1
|
Faraji Aylar M, Dionisio VC. Influence of restricted visual input on lower limb joint works of female children during sit-to-stand. J Bodyw Mov Ther 2024; 40:1102-1114. [PMID: 39593421 DOI: 10.1016/j.jbmt.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND The ankle-knee-hip joint systems have structures that can produce mechanical work through elastic, viscoelastic mechanisms or muscle activity. This study aimed to compute sit-to-stand (STS) joint works in lower limbs between blind and sighted children to find the relationship between visual memory and STS joint work variables. METHODS This study included fifteen female children with congenitally blind (CB) and 30 healthy girls without visual impairments. The children with no visual impairments were randomly divided into two condition groups with 15 each, the eyes open (EO) and the eyes closed (EC). Inverse dynamics calculated joint works by integrating multiple the moment and angular velocity (F1) and force and velocity (F2). They were normalized to body mass and body height. RESULTS Generally, the sensitivity of F1 (on both sides in the sagittal and frontal planes) was more than F2 (on the non-dominant side in the mediolateral and vertical axes). In the ML axis, the EC group had insufficient maximal non-dominant hip work relative to the EO group (p = 0.002). In addition, the CB group suffered from low hip efficiency (p = 0.003) and high knee (p < 0.001) mechanical work. CONCLUSIONS Numerous differences between CB and EC groups (on knee and hip works) showed that the time of visual input deprivation could change the type of human body's strategies to reach the consolidation process and keep adequate balance during STS. Therefore, rehabilitation programs should be aimed at addressing the impairments in the management of restricted visual input during STS performance.
Collapse
Affiliation(s)
- Mozhgan Faraji Aylar
- Faculty of Engineering, Electrical Engineering Department, Imam Reza International University, Mashhad, Iran.
| | - Valdeci Carlos Dionisio
- Faculty of Physical Education and Physiotherapy, Federal University of Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
2
|
Harry JR, Simms A, Hite M. Establishing Phase Definitions for Jump and Drop Landings and an Exploratory Assessment of Performance-Related Metrics to Monitor During Testing. J Strength Cond Res 2024; 38:e62-e71. [PMID: 38090985 DOI: 10.1519/jsc.0000000000004700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
ABSTRACT Harry, JR, Simms, A, and Hite, M. Establishing phase definitions for jump and drop landings and an exploratory assessment of performance-related metrics to monitor during testing. J Strength Cond Res 38(2): e62-e71, 2024-Landing is a common task performed in research, physical training, and competitive sporting scenarios. However, few have attempted to explore landing mechanics beyond its hypothesized link to injury potential, which ignores the key performance qualities that contribute to performance, or how quickly a landing can be completed. This is because a lack of (a) established landing phases from which important performance and injury risk metrics can be extracted and (b) metrics known to have a correlation with performance. As such, this article had 2 purposes. The first purpose was to use force platform data to identify easily extractable and understandable landing phases that contain metrics linked to both task performance and overuse injury potential. The second purpose was to explore performance-related metrics to monitor during testing. Both purposes were pursued using force platform data for the landing portion of 270 jump-landing trials performed by a sample of 14 NCAA Division 1 men's basketball players (1.98 ± 0.07 m; 94.73 ± 8.01 kg). The proposed phases can separate both jump-landing and drop-landing tasks into loading, attenuation, and control phases that consider the way vertical ground reaction force (GRF) is purposefully manipulated by the athlete, which current phase definitions fail to consider. For the second purpose, Pearson's correlation coefficients, the corresponding statistical probabilities ( α = 0.05), and a standardized strength interpretation scale for correlation coefficients (0 < trivial ≤ 0.1 < small ≤ 0.3 < moderate ≤ 0.5 < large ≤ 0.7 < very large) were used for both the group average (i.e., all individual averages pooled together) and individual data (i.e., each individual's trials pooled together). Results revealed that landing time, attenuation phase time, average vertical GRF during landing, average vertical GRF during the attenuation phase, average vertical GRF during the control phase, vertical GRF attenuation rate, and the amortization GRF (i.e., GRF at zero velocity) significantly correlated with landing performance, defined as the ratio of landing height and landing time ( R ≥ ± 0.58; p < 0.05), such that favorable changes in those metrics were associated with better performance. This work provides practitioners with 2 abilities. First, practitioners currently assess jump capacity using jump-landing tests (e.g., countermovement jump) with an analysis strategy that makes use of landing data. Second, this work provides preliminary data to guide others when initially exploring landing test results before identifying metrics chosen for their own analysis.
Collapse
Affiliation(s)
- John R Harry
- Human Performance & Biomechanics Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX
| | | | | |
Collapse
|
3
|
Luo Y, Li Z, Hu M, Zhang L, Li F, Wang S. Effects of fatigue on the in vivo kinematics and kinetics of talocrural and subtalar joint during landing. Front Bioeng Biotechnol 2023; 11:1252044. [PMID: 37829568 PMCID: PMC10566632 DOI: 10.3389/fbioe.2023.1252044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
Objective: Fatigue can affect the ankle kinematic characteristics of landing movements. Traditional marker-based motion capture techniques have difficulty in accurately obtaining the kinematics of the talocrural and subtalar joints. This study aimed to investigate the effects of fatigue on the talocrural and subtalar joints during the landing using dual fluoroscopic imaging system (DFIS). Methods: This study included fourteen healthy participants. The foot of each participant was scanned using magnetic resonance imaging to create 3D models. High-speed DFIS was used to capture images of the ankle joint during participants performing a single-leg landing jump from a height of 40 cm. Fatigue was induced by running and fluoroscopic images were captured before and after fatigue. Kinematic data were obtained by 3D/2D registration in virtual environment software. The joint kinematics in six degrees of freedom and range of motion (ROM) were compared between the unfatigued and fatigued conditions. Results: During landing, after the initial contact with the ground, the main movement of the talocrural joint is extension and abduction, while the subtalar joint mainly performs extension, eversion, and abduction. Compared to unfatigued, during fatigue the maximum medial translation (1.35 ± 0.45 mm vs. 1.86 ± 0.69 mm, p = 0.032) and medial-lateral ROM (3.19 ± 0.60 mm vs. 3.89 ± 0.96 mm, p = 0.029) of the talocrural joint significantly increased, the maximum flexion angle (0.83 ± 1.24° vs. 2.11 ± 1.80°, p = 0.037) of the subtalar joint significantly increased, and the flexion-extension ROM (6.17 ± 2.21° vs. 7.97 ± 2.52°, p = 0.043) of the subtalar joint significantly increased. Conclusion: This study contributes to the quantitative understanding of the normal function of the talocrural and subtalar joints during high-demand activities. During landing, the main movement of the talocrural joint is extension and abduction, while the subtalar joint mainly performs extension, eversion, and abduction. Under fatigue conditions, the partial ROM of the talocrural and subtalar joints increases.
Collapse
Affiliation(s)
- Ye Luo
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhuman Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Mengling Hu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Ling Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Feng Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shaobai Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Baus J, Harry JR, Yang J. Optimization-based subject-specific planar human vertical jumping prediction: Effect of elbow flexion and weighted vest. Proc Inst Mech Eng H 2021; 236:65-71. [PMID: 34465231 DOI: 10.1177/09544119211044020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Jumping strategies differ considerably depending on athletes' physical activity demands. In general, the jumping motion is desired to have excellent performance and low injury risk. Both of these outcomes can be achieved by modifying athletes' jumping and landing mechanics. This paper presents a consecutive study on the optimization-based subject-specific planar human vertical jumping to test different loading conditions (weighted vest) during jumping with or without elbow flexion during the arm-swing based on the validated prediction model in the first part of this study. The sagittal plane skeletal model simulates the weighting, unweighting, breaking, propulsion phases and considers four loading conditions: 0%, 5%, 10%, and 15% body weight. Results show that the maximum ground reaction forces, the body center of mass position, and velocities at the take-off instant are different for different loading conditions and with/without elbow flexion. The optimization formulation is solved using MATLAB® with 35 design variables with 197 nonlinear constraints for a five-segment body model and 42 design variables with 227 nonlinear constraints for a six-segment body model. Both models are computationally efficient, and they can predict ground reaction forces, the body center of mass position, and velocity. This work is novel in the sense that presents a simulation model capable of considering different external loading conditions and the effect of elbow flexion during arm swing.
Collapse
Affiliation(s)
- Juan Baus
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - John R Harry
- Human Performance & Biomechanics Lab, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - James Yang
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
5
|
Baus J, Harry JR, Yang J. Optimization-based subject-specific planar human vertical jumping prediction: Model development and validation. Proc Inst Mech Eng H 2021; 235:805-818. [PMID: 33863254 DOI: 10.1177/09544119211010924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Jumping biomechanics may differ between individuals participating in various sports. Jumping motion can be divided into different phases for research purposes when seeking to understand performance, injury risk, or both. Experimental-based methods are used to study different jumping situations for their capabilities of testing other conditions intended to improve performance or further prevent injuries. External loading training is commonly used to simulate jumping performance improvement. This paper presents the optimization-based subject-specific planar human vertical jumping to develop the prediction model with and without a weighted vest and validate it through experiments. The skeletal model replicates the human motion for jumping (weighting, unweighting, breaking, propulsion) in the sagittal plane considering four different loading conditions (0% and 10% body mass): unloaded, split-loaded, front-loaded, and back-loaded. The multi-objective optimization problem is solved using MATLAB® with 35 design variables and 197 nonlinear constraints. Results show that the model is computationally efficient, and the predicted jumping motion matches the experimental data trend. The simulation model can predict vertical jumping motion and can test the effect of different loading conditions with weighted vests and arm-swing strategy on the ground reaction forces. This work is novel in the sense that it can predict ground reaction forces, joints angles, and center of mass position without any experimental data.
Collapse
Affiliation(s)
- Juan Baus
- Department of Mechanical Engineering, Human-Centric Design Research Lab, Texas Tech University, Lubbock, TX, USA
| | - John R Harry
- Department of Kinesiology and Sport Management, Human Performance & Biomechanics Lab, Texas Tech University, Lubbock, TX, USA
| | - James Yang
- Department of Mechanical Engineering, Human-Centric Design Research Lab, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
6
|
Zhou X, Wu D, Wu X, Li Z, Yan B, Liang L, He Y, Liu Y. A novel prophylactic Chinese parachute ankle brace. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:318. [PMID: 33708945 PMCID: PMC7944281 DOI: 10.21037/atm-20-4937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background The objective is to compare the effects of a self-designed and self-manufactured novel prophylactic ankle brace [Chinese parachute ankle brace (CPAB)] and two ordinary ankle braces on the ankle joint during a half-squat parachute landing (HSPL) via biomechanical assessment. Methods Twenty elite paratroopers were in four different conditions: no brace, elastic brace, semi-rigid brace, and CPAB. Each participant was instructed to jump off a platform with three different heights, 40, 80, and 120 cm, and land on the force plate in a half-squat posture. The vertical ground reaction forces (vGRFs), joint angles, moments, powers, and works were calculated. After the experiment, every participant completed the questionnaires designed for this study. Results Increasing the dropping height increased all of the parameters significantly (P<0.01), except for time to peak vGRF (T-PvGRF). Applying three braces can all slightly increase vGRF (P=0.237) and reduce T-PvGRF by 6–10 ms, as well as decrease the joint angles, velocities, and moments on the sagittal and coronal planes. Wearing CPAB and a semi-rigid brace more efficiently restricted dorsiflexion and inversion (P<0.05), and they both significantly reduced ankle work (t=5.107, P<0.01; t=3.331, P<0.01) and peak power (t=7.237, P<0.01; t=6.711, P<0.01) at 120 cm. The total scores from low-to-high were semi-rigid brace (19.20±2.99), elastic brace (21.91±3.25), and CPAB (23.37±3.08). Conclusions The CPAB was more effective at restricting ankle joint motion on the coronal and sagittal planes than the other two prophylactic ankle braces. Therefore, the CPAB had the advantages of a novel appearance, high efficiency, and superior comfort, providing a reliable choice for parachute jumping and training in China.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Di Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangdong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengyao Li
- Department of Plastic Surgery, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yan
- Department of traditional Chinese medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Leilei Liang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu He
- Department of Plastic Surgery, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Biological system energy algorithm reflected in sub-system joint work distribution movement strategies: influence of strength and eccentric loading. Sci Rep 2020; 10:12052. [PMID: 32694565 PMCID: PMC7374631 DOI: 10.1038/s41598-020-68714-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/25/2020] [Indexed: 11/18/2022] Open
Abstract
To better understand and define energy algorithms during physical activity as it relates to strength and movement strategy of the hip, knee and ankle, a model of increasing eccentric load was implemented in the current investigation utilizing a countermovement jump and a series of drop jumps from different heights (15, 30, 45, 60, 75 cm). Twenty-one participants were grouped by sex (men, n = 9; women, n = 12) and muscle strength (higher strength, n = 7; moderate strength, n = 7; lower strength, n = 7) as determined by a maximal squat test. Force plates and 3D motion capture were utilized to calculate work for the center of mass (COM) of the whole body and individually for the hip, knee and ankle joints. Statistically significant lower net work of the COM was observed in women and lower strength participants in comparison to men and moderate strength and higher strength participants respectively (p ≤ 0.05). This was primarily due to higher negative to positive work ratios of the COM in women and lower strength participants during all jumps. Furthermore, the COM negative work was primarily dissipated at the knee joint in women and in the lower strength group, particularly during the higher drop jump trials, which are representative of a demanding eccentric load task. A definitive energy algorithm was observed as a reflection of altering joint work strategy in women and lower strength individuals, indicating a possible role in knee joint injury and modulation of such by altering muscular strength.
Collapse
|
8
|
Harry JR, Lanier R, Nunley B, Blinch J. Focus of attention effects on lower extremity biomechanics during vertical jump landings. Hum Mov Sci 2019; 68:102521. [PMID: 31610993 DOI: 10.1016/j.humov.2019.102521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 11/25/2022]
Abstract
This study examined biomechanical differences between external and internal foci of attention during vertical jump landings in males and females. Twenty-four healthy adults performed eight vertical jump landings using both internal and external foci while three-dimensional kinematic and ground reaction force (GRF) data were obtained. Two (focus) by two (sex) analyses of variance (α = 0.05) and Cohen's d effect sizes (ES) were used to compare differences in vertical GRF, joint angular positions and displacements, and lower limb joint angular work between foci and between sexes. Significantly greater knee contributions to total angular work occurred during external versus internal focus landings regardless of sex (p = .013; ES = 0.30). Significantly smaller plantarflexion angles (p = .019; ES = 0.53) and significantly greater knee flexion angles were observed at ground contact (p < .001; ES = 1.11) in males during external focus landings. Females exhibited significantly smaller knee flexion angles at both ground contact during external versus internal focus landings (p = .031; ES = 0.20) and compared to males during external focus landings (p < .001; ES = 1.76). Both peak vertical GRF (p = .003; ES = 1.54) and the ankle contributions to total angular work during loading (p = .026; ES = 1.07) were greater in females versus males regardless of foci, whereas the knee contributions to total angular work during loading were smaller in women (p = .026; ES = 1.07). Males and females might consider adopting an external focus during vertical jump landings to increase knee joint contributions to lower limb energy absorption. Females, in particular, might consider external focus use to decrease peak vertical GRF and increase the knee joint's contribution to total energy absorption to magnitudes similar to those exhibited by males.
Collapse
Affiliation(s)
- John R Harry
- Human Performance & Biomechanics Laboratory, Dept. of Kinesiology & Sport Management, Texas Tech University, 3204 Main Street, Lubbock, TX 79409, United States of America.
| | - Ryan Lanier
- Human Performance & Biomechanics Laboratory, Dept. of Kinesiology & Sport Management, Texas Tech University, 3204 Main Street, Lubbock, TX 79409, United States of America
| | - Brandon Nunley
- Human Performance & Biomechanics Laboratory, Dept. of Kinesiology & Sport Management, Texas Tech University, 3204 Main Street, Lubbock, TX 79409, United States of America
| | - Jarrod Blinch
- Motor Behavior Laboratory, Dept. of Kinesiology & Sport Management, Texas Tech University, 3204 Main Street, Lubbock, TX 79409, United States of America
| |
Collapse
|