1
|
Miller AL, Garcia PL, Vance RB, Heard EO, Brown EJ, Yoon KJ. The BET inhibitor sensitivity is associated with the expression level of CDC25B in pancreatic cancer models. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:40. [PMID: 39534870 PMCID: PMC11555179 DOI: 10.20517/cdr.2024.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Aim: Cell division cycle 25B (CDC25B) belongs to the CDC25 family of phosphatases that regulate cell cycle progression. CDC25B also contributes to tumor initiation and progression, but no connection between CDC25B levels and drug sensitivity in pancreatic cancer has been reported. Based on our finding that bromodomain and extraterminal domain (BET) inhibitors decrease levels of CDC25B, we aim to compare the sensitivity of models expressing contrasting levels of CDC25B to the BET inhibitor JQ1, in pancreatic cancer cell lines in vitro and in patient-derived xenograft (PDX) models of pancreatic ductal adenocarcinoma (PDAC) in vivo. Methods: We compared the efficacy of the standard of care agent gemcitabine with the BET inhibitor JQ1, using alamarBlue assays to determine IC50s of three pancreatic cancer cell lines in vitro. We used immunohistochemistry (IHC) and immunoblot (IB) to detect CDC25B. We also compared the effect of each agent on the progression of PDX models of PDAC in vivo with contrasting levels of CDC25B. Results: Immunohistochemical data demonstrated that levels of CDC25B differed by ~2- to 5-fold in cell lines and PDX models used. In vitro data showed that the level of CDC25B paralleled sensitivity to JQ1. Similarly, in vivo data showed that tumors with high-level CDC25B were more sensitive to JQ1 than tumors with lower CDC25B. The combination of JQ1 + a pan CDC25 inhibitor was synergistic in gemcitabine-resistant Panc1.gemR cells that had relatively high levels of CDC25B expression compared to parent cells. Conclusion: The data suggest that CDC25B may be an independent indicator of sensitivity to BET inhibitors and that CDC25B may contribute to gemcitabine insensitivity in this tumor type.
Collapse
Affiliation(s)
| | | | | | | | | | - Karina J. Yoon
- Department of Pharmacology and Toxicology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Sun Q, Liu R, Zhang H, Zong L, Jing X, Ma L, Li J, Zhang L. Fascin actin-bundling protein 1 regulates non-small cell lung cancer progression by influencing the transcription and splicing of tumorigenesis-related genes. PeerJ 2023; 11:e16526. [PMID: 38077434 PMCID: PMC10704988 DOI: 10.7717/peerj.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Background High mortality rates are prevalent among patients with non-small-cell lung cancer (NSCLC), and effective therapeutic targets are key prognostic factors. Fascin actin-bundling protein 1 (FSCN1) promotes NSCLC; however, its role as an RNA-binding protein in NSCLC remains unexplored. Therefore, we aimed to explore FSCN1 expression and function in A549 cells. Method We screened for alternative-splicing events and differentially expressed genes (DEGs) after FSCN1 silence via RNA-sequencing (RNA-seq). FSCN1 immunoprecipitation followed by RNA-seq were used to identify target genes whose mRNA expression and pre-mRNA alternative-splicing levels might be influenced by FSCN1. Results Silencing FSCN1 in A549 cells affected malignant phenotypes; it inhibited proliferation, migration, and invasion, and promoted apoptosis. RNA-seq analysis revealed 2,851 DEGs and 3,057 alternatively spliced genes. Gene ontology-based functional enrichment analysis showed that downregulated DEGs and alternatively splicing genes were enriched for the cell-cycle. FSCN1 promoted the alternative splicing of cell-cycle-related mRNAs involved in tumorigenesis (i.e., BCCIP, DLGAP5, PRC1, RECQL5, WTAP, and SGO1). Combined analysis of FSCN1 RNA-binding targets and RNA-seq data suggested that FSCN1 might affect ACTG1, KRT7, and PDE3A expression by modulating the pre-mRNA alternative-splicing levels of NME4, NCOR2, and EEF1D, that were bound to long non-coding RNA transcripts (RNASNHG20, NEAT1, NSD2, and FTH1), which were highly abundant. Overall, extensive transcriptome analysis of gene alternative splicing and expression levels was performed in cells transfected with FSCN1 short-interfering RNA. Our data provide global insights into the regulatory mechanisms associated with the roles of FSCN1 and its target genes in lung cancer.
Collapse
Affiliation(s)
- Qingchao Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Ruixue Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Haiping Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Liang Zong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Xiaoliang Jing
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Long Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Jie Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Liwei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| |
Collapse
|
3
|
Guo YQ, Wang Q, Wang JG, Gu YJ, Song PP, Wang SY, Qian XY, Gao X. METTL3 modulates m6A modification of CDC25B and promotes head and neck squamous cell carcinoma malignant progression. Exp Hematol Oncol 2022; 11:14. [PMID: 35287752 PMCID: PMC8919647 DOI: 10.1186/s40164-022-00256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation and its methyltransferase METTL3 have been widely reported to be involved in different cancers by regulating RNA metabolism and function. Here, we aimed to explore the biological function and clinical significance of m6A modification and METTL3 in head and neck squamous cell carcinoma (HNSCC). METHODS The prognostic value of METTL3 expression was evaluated using tissue microarray and immunohistochemical staining analyses in a human HNSCC cohort. The biological role and mechanism of METTL3 in HNSCC tumour growth, metastasis and angiogenesis were determined in vitro and in vivo. RESULTS M6A levels and METTL3 expressions in HNSCC tissues were significantly increased compared with paired adjacent tissues. Meanwhile, METTL3 was an independent risk factor for the prognosis of HNSCC patients. Moreover, METTL3 overexpression promoted HNSCC cell proliferation, migration, invasion, and angiogenesis, while knockdown of METTL3 had an opposite effect in vivo and in vitro. Mechanistically, METTL3 enhanced the m6A modification of CDC25B mRNA, which maintained its stability and upregulated its expression, thereby activating G2/M phase of cell cycle and leading to HNSCC malignant progression. CONCLUSIONS METTL3 may be a potential prognostic biomarker and therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Yu-Qing Guo
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jun-Guo Wang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Ya-Jun Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Pan-Pan Song
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Shou-Yu Wang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China.
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Xiao-Yun Qian
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Xia Gao
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
4
|
Xiao Y, Yu Y, Gao D, Jin W, Jiang P, Li Y, Wang C, Song Y, Zhan P, Gu F, Zhang C, Wang B, Chen Y, Du B, Zhang R. Inhibition of CDC25B With WG-391D Impedes the Tumorigenesis of Ovarian Cancer. Front Oncol 2019; 9:236. [PMID: 31024841 PMCID: PMC6463794 DOI: 10.3389/fonc.2019.00236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Novel inhibitors are urgently needed for use as targeted therapies to improve the overall survival (OS) of patients with ovarian cancer. Here, we show that cell division cycle 25B (CDC25B) is over-expressed in ovarian tumors and associated with poor patient prognosis. All previously reported CDC25B inhibitors have been identified by their ability to reversibly inhibit the catalytic dephosphorylation activity of CDC25B in vitro; however, none of these compounds have entered clinical trials for ovarian cancer therapy. In this study, we synthesized a novel small molecule compound, WG-391D, that potently down-regulates CDC25B expression without affecting its catalytic dephosphorylation activity. The inhibition of CDC25B by WG-391D is irreversible, and WG-391D should therefore exhibit potent antitumor activity against ovarian cancer. WG-391D induces cell cycle progression arrest at the G2/M phase. Half maximal inhibitory concentration (IC50) values of WG-391D for inhibition of the proliferation and migration of eight representative ovarian cancer cell lines (SKOV3, ES2, OVCAR8, OVTOKO, A2780, IGROV1, HO8910PM, and MCAS) and five primary ovarian tumor cell lines (GFY004, GFY005, CZ001, CZ006, and CZ008) were lower than 10 and 1 μM, respectively. WG-391D inhibited tumor growth in nude mice inoculated with SKOV3 cells or a patient-derived xenograft (PDX). The underlying mechanisms were associated with the down-regulation of CDC25B and subsequent inactivation of cell division cycle 2 (CDC2) and the serine/threonine kinase, AKT. In conclusion, this study demonstrates that WG-391D exhibits strong antitumor activity against ovarian cancer and indicates that the down-regulation of CDC25B by inhibitors could provide a rationale for ovarian cancer therapy.
Collapse
Affiliation(s)
- Yangjiong Xiao
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yang Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wangrui Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Pengcheng Jiang
- Department of Gynecology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yuhong Li
- Department of Gynecology, The International Peace Maternity & Child Health Hospital, The China Welfare Institute, Shanghai Jiaotong University, Shanghai, China
| | - Chao Wang
- Department of Gynecology, The International Peace Maternity & Child Health Hospital, The China Welfare Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| | - Cancan Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| | - Bin Wang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| | - Yihua Chen
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| |
Collapse
|
5
|
Phosphatases and solid tumors: focus on glioblastoma initiation, progression and recurrences. Biochem J 2017; 474:2903-2924. [PMID: 28801478 DOI: 10.1042/bcj20170112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Phosphatases and cancer have been related for many years now, as these enzymes regulate key cellular functions, including cell survival, migration, differentiation and proliferation. Dysfunctions or mutations affecting these enzymes have been demonstrated to be key factors for oncogenesis. The aim of this review is to shed light on the role of four different phosphatases (PTEN, PP2A, CDC25 and DUSP1) in five different solid tumors (breast cancer, lung cancer, pancreatic cancer, prostate cancer and ovarian cancer), in order to better understand the most frequent and aggressive primary cancer of the central nervous system, glioblastoma.
Collapse
|
6
|
Cai W, Chen C, Li X, Shi J, Sun Q, Liu D, Sun Y, Hou L, Zhao X, Gu S, Wu Q, Chen H, Zhang W, Jin L, Lu D, Fei K, Su B, Qian J. Association of CDC25 phosphatase family polymorphisms with the efficacy/toxicity of platinum-based chemotherapy in Chinese advanced NSCLC patients. Future Oncol 2015; 10:1175-85. [PMID: 24947259 DOI: 10.2217/fon.14.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To explore relationships between single nucleotide polymorphisms (SNPs) of the CDC25 protein family and the survival and chemotherapy responses of patients with advanced non-small-cell lung cancer (NSCLC). METHODS & MATERIALS We genotyped 14 SNPs of the CDC25 family in 663 Chinese patients with advanced NSCLC who were treated with first-line platinum-based chemotherapy and, in evaluable patients, analyzed relationships between the CDC25 family and the efficacy of platinum-based chemotherapy. RESULTS CDC25A rs3731513 and rs1380053, CDC25C rs6861656, CDC25A haplotype T/A/A/A/C and CDC25C haplotype A/G/G/G/C were significantly associated with the patients' progression-free survival. In addition, CDC25B rs3761218 and haplotype G/T/G/G were associated with the occurrence of severe toxicity with platinum-based chemotherapy, especially gastrointestinal and hematological toxicity. CONCLUSION These findings reveal a relationship between genetic variations of the CDC25 family and the efficacy and toxicity of platinum-based chemotherapy in patients with advanced NSCLC, especially in those with non-squamous-cell carcinoma.
Collapse
Affiliation(s)
- Weijing Cai
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D. A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 2015; 589:951-66. [PMID: 25771859 DOI: 10.1016/j.febslet.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Most of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems.
Collapse
Affiliation(s)
- Teri Hatzihristidis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nikita Desai
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tzu-Ching Meng
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan; Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049 Madrid, Spain; IE Business School, IE University, María de Molina 31 bis, 28006 Madrid, Spain.
| |
Collapse
|
8
|
Stebbing J, Lit LC, Zhang H, Darrington RS, Melaiu O, Rudraraju B, Giamas G. The regulatory roles of phosphatases in cancer. Oncogene 2014; 33:939-53. [PMID: 23503460 DOI: 10.1038/onc.2013.80] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3-kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies.
Collapse
Affiliation(s)
- J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - L C Lit
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - R S Darrington
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - O Melaiu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - B Rudraraju
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
9
|
Jung Y, Joo KM, Seong DH, Choi YL, Kong DS, Kim Y, Kim MH, Jin J, Suh YL, Seol HJ, Shin CS, Lee JI, Kim JH, Song SY, Nam DH. Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol 2011; 40:1122-32. [PMID: 22179774 PMCID: PMC3584590 DOI: 10.3892/ijo.2011.1302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/25/2011] [Indexed: 11/06/2022] Open
Abstract
A set of proteins reflecting the prognosis of patients have clinical significance since they could be utilized as predictive biomarkers and/or potential therapeutic targets. With the aim of finding novel diagnostic and prognostic markers for glioblastoma (GBM), a tissue microarray (TMA) library consisting of 62 GBMs and 28 GBM-associated normal spots was constructed. Immunohistochemistry against 78 GBM-associated proteins was performed. Expression levels of each protein for each patient were analyzed using an image analysis program and converted to H-score [summation of the intensity grade of staining (0-3) multiplied by the percentage of positive cells corresponding to each grade]. Based on H-score and hierarchical clustering methods, we divided the GBMs into two groups (n=19 and 37) that had significantly different survival lengths (p<0.05). In the two groups, expression of nine proteins (survivin, cyclin E, DCC, TGF-β, CDC25B, histone H1, p-EGFR, p-VEGFR2/3, p16) was significantly changed (q<0.05). Prognosis-predicting potential of these proteins were validated with another independent library of 82 GBM TMAs and a public GBM DNA microarray dataset. In addition, we determined 32 aberrant or mislocalized subcellular protein expression patterns in GBMs compared with relatively normal brain tissues, which could be useful for diagnostic biomarkers of GBM. We therefore suggest that these proteins can be used as predictive biomarkers and/or potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Yong Jung
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gangnam-Gu, Seoul 135-710, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang D, Ye F, Sun Y, Li W, Liu H, Jiang J, Zhang Y, Liu C, Tong W, Gao L, Sun Y, Zhang W, SeeToe T, Lee P, Suo J, Zhang DY. Protein signatures for classification and prognosis of gastric cancer a signaling pathway-based approach. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1657-1666. [PMID: 21854745 PMCID: PMC3181400 DOI: 10.1016/j.ajpath.2011.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 05/31/2011] [Accepted: 06/27/2011] [Indexed: 02/07/2023]
Abstract
Current methods have limited accuracy in predicting survival and stratifying patients with gastric cancer for appropriate treatment. We sought to identify protein signatures of gastric cancer for classification and prognostication. The Protein Pathway Array (initial study) and Western blot (confirmation) were used to assess the protein expression in a total of 199 fresh frozen gastric samples. There were 56 paired samples divided into a training set (n = 37) and a validation set (n = 19) for the identification of differentially expressed proteins between tumor and normal tissues. There were 56 tumor samples used to identify proteins correlating with tumor and nodal staging. All 93 tumor samples were used to identify candidate proteins for predicting survival. We confirmed the survival prediction of the candidate proteins by using an additional cohort of gastric cancer samples (n = 50). There were 22 proteins differentially expressed between normal and tumor tissues. Nine proteins were selected to build the predictor to classify normal and tumor samples. Ten proteins were differentially expressed among different T stages and four of these were associated with invasive behavior. An additional four proteins were associated with lymph node metastasis. Two proteins were identified as independent risk factors for overall survival. This study indicated that some dysregulated signaling proteins could be selected as useful biomarkers for tumor classification and predicting outcome in gastric cancer patients.
Collapse
Affiliation(s)
- Daguang Wang
- Department of General Surgery, The First Hospital, Jilin University, Changchun, China
| | - Fei Ye
- Department of Pathology, Mount Sinai School of Medicine, New York, New York
| | - Yabin Sun
- Department of Ophthalmology, The First Hospital, Jilin University, Changchun, China
| | - Wei Li
- Department of General Surgery, The First Hospital, Jilin University, Changchun, China
| | - Hongyi Liu
- Department of General Surgery, The First Hospital, Jilin University, Changchun, China
| | - Jing Jiang
- Department of BioBank, The First Hospital, Jilin University, Changchun, China
| | - Yang Zhang
- Department of General Surgery, The First Hospital, Jilin University, Changchun, China
| | - Chengkui Liu
- Department of General Surgery, The First Hospital, Jilin University, Changchun, China
| | - Weihua Tong
- Department of General Surgery, The First Hospital, Jilin University, Changchun, China
| | - Ling Gao
- Department of Hematology and Oncology, The First Hospital, Jilin University, Changchun, China
| | - Yezhou Sun
- Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Weijia Zhang
- Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Terry SeeToe
- Department of Pathology, Mount Sinai School of Medicine, New York, New York
| | - Peng Lee
- Departments of Pathology, Urology, and the New York University Cancer Institute, New York University, School of Medicine, New York, New York
| | - Jian Suo
- Department of General Surgery, The First Hospital, Jilin University, Changchun, China
| | - David Y. Zhang
- Department of General Surgery, The First Hospital, Jilin University, Changchun, China
- Department of Pathology, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|