focused on auditory stimuli while visual stimuli are an understudied alternative that needs more attention, particularly due to the natural dependence on vision during walking. Furthermore, the time differences between the occurrences of the walking steps and the sensory cues, also known as asynchronies, have also received minimal attention, even though the ability to synchronize with different stimuli is of great importance. This study investigated how synchronizing to visual stimuli with different temporal structures could affect gait variability and the respective asynchronies. Participants performed four 15-min walking trials around an indoor track while wearing insole footswitches for the following conditions: a) self-paced walking, and b) walking with glasses that instructed the subjects to step in sync with a virtual moving bar. The stepping occurences of the moving bar were presented in three different ways b1) non-variable, b2) variable and b3) random. Stride times and asynchronies were determined, and the mean values along with the fractal scaling (an indicator of the complexity) in their time series, were calculated. The fractal scaling of the stride times was unaltered when participants walked with the variable stimulus as compared to the self-paced walking condition; while fractal scaling was significantly decreased during the non-variable and random conditions, indicating a loss of complexity for these two conditions. No differences were observed in the means or the fractal scaling of the asynchronies. The correlation analysis between stride times and asynchronies revealed a strong relationship for the non-variable condition but a weak relationship for both variable and random conditions. Taken together, the present study results supports the idea of an existing internal timekeeper that exhibits complexity. We have shown that this complex pattern is similar regardless of the stimulus condition, suggesting that the system's complexity is likely to be expressed at the task performance level - asyncrhonies - when walking to a stimulus. Thus, future research in sensoriomotor gait synchronization should focus and further explore the role of the asynchronies, as it may be of clinical significance.
Collapse
Affiliation(s)
- João R Vaz
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA; Universidade Europeia, Lisbon, Portugal.
| | - Boman R Groff
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Douglas A Rowen
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Brian A Knarr
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Nicholas Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
26
|
Roerdink M, de Jonge CP, Smid LM, Daffertshofer A. Tightening Up the Control of Treadmill Walking: Effects of Maneuverability Range and Acoustic Pacing on Stride-to-Stride Fluctuations. Front Physiol 2019; 10:257. [PMID: 30967787 PMCID: PMC6440225 DOI: 10.3389/fphys.2019.00257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 02/26/2019] [Indexed: 12/03/2022] Open
Abstract
The correlational structure of stride-to-stride fluctuations differs between healthy and pathological gait. Uncorrelated and anti-persistent stride-to-stride fluctuations are believed to indicate pathology whereas persistence represents healthy functioning. However, this reading can be questioned because the correlational structure changes with task constraints, like acoustic pacing, signifying the tightness of control over particular gait parameters. We tested this "tightness-of-control interpretation" by varying the maneuverability range during treadmill walking (small, intermediate, and large walking areas), with and without acoustic pacing. Stride-speed fluctuations exhibited anti-persistence, suggesting that stride speeds were tightly controlled, with a stronger degree of anti-persistence for smaller walking areas. Constant-speed goal-equivalent-manifold decompositions revealed simultaneous control of stride times and stride lengths, especially for smaller walking areas to limit stride-speed fluctuations. With acoustic pacing, participants followed both constant-speed and constant-stride-time task goals. This was reflected by a strong degree of anti-persistence around the stride-time by stride-length point that uniquely satisfied both goals. Our results strongly support the notion that anti-persistence in stride-to-stride fluctuations reflect the tightness of control over the associated gait parameter, while not tightly regulated gait parameters exhibit statistical persistence. We extend the existing body of knowledge by showing quantitative changes in anti-persistence of already tightly regulated stride-speed fluctuations.
Collapse
Affiliation(s)
- Melvyn Roerdink
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences and Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
27
|
Meyer F, Borrani F. Estimating Alpine Skiers' Energetics and Turn Radius Using Different Morphological Points. Front Physiol 2018; 9:1541. [PMID: 30555335 PMCID: PMC6282051 DOI: 10.3389/fphys.2018.01541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 12/03/2022] Open
Abstract
Alpine ski analysis has always been very challenging, mainly due to the environmental conditions, large field and rapid and dynamic skiers’ movements. Global navigation satellite system (GNSS) offers a solution adapted to outdoor testing, but the relationship between the point where the antenna is attached and the real centre of mass (CoM) position is still unknown. This article proposes to compare different points of the body used to quantify the performance of alpine skiers. 3D models of seven elite skiers performing giant slalom (GS) were built using multiple camera system and dedicated motion tracking software. CoM as well as pelvis, head and feet trajectories were deduced from the data. The potential and kinetic energies corresponding to these points were calculated, as well as the evolution of the turn radius during the turn cycle. Differences between values given by the CoM and the other morphological points were analyzed. The pelvis offered the best estimation of the CoM: No differences were found for the biomechanical parameters, except for the kinetic energy, where 2% of the turn cycle had significant different values. The head was less accurate compared to the pelvis, showing significant differences with CoM between 7 and 20% of the turn cycle depending on the parameter. Finally, the feet offered the worst results, with significant differences between 16 and 41% of the turn cycle. Energies and turn radius calculated by using pelvis in place of CoM offered similar patterns, allowing the analysis of mechanical and dissipation energy in GS. This may potentially enable easier testing methods to be proposed and tested.
Collapse
Affiliation(s)
- Frédéric Meyer
- Institute of Sport Science, University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Institute of Sport Science, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Wiens C, Denton W, Schieber MN, Hartley R, Marmelat V, Myers SA, Yentes JM. Walking speed and spatiotemporal step mean measures are reliable during feedback-controlled treadmill walking; however, spatiotemporal step variability is not reliable. J Biomech 2018; 83:221-226. [PMID: 30551920 DOI: 10.1016/j.jbiomech.2018.11.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022]
Abstract
The purpose of the study was to compare the effects of a feedback-controlled treadmill (FeedbackTM) to a traditional fixed-speed treadmill (FixedTM) on spatiotemporal gait means, variability, and dynamics. The study also examined inter-session reliability when using the FeedbackTM. Ten young adults walked on the FeedbackTM for a 5-minute familiarization followed by a 16-minute experimental trial. They returned within one week and completed a 5-minute familiarization followed by a 16-minute experimental trial each for FeedbackTM and FixedTM conditions. Mean walking speed and step time, length, width, and speed means and coefficient of variation were calculated from all experimental conditions. Step time, length, width, and speed gait dynamics were analyzed using detrended fluctuation analysis. Mean differences between experimental trials were determined using ANOVAs and reliability between FeedbackTM sessions was determined by intraclass correlation coefficient. No difference was found in mean walking speed nor spatiotemporal variables, with the exception of step width, between the experimental trials. All mean spatiotemporal variables demonstrated good to excellent reliability between sessions, while coefficient of variation was not reliable. Gait dynamics of step time, length, width, and speed were significantly more persistent during the FeedbackTM condition compared to FixedTM, especially step speed. However, gait dynamics demonstrated fair to poor reliability between FeedbackTM sessions. When walking on the FeedbackTM, users maintain a consistent set point, yet the gait dynamics around the mean are different when compared to walking on a FixedTM. In addition, spatiotemporal gait dynamics and variability may not be consistent across separate days when using the FeedbackTM.
Collapse
Affiliation(s)
- Casey Wiens
- University of Nebraska - Omaha, Omaha, NE, United States
| | - William Denton
- University of Nebraska - Omaha, Omaha, NE, United States
| | | | - Ryan Hartley
- University of Nebraska - Omaha, Omaha, NE, United States
| | | | - Sara A Myers
- University of Nebraska - Omaha, Omaha, NE, United States
| | | |
Collapse
|
29
|
Raffalt PC, Denton W, Yentes JM. On the choice of multiscale entropy algorithm for quantification of complexity in gait data. Comput Biol Med 2018; 103:93-100. [PMID: 30343216 PMCID: PMC6957257 DOI: 10.1016/j.compbiomed.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022]
Abstract
The present study aimed at identifying a suitable multiscale entropy (MSE) algorithm for assessment of complexity in a stride-to-stride time interval time series. Five different algorithms were included (the original MSE, refine composite multiscale entropy (RCMSE), multiscale fuzzy entropy, generalized multiscale entropy and intrinsic mode entropy) and applied to twenty iterations of white noise, pink noise, or a sine wave with added white noise. Based on their ability to differentiate the level of complexity in the three different generated signal types, and their sensitivity and parameter consistency, MSE and RCMSE were deemed most appropriate. These two algorithms were applied to stride-to-stride time interval time series recorded from fourteen healthy subjects during one hour of overground and treadmill walking. In general, acceptable sensitivity and good parameter consistency were observed for both algorithms; however, they were not able to differentiate the complexity of the stride-to-stride time interval time series between the two walking conditions. Thus, the present study recommends the use of either MSE or RCMSE for quantification of complexity in stride-to-stride time interval time series.
Collapse
Affiliation(s)
- Peter C Raffalt
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Philippstrasse 13, 10115, Berlin, Germany; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - William Denton
- Center for Research in Human Movement Variability, Department of Biomechanics, University of Nebraska at Omaha, 6160 University Drive, 68182-0860, Omaha, NE, USA
| | - Jennifer M Yentes
- Center for Research in Human Movement Variability, Department of Biomechanics, University of Nebraska at Omaha, 6160 University Drive, 68182-0860, Omaha, NE, USA.
| |
Collapse
|
30
|
Harrison SJ, Hough M, Schmid K, Groff BR, Stergiou N. When Coordinating Finger Tapping to a Variable Beat the Variability Scaling Structure of the Movement and the Cortical BOLD Signal are Both Entrained to the Auditory Stimuli. Neuroscience 2018; 392:203-218. [PMID: 29958941 PMCID: PMC8091912 DOI: 10.1016/j.neuroscience.2018.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/13/2023]
Abstract
Rhythmic actions are characterizable as a repeating invariant pattern of movement together with variability taking the form of cycle-to-cycle fluctuations. Variability in behavioral measures is atypically random, and often exhibits serial temporal dependencies and statistical self-similarity in the scaling of variability magnitudes across timescales. Self-similar (i.e. fractal) variability scaling is evident in measures of both brain and behavior. Variability scaling structure can be quantified via the scaling exponent (α) from detrended fluctuation analysis (DFA). Here we study the task of coordinating thumb-finger tapping to the beats of constructed auditory stimuli. We test the hypothesis that variability scaling evident in tap-to-tap intervals as well as in the fluctuations of cortical hemodynamics will become entrained to (i.e. drawn toward) manipulated changes in the variability scaling of a stimulus's beat-to-beat intervals. Consistent with this hypothesis, manipulated changes of the exponent α of the experimental stimuli produced corresponding changes in the exponent α of both tap-to-tap intervals and cortical hemodynamics. The changes in hemodynamics were observed in both motor and sensorimotor cortical areas in the contralateral hemisphere. These results were observed only for the longer timescales of the detrended fluctuation analysis used to measure the exponent α. These findings suggest that complex auditory stimuli engage both brain and behavior at the level of variability scaling structures.
Collapse
Affiliation(s)
- Steven J Harrison
- Department of Kinesiology, University of Connecticut, United States.
| | - Michael Hough
- Department of Biomechanics, University of Nebraska at Omaha, United States
| | - Kendra Schmid
- Department of Biostatistics, University of Nebraska Medical Center, United States
| | - Boman R Groff
- Department of Biomechanics, University of Nebraska at Omaha, United States
| | - Nicholas Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, United States
| |
Collapse
|
31
|
Terrier P, Reynard F. Maximum Lyapunov exponent revisited: Long-term attractor divergence of gait dynamics is highly sensitive to the noise structure of stride intervals. Gait Posture 2018; 66:236-241. [PMID: 30212783 DOI: 10.1016/j.gaitpost.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/16/2018] [Accepted: 08/12/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The local dynamic stability method (maximum Lyapunov exponent) can assess gait stability. Two variants of the method exist: the short-term divergence exponent (DE), and the long-term DE. Only the short-term DE can predict fall risk. However, the significance of long-term DE has been unclear so far. Some studies have suggested that the complex, fractal-like structure of fluctuations among consecutive strides correlates with long-term DE. The aim, therefore, was to assess whether the long-term DE is a gait complexity index. METHODS The study reanalyzed a dataset of trunk accelerations from 100 healthy adults walking at preferred speed on a treadmill for 10 min. By interpolation, the stride intervals were modified within the acceleration signals for the purpose of conserving the original shape of the signal, while imposing a known stride-to-stride fluctuation structure. Four types of hybrid signals with different noise structures were built: constant, anti-correlated, random, and correlated (fractal). Short- and long-term DEs were then computed. RESULTS The results show that long-term DEs, but not short-term DEs, are sensitive to the noise structure of stride intervals. For example, it was that observed that random hybrid signals exhibited significantly lower long-term DEs than hybrid correlated signals did (0.100 vs 0.144, i.e. a 44% difference). Long-term DEs from constant hybrid signals were close to zero (0.006). Conversely, short-term DEs of anti-correlated, random, and correlated hybrid signals were closely grouped (2.49, 2.50, and 2.51). CONCLUSIONS The short-term DE and the long-term DE, although they are both computed from divergence curves, should not be interpreted in a similar way. The long-term DE is very likely an index of gait complexity, which may be associated with gait automaticity or cautiousness. Consequently, to better differentiate between short- and long-term DEs, the use of the term attractor complexity index (ACI) is proposed for the latter.
Collapse
Affiliation(s)
- Philippe Terrier
- Clinique romande de réadaptation, Sion, Switzerland; Institute for Research in Rehabilitation, Sion, Switzerland.
| | | |
Collapse
|
32
|
Marmelat V, Reynolds NR, Hellman A. Gait Dynamics in Parkinson's Disease: Short Gait Trials "Stitched" Together Provide Different Fractal Fluctuations Compared to Longer Trials. Front Physiol 2018; 9:861. [PMID: 30038582 PMCID: PMC6047485 DOI: 10.3389/fphys.2018.00861] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
The fractal analysis of stride-to-stride fluctuations in walking has become an integral part of human gait research. Fractal analysis of stride time intervals can provide insights into locomotor function and dysfunction, but its application requires a large number of strides, which can be difficult to collect from people with movement disorders such as Parkinson's disease. It has recently been suggested that "stitching" together short gait trials to create a longer time series could be a solution. The objective of this study was to determine if scaling exponents from "stitched" stride time series were similar to those from continuous, longer stride time series. Fifteen young adults, fourteen older adults, and thirteen people with Parkinson's disease walked around an indoor track in three blocks: one time 15 min, five times 3 min, and thirty times 30 s. Stride time intervals were determined from gait events recorded with instrumented insoles, and the detrended fluctuation analysis was applied to each stride time series of 512 strides. There was no statistically significant difference between scaling exponents in the three blocks, but intra-class correlation revealed very low between-blocks reliability of scaling exponents. This result challenges the premise that the stitching procedure could provide reliable information about gait dynamics, as it suggests that fractal analysis of stitched time series does not capture the same dynamics as gait recorded continuously. The stitching procedure cannot be considered as a valid alternative to the collection of continuous, long trials. Further studies are recommended to determine if the application of fractal analysis is limited by its own methodological considerations (i.e., long time series), or if other solutions exists to obtain reliable scaling exponents in populations with movement disorders.
Collapse
Affiliation(s)
- Vivien Marmelat
- Center for Research in Human Movement Variability, Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Nicholas R Reynolds
- Center for Research in Human Movement Variability, Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Amy Hellman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
33
|
Moumdjian L, Buhmann J, Willems I, Feys P, Leman M. Entrainment and Synchronization to Auditory Stimuli During Walking in Healthy and Neurological Populations: A Methodological Systematic Review. Front Hum Neurosci 2018; 12:263. [PMID: 29997491 PMCID: PMC6028729 DOI: 10.3389/fnhum.2018.00263] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/07/2018] [Indexed: 11/28/2022] Open
Abstract
Background: Interdisciplinary work is needed for scientific progress, and with this review, our interest is in the scientific progress toward understanding the underlying mechanisms of auditory-motor coupling, and how this can be applied to gait rehabilitation. Specifically we look into the process of entrainment and synchronization; where entrainment is the process that governs the dynamic alignments of the auditory and motor domains based on error-prediction correction, whereas synchronization is the stable maintenance of timing during auditory-motor alignment. Methodology: A systematic literature search in databases PubMed and Web of Science were searched up to 9th of August 2017. The selection criteria for the included studies were adult populations, with a minimum of five participants, investigating walking to an auditory stimulus, with an outcome measure of entrainment, and synchronization. The review was registered in PROSPERO as CRD42017080325. Objectives: The objective of the review is to systematically describe the metrics which measure entrainment and synchronization to auditory stimuli during walking in healthy and neurological populations. Results: Sixteen articles were included. Fifty percent of the included articles had healthy controls as participants (N = 167), 19% had neurological diseases such as Huntington's and Stroke (N = 76), and 31% included both healthy and neurological [Parkinson's disease (PD) and Stroke] participants (N = 101). In the included studies, six parameters were found to capture the interaction between the human movement and the auditory stimuli, these were: cadence, relative phase angle, resultant vector length, interval between the beat and the foot contact, period matching performance, and detrended fluctuation analysis. Conclusion: In this systematic review, several metrics have been identified, which measure the timing aspect of auditory-motor coupling and synchronization of auditory stimuli in healthy and neurological populations during walking. The application of these metrics may enhance the current state of the art and practice across the neurological gait rehabilitation. These metrics also have current shortcomings. Of particular pertinence is our recommendation to consider variability in data from a time-series rather than time-windowed viewpoint. We need it in view of the promising practical applications from which the studied populations may highly benefit in view of personalized medical care.
Collapse
Affiliation(s)
- Lousin Moumdjian
- Institute of Psychoacoustics and Electronic Music, Faculty of Arts and Philosophy, Ghent University, Gent, Belgium
- REVAL - BIOMED Rehabilitation Research Center, Faculty of Medicine and Life Sciences, University of Hasselt, Hasselt, Belgium
| | - Jeska Buhmann
- Institute of Psychoacoustics and Electronic Music, Faculty of Arts and Philosophy, Ghent University, Gent, Belgium
| | - Iris Willems
- REVAL - BIOMED Rehabilitation Research Center, Faculty of Medicine and Life Sciences, University of Hasselt, Hasselt, Belgium
| | - Peter Feys
- REVAL - BIOMED Rehabilitation Research Center, Faculty of Medicine and Life Sciences, University of Hasselt, Hasselt, Belgium
| | - Marc Leman
- Institute of Psychoacoustics and Electronic Music, Faculty of Arts and Philosophy, Ghent University, Gent, Belgium
| |
Collapse
|
34
|
Raffalt PC, Yentes JM. Introducing Statistical Persistence Decay: A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait. Ann Biomed Eng 2018; 46:60-70. [PMID: 28948419 PMCID: PMC5756114 DOI: 10.1007/s10439-017-1934-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/20/2017] [Indexed: 01/17/2023]
Abstract
Stride-to-stride time intervals during human walking are characterised by predictability and statistical persistence quantified by sample entropy (SaEn) and detrended fluctuation analysis (DFA) which indicates a time dependency in the gait pattern. However, neither analyses quantify time dependency in a physical or physiological interpretable time scale. Recently, entropic half-life (ENT½) has been introduced as a measure of the time dependency on an interpretable time scale. A novel measure of time dependency, based on DFA, statistical persistence decay (SPD), was introduced. The present study applied SaEn, DFA, ENT½, and SPD in known theoretical signals (periodic, chaotic, and random) and stride-to-stride time intervals during overground and treadmill walking in healthy subjects. The analyses confirmed known properties of the theoretical signals. There was a significant lower predictability (p = 0.033) and lower statistical persistence (p = 0.012) during treadmill walking compared to overground walking. No significant difference was observed for ENT½ and SPD between walking condition, and they exhibited a low correlation. ENT½ showed that predictability in stride time intervals was halved after 11-14 strides and SPD indicated that the statistical persistency was deteriorated to uncorrelated noise after ~50 strides. This indicated a substantial time memory, where information from previous strides affected the future strides.
Collapse
Affiliation(s)
- P C Raffalt
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J M Yentes
- Center for Research in Human Movement Variability, Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
35
|
Peripersonal space boundaries around the lower limbs. Exp Brain Res 2017; 236:161-173. [DOI: 10.1007/s00221-017-5115-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/27/2017] [Indexed: 11/26/2022]
|
36
|
Choi JS, Kang DW, Seo JW, Tack GR. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill. J Biomech 2017; 65:154-160. [PMID: 29096982 DOI: 10.1016/j.jbiomech.2017.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 09/29/2017] [Accepted: 10/15/2017] [Indexed: 11/29/2022]
Abstract
This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation.
Collapse
Affiliation(s)
- Jin-Seung Choi
- Department of Biomedical Engineering & BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungju, South Korea
| | - Dong-Won Kang
- Department of Biomedical Engineering & BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungju, South Korea
| | - Jeong-Woo Seo
- Department of Biomedical Engineering & BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungju, South Korea
| | - Gye-Rae Tack
- Department of Biomedical Engineering & BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungju, South Korea.
| |
Collapse
|
37
|
Asymmetry of short-term control of spatio-temporal gait parameters during treadmill walking. Sci Rep 2017; 7:44349. [PMID: 28287168 PMCID: PMC5347008 DOI: 10.1038/srep44349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 02/09/2017] [Indexed: 11/25/2022] Open
Abstract
Optimization of energy cost determines average values of spatio-temporal gait parameters such as step duration, step length or step speed. However, during walking, humans need to adapt these parameters at every step to respond to exogenous and/or endogenic perturbations. While some neurological mechanisms that trigger these responses are known, our understanding of the fundamental principles governing step-by-step adaptation remains elusive. We determined the gait parameters of 20 healthy subjects with right-foot preference during treadmill walking at speeds of 1.1, 1.4 and 1.7 m/s. We found that when the value of the gait parameter was conspicuously greater (smaller) than the mean value, it was either followed immediately by a smaller (greater) value of the contralateral leg (interleg control), or the deviation from the mean value decreased during the next movement of ipsilateral leg (intraleg control). The selection of step duration and the selection of step length during such transient control events were performed in unique ways. We quantified the symmetry of short-term control of gait parameters and observed the significant dominance of the right leg in short-term control of all three parameters at higher speeds (1.4 and 1.7 m/s).
Collapse
|
38
|
Chehrehrazi M, Sanjari MA, Mokhtarinia HR, Jamshidi AA, Maroufi N, Parnianpour M. Goal equivalent manifold analysis of task performance in non-specific LBP and healthy subjects during repetitive trunk movement: Effect of load, velocity, symmetry. Hum Mov Sci 2016; 51:72-81. [PMID: 27915152 DOI: 10.1016/j.humov.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/16/2022]
Abstract
Motor abundance allows reliability of motor performance despite its variability. The nature of this variability provides important information on the flexibility of control strategies. This feature of control may be affected by low back pain (LPB) and trunk flexion/extension conditions. Goal equivalent manifold (GEM) analysis was used to quantify the ability to exploit motor abundance during repeated trunk flexion/extension in healthy individuals and people with chronic non-specific LBP (CNSLBP). Kinematic data were collected from 22 healthy volunteers and 22 CNSLBP patients during metronomically timed, repeated trunk flexion/extension in three conditions of symmetry, velocity, and loading; each at two levels. A goal function for the task was defined as maintaining a constant movement time at each cycle. Given the GEM, flexibility index and performance index were calculated respectively as amounts of goal-equivalent variability and the ratio of goal-equivalent to non-goal-equivalent variability. CNSLBP group was as similar as healthy individuals in both flexibility index (p=0.41) and performance index (p=0.24). Performance index was higher in asymmetric (p<0.001), high velocity (p<0.001), and loaded (p=0.006) conditions. Performance and flexibility in using motor abundance were influenced by repeated trunk flexion/extension conditions. However, these measures were not significantly affected by CNSLBP.
Collapse
Affiliation(s)
- Mahshid Chehrehrazi
- Department of Physical Therapy, Faculty of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Sanjari
- Biomechanics Lab, Rehabilitation Research Center, and Faculty of Rehabilitation, Department of Rehabilitation Basic Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Mokhtarinia
- Department of Ergonomics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Ali Ashraf Jamshidi
- Department of Physical Therapy, Faculty of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran.
| | - Nader Maroufi
- Department of Physical Therapy, Faculty of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamad Parnianpour
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
39
|
Moon Y, Sung J, An R, Hernandez ME, Sosnoff JJ. Gait variability in people with neurological disorders: A systematic review and meta-analysis. Hum Mov Sci 2016; 47:197-208. [PMID: 27023045 DOI: 10.1016/j.humov.2016.03.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/24/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
There has been growing evidence showing gait variability provides unique information about gait characteristics in neurological disorders. This study systemically reviewed and quantitatively synthesized (via meta-analysis) existing evidence on gait variability in various neurological diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), cerebellar ataxia (CA), Huntington's disease (HD), multiple sclerosis (MS), and Parkinson's disease (PD). Keyword search were conducted in PubMed, Web of science, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Library. Meta-analysis was performed to estimate the pooled effect size for gait variability for each neurological group. Meta-regression was performed to compare gait variability across multiple groups with neurological diseases. Gait variability of 777 patients with AD, ALS, CA, HD, MS, or PD participating in 25 studies was included in meta-analysis. All pathological groups had increased amount of gait variability and loss of fractal structure of gait dynamics compared to healthy controls, and gait variability differentiated distinctive neurological conditions. The HD groups had the highest alterations in gait variability among all pathological groups, whereas the PD, AD and MS groups had the lowest. Interventions that aim to improve gait function in patients with neurological disorders should consider the heterogeneous relationship between gait variability and neurological conditions.
Collapse
Affiliation(s)
- Yaejin Moon
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S Goodwin Ave, Urbana, IL 61801, United States.
| | - JongHun Sung
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S Goodwin Ave, Urbana, IL 61801, United States
| | - Ruopeng An
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S Goodwin Ave, Urbana, IL 61801, United States
| | - Manuel E Hernandez
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S Goodwin Ave, Urbana, IL 61801, United States
| | - Jacob J Sosnoff
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S Goodwin Ave, Urbana, IL 61801, United States
| |
Collapse
|
40
|
Terrier P. Fractal Fluctuations in Human Walking: Comparison Between Auditory and Visually Guided Stepping. Ann Biomed Eng 2016; 44:2785-93. [PMID: 26903091 DOI: 10.1007/s10439-016-1573-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/17/2016] [Indexed: 12/01/2022]
Abstract
In human locomotion, sensorimotor synchronization of gait consists of the coordination of stepping with rhythmic auditory cues (auditory cueing, AC). AC changes the long-range correlations among consecutive strides (fractal dynamics) into anti-correlations. Visual cueing (VC) is the alignment of step lengths with marks on the floor. The effects of VC on the fluctuation structure of walking have not been investigated. Therefore, the objective was to compare the effects of AC and VC on the fluctuation pattern of basic spatiotemporal gait parameters. Thirty-six healthy individuals walked 3 × 500 strides on an instrumented treadmill with augmented reality capabilities. The conditions were no cueing (NC), AC, and VC. AC included an isochronous metronome. For VC, projected stepping stones were synchronized with the treadmill speed. Detrended fluctuation analysis assessed the correlation structure. The coefficient of variation (CV) was also assessed. The results showed that AC and VC similarly induced a strong anti-correlated pattern in the gait parameters. The CVs were similar between the NC and AC conditions but substantially higher in the VC condition. AC and VC probably mobilize similar motor control pathways and can be used alternatively in gait rehabilitation. However, the increased gait variability induced by VC should be considered.
Collapse
Affiliation(s)
- Philippe Terrier
- IRR, Institute for Research in Rehabilitation, Sion, Switzerland. .,Clinique romande de réadaptation SUVACare, Av. Gd-Champsec 90, 1951, Sion, Switzerland.
| |
Collapse
|
41
|
Russell DM, Haworth JL, Martinez-Garza C. Coordination dynamics of (a)symmetrically loaded gait. Exp Brain Res 2015; 234:867-81. [PMID: 26661338 DOI: 10.1007/s00221-015-4512-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/20/2015] [Indexed: 11/28/2022]
Abstract
Asymmetries in the resonant frequency of limbs/effectors lead to changes in coordination dynamics, including deviations in relative phase at ϕ = 0 or π rad and reduced stability. These effects have been successfully modeled by the extended Haken-Kelso-Bunz (HKB) coupled oscillator model (Kelso et al. in Attention and performance XIII. Erlbaum, Hillsdale, pp 139-169, 1990), and supported in laboratory tasks of rhythmic limb motions. Efforts to apply the HKB model to walking have supported the predicted deviations in phase, but not the expected decreases in coordination stability. The lack of stability effects arising from asymmetries may be due to the stabilizing influence of a treadmill or may be obscured by the balance requirements and ground impacts in gait. This study examined these possibilities by investigating walking overground with ankle weights of 3 or 6 kg to create asymmetries between the legs, as well as symmetrical loads. Participants walked without a metronome and separately with a metronome to control speed and cadence. Coordination dynamics between the legs were quantified through mean and standard deviation (SD) of ϕ, while individual leg local dynamic stability was calculated as maximum Lyapunov exponent (λ (MAX)). Irrespective of the condition, asymmetrical loads led to deviations in phase from antiphase with the loaded leg lagging behind the other, and both SDϕ and λ (MAX) increased (i.e., stability decreased). Symmetrical loads had no effect on phase deviations, but decreased stability. Overall, these findings indicate that the HKB model captures coordination dynamics in walking, but also highlights limitations in modeling the influence of loads on an individual limb.
Collapse
Affiliation(s)
- Daniel M Russell
- School of Physical Therapy and Athletic Training, College of Health Sciences, Old Dominion University, 3118 Health Sciences Building, Norfolk, VA, 23529, USA.
| | - Joshua L Haworth
- Johns Hopkins School of Medicine, Center for Autism and Related Disorders, Kennedy Krieger Institute, 3901 Greenspring Avenue, Baltimore, MD, 21211, USA.
| | - Cesar Martinez-Garza
- Division of Science, The Pennsylvania State University - Berks, Reading, PA, 19610, USA.
| |
Collapse
|
42
|
Bohnsack-McLagan NK, Cusumano JP, Dingwell JB. Adaptability of stride-to-stride control of stepping movements in human walking. J Biomech 2015; 49:229-37. [PMID: 26725217 DOI: 10.1016/j.jbiomech.2015.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Abstract
Humans continually adapt their movements as they walk on different surfaces, avoid obstacles, etc. External (environmental) and internal (physiological) noise-like disturbances, and the responses that correct for them, each contribute to locomotor variability. This variability may sometimes be detrimental (perhaps increasing fall risk), or sometimes beneficial (perhaps reflecting exploration of multiple task solutions). Here, we determined how humans regulated stride-to-stride fluctuations in walking when presented different task goals that allowed them to exploit inherent redundancies in different ways. Fourteen healthy adults walked on a treadmill under each of four conditions: constant speed only (SPD), constant speed and stride length (LEN), constant speed and stride time (TIM), or constant speed, stride length, and stride time (ALL). Multiple analyses tested competing hypotheses that participants might attempt to either equally satisfy all goals simultaneously, or instead adopt systematic intermediate strategies that only partly satisfied each individual goal. Participants exhibited similar average stepping behavior, but significant differences in variability and stride-to-stride serial correlations across conditions. Analyses of the structure of stride-to-stride fluctuation dynamics demonstrated humans resolved the competing goals presented not by minimizing errors equally with respect to all goals, but instead by trying to only partly satisfy each goal. Thus, humans exploit task redundancies even when they are explicitly removed from the task specifications. These findings may help identify when variability is predictive of, or protective against, fall risk. They may also help inform rehabilitation interventions to better exploit the positive contributions of variability, while minimizing the negative.
Collapse
Affiliation(s)
| | - Joseph P Cusumano
- Department of Engineering Science & Mechanics, Penn State University, University Park, PA 16802 USA
| | - Jonathan B Dingwell
- Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712 USA.
| |
Collapse
|
43
|
Roerdink M, Daffertshofer A, Marmelat V, Beek PJ. How to Sync to the Beat of a Persistent Fractal Metronome without Falling Off the Treadmill? PLoS One 2015; 10:e0134148. [PMID: 26230254 PMCID: PMC4521716 DOI: 10.1371/journal.pone.0134148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/06/2015] [Indexed: 11/23/2022] Open
Abstract
In rehabilitation, rhythmic acoustic cues are often used to improve gait. However, stride-time fluctuations become anti-persistent with such pacing, thereby deviating from the characteristic persistent long-range correlations in stride times of self-paced walking healthy adults. Recent studies therefore experimented with metronomes with persistence in interbeat intervals and successfully evoked persistent stride-time fluctuations. The objective of this study was to examine how participants couple their gait to a persistent metronome, evoking persistently longer or shorter stride times over multiple consecutive strides, without wandering off the treadmill. Twelve healthy participants walked on a treadmill in self-paced, isochronously paced and non-isochronously paced conditions, the latter with anti-persistent, uncorrelated and persistent correlations in interbeat intervals. Stride-to-stride fluctuations of stride times, stride lengths and stride speeds were assessed with detrended fluctuation analysis, in conjunction with an examination of the coupling between stride times and stride lengths. Stride-speed fluctuations were anti-persistent for all conditions. Stride-time and stride-length fluctuations were persistent for self-paced walking and anti-persistent for isochronous pacing. Both stride times and stride lengths changed from anti-persistence to persistence over the four non-isochronous metronome conditions, accompanied by an increasingly stronger coupling between these gait parameters, with peak values for the persistent metronomes. These results revealed that participants were able to follow the beat of a persistent metronome without falling off the treadmill by strongly coupling stride-length fluctuations to the stride-time fluctuations elicited by persistent metronomes, so as to prevent large positional displacements along the treadmill. For self-paced walking, in contrast, this coupling was very weak. In combination, these results challenge the premise that persistent metronomes in gait rehabilitation would evoke stride-to-stride dynamics reminiscent of self-paced walking healthy adults. Future studies are recommended to include an analysis of the interrelation between stride times and stride lengths in addition to the correlational structure of either one in isolation.
Collapse
Affiliation(s)
- Melvyn Roerdink
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Andreas Daffertshofer
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Vivien Marmelat
- Movement to Health Laboratory, Euromov, University of Montpellier, Montpellier, France
| | - Peter J. Beek
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Reliability of the walking speed and gait dynamics variables while walking on a feedback-controlled treadmill. J Biomech 2015; 48:1336-9. [DOI: 10.1016/j.jbiomech.2015.02.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 11/18/2022]
|
45
|
Dingwell JB, Cusumano JP. Identifying stride-to-stride control strategies in human treadmill walking. PLoS One 2015; 10:e0124879. [PMID: 25910253 PMCID: PMC4409060 DOI: 10.1371/journal.pone.0124879] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/18/2015] [Indexed: 01/05/2023] Open
Abstract
Variability is ubiquitous in human movement, arising from internal and external noise, inherent biological redundancy, and from the neurophysiological control actions that help regulate movement fluctuations. Increased walking variability can lead to increased energetic cost and/or increased fall risk. Conversely, biological noise may be beneficial, even necessary, to enhance motor performance. Indeed, encouraging more variability actually facilitates greater improvements in some forms of locomotor rehabilitation. Thus, it is critical to identify the fundamental principles humans use to regulate stride-to-stride fluctuations in walking. This study sought to determine how humans regulate stride-to-stride fluctuations in stepping movements during treadmill walking. We developed computational models based on pre-defined goal functions to compare if subjects, from each stride to the next, tried to maintain the same speed as the treadmill, or instead stay in the same position on the treadmill. Both strategies predicted average behaviors empirically indistinguishable from each other and from that of humans. These strategies, however, predicted very different stride-to-stride fluctuation dynamics. Comparisons to experimental data showed that human stepping movements were generally well-predicted by the speed-control model, but not by the position-control model. Human subjects also exhibited no indications they corrected deviations in absolute position only intermittently: i.e., closer to the boundaries of the treadmill. Thus, humans clearly do not adopt a control strategy whose primary goal is to maintain some constant absolute position on the treadmill. Instead, humans appear to regulate their stepping movements in a way most consistent with a strategy whose primary goal is to try to maintain the same speed as the treadmill at each consecutive stride. These findings have important implications both for understanding how biological systems regulate walking in general and for being able to harness these mechanisms to develop more effective rehabilitation interventions to improve locomotor performance.
Collapse
Affiliation(s)
- Jonathan B Dingwell
- Department of Kinesiology & Health Education, University of Texas, Austin, Texas, United States of America
| | - Joseph P Cusumano
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
46
|
Supej M, Cuk I. Comparison of Global Navigation Satellite System Devices on Speed Tracking in Road (Tran)SPORT Applications. SENSORS 2014; 14:23490-23508. [PMID: 25494349 PMCID: PMC4299074 DOI: 10.3390/s141223490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 11/16/2022]
Abstract
Global Naavigation Satellite Systems (GNSS) are, in addition to being most widely used vehicle navigation method, becoming popular in sport-related tests. There is a lack of knowledge regarding tracking speed using GNSS, therefore the aims of this study were to examine under dynamic conditions: (1) how accurate technologically different GNSS measure speed and (2) how large is latency in speed measurements in real time applications. Five GNSSs were tested. They were fixed to a car's roof-rack: a smart phone, a wrist watch, a handheld device, a professional system for testing vehicles and a high-end Real Time Kinematics (RTK) GNSS. The speed data were recorded and analyzed during rapid acceleration and deceleration as well as at steady speed. The study produced four main findings. Higher frequency and high quality GNSS receivers track speed at least at comparable accuracy to a vehicle speedometer. All GNSS systems measured maximum speed and movement at a constant speed well. Acceleration and deceleration have different level of error at different speeds. Low cost GNSS receivers operating at 1 Hz sampling rate had high latency (up to 2.16 s) and are not appropriate for tracking speed in real time, especially during dynamic movements.
Collapse
Affiliation(s)
- Matej Supej
- Department of Biomechanics, Faculty of Sport, University of Ljubljana, Ljubljana 1000, Slovenia.
| | - Ivan Cuk
- Department of Biomechanics, Faculty of Sport, University of Ljubljana, Ljubljana 1000, Slovenia.
| |
Collapse
|
47
|
The effect of different Global Navigation Satellite System methods on positioning accuracy in elite alpine skiing. SENSORS 2014; 14:18433-53. [PMID: 25285461 PMCID: PMC4239874 DOI: 10.3390/s141018433] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 02/05/2023]
Abstract
In sport science, Global Navigation Satellite Systems (GNSS) are frequently applied to capture athletes' position, velocity and acceleration. Application of GNSS includes a large range of different GNSS technologies and methods. To date no study has comprehensively compared the different GNSS methods applied. Therefore, the aim of the current study was to investigate the effect of differential and non-differential solutions, different satellite systems and different GNSS signal frequencies on position accuracy. Twelve alpine ski racers were equipped with high-end GNSS devices while performing runs on a giant slalom course. The skiers' GNSS antenna positions were calculated in three satellite signal obstruction conditions using five different GNSS methods. The GNSS antenna positions were compared to a video-based photogrammetric reference system over one turn and against the most valid GNSS method over the entire run. Furthermore, the time for acquisitioning differential GNSS solutions was assessed for four differential methods. The only GNSS method that consistently yielded sub-decimetre position accuracy in typical alpine skiing conditions was a differential method using American (GPS) and Russian (GLONASS) satellite systems and the satellite signal frequencies L1 and L2. Under conditions of minimal satellite signal obstruction, valid results were also achieved when either the satellite system GLONASS or the frequency L2 was dropped from the best configuration. All other methods failed to fulfill the accuracy requirements needed to detect relevant differences in the kinematics of alpine skiers, even in conditions favorable for GNSS measurements. The methods with good positioning accuracy had also the shortest times to compute differential solutions. This paper highlights the importance to choose appropriate methods to meet the accuracy requirements for sport applications.
Collapse
|
48
|
The influence of auditory-motor coupling on fractal dynamics in human gait. Sci Rep 2014; 4:5879. [PMID: 25080936 PMCID: PMC4118321 DOI: 10.1038/srep05879] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/03/2014] [Indexed: 01/24/2023] Open
Abstract
Humans exhibit an innate ability to synchronize their movements to music. The field of gait rehabilitation has sought to capitalize on this phenomenon by invoking patients to walk in time to rhythmic auditory cues with a view to improving pathological gait. However, the temporal structure of the auditory cue, and hence the temporal structure of the target behavior has not been sufficiently explored. This study reveals the plasticity of auditory-motor coupling in human walking in relation to 'complex' auditory cues. The authors demonstrate that auditory-motor coupling can be driven by different coloured auditory noise signals (e.g. white, brown), shifting the fractal temporal structure of gait dynamics towards the statistical properties of the signals used. This adaptive capability observed in whole-body movement, could potentially be harnessed for targeted neuromuscular rehabilitation in patient groups, depending on the specific treatment goal.
Collapse
|
49
|
Lindsay TR, Noakes TD, McGregor SJ. Effect of treadmill versus overground running on the structure of variability of stride timing. Percept Mot Skills 2014; 118:331-46. [PMID: 24897871 DOI: 10.2466/30.26.pms.118k18w8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gait timing dynamics of treadmill and overground running were compared. Nine trained runners ran treadmill and track trials at 80, 100, and 120% of preferred pace for 8 min. each. Stride time series were generated for each trial. To each series, detrended fluctuation analysis (DFA), power spectral density (PSD), and multiscale entropy (MSE) analysis were applied to infer the regime of control along the randomness-regularity axis. Compared to overground running, treadmill running exhibited a higher DFA and PSD scaling exponent, as well as lower entropy at non-preferred speeds. This indicates a more ordered control for treadmill running, especially at non-preferred speeds. The results suggest that the treadmill itself brings about greater constraints and requires increased voluntary control. Thus, the quantification of treadmill running gait dynamics does not necessarily reflect movement in overground settings.
Collapse
|
50
|
To What Extent Does Not Wearing Shoes Affect the Local Dynamic Stability of Walking?: Effect Size and Intrasession Repeatability. J Appl Biomech 2014; 30:305-9. [DOI: 10.1123/jab.2013-0142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Local dynamic stability (stability) quantifies how a system responds to small perturbations. Several experimental and clinical findings have highlighted the association between gait stability and fall risk. Walking without shoes is known to slightly modify gait parameters. Barefoot walking may cause unusual sensory feedback to individuals accustomed to shod walking, and this may affect stability. The objective was therefore to compare the stability of shod and barefoot walking in healthy individuals and to analyze the intrasession repeatability. Forty participants traversed a 70 m indoor corridor wearing normal shoes in one trial and walking barefoot in a second trial. Trunk accelerations were recorded with a 3D-accelerometer attached to the lower back. The stability was computed using the finite-time maximal Lyapunov exponent method. Absolute agreement between the forward and backward paths was estimated with the intraclass correlation coefficient (ICC). Barefoot walking did not significantly modify the stability as compared with shod walking (average standardized effect size: +0.11). The intrasession repeatability was high (ICC: 0.73–0.81) and slightly higher in barefoot walking condition (ICC: 0.81–0.87). Therefore, it seems that barefoot walking can be used to evaluate stability without introducing a bias as compared with shod walking, and with a sufficient reliability.
Collapse
|