1
|
Hunt AL, Randall J, Mansukhani MM, Nyberg K, Nutcharoen A, Davis J, Corgiat B, Mueller C, Melvin S, Sharma M, Johnston L, Swain W, Abulez T, Bateman NW, Maxwell GL, Deeken J, Benyounes A, Petricoin EF, Cannon TL, Conrads TP. Real-time functional proteomics enhances therapeutic targeting in precision oncology molecular tumor boards. NPJ Precis Oncol 2025; 9:111. [PMID: 40234655 PMCID: PMC12000509 DOI: 10.1038/s41698-025-00868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Collaborative review of molecular profiling data by multidisciplinary molecular tumor boards (MTB) is increasingly important for improving patient management and outcomes, though currently relies nearly exclusively on nucleic acid next-generation sequencing (NGS) and limited panels of immunohistochemistry-based protein abundance data. We examined the feasibility of incorporating real-time laser microdissection (LMD) enrichment of tumor epithelium and commercial CLIA-based reverse phase protein array (RPPA) protein drug target expression/activation profiling into our cancer center's MTB to complement standard clinical NGS-based profiling. The LMD-RPPA workflow was performed within a therapeutically permissive timeframe with a median dwell time of nine days, during which specimens were processed outside of standard clinical workflows. The RPPA-generated data supported additional and/or alternative therapeutic considerations for 54% of profiled patients following review by the MTB. These findings suggest that integrating proteomic/phosphoproteomic and NGS-based genomic data creates opportunities to further personalize clinical decision-making for precision oncology.
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA, 22003, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Jamie Randall
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Mahesh M Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Kara Nyberg
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Aratara Nutcharoen
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
- Department of Pathology, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Justin Davis
- Ignite Proteomics Inc., 15000 W 6th Avenue, Golden, CO, 80401, USA
| | - Brian Corgiat
- Ignite Proteomics Inc., 15000 W 6th Avenue, Golden, CO, 80401, USA
| | - Claudius Mueller
- Ignite Proteomics Inc., 15000 W 6th Avenue, Golden, CO, 80401, USA
| | - Savannah Melvin
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Meenakshi Sharma
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Laura Johnston
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Whitney Swain
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA, 22003, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - John Deeken
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Amin Benyounes
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Emanuel F Petricoin
- Ignite Proteomics Inc., 15000 W 6th Avenue, Golden, CO, 80401, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA, 20110, USA
| | - Timothy L Cannon
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA.
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA, 22003, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| |
Collapse
|
2
|
Lei Q, Zhou X, Li Y, Zhao S, Yang N, Xiao Z, Song C, Yu Q, Deng H. Image-Based Phenotypic Profiling Enables Rapid and Accurate Assessment of EGFR-Activating Mutations in Tissues from Lung Cancer Patients. J Am Chem Soc 2025; 147:4552-4570. [PMID: 39745025 DOI: 10.1021/jacs.4c16528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Determining mutations in the kinase domain of the epidermal growth factor receptor (EGFR) is critical for the effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer. Yet, DNA-based sequencing analysis of tumor samples is time-consuming and only provides gene mutation information on EGFR, making it challenging to design effective EGFR-TKI therapeutic strategies. Here, we present a new image-based method involving the rational design of a quenched probe based on EGFR-TKI to identify mutant proteins, which permits specific and "no-wash" real-time imaging of EGFR in living cells only upon covalent targeting of the EGFR kinase. We also show that the probe enables distinguishing EGFR mutant tumor-bearing mice from wild-type tumor-bearing mice via fluorescence-intensity-based imaging with high signal contrast. More interestingly, the image-based phenotypic approach can be used to predict EGFR mutations in tumors from lung cancer patients with an accuracy of 94%. Notably, when immunohistochemistry analysis is integrated, an improved accuracy of 98% is achieved. These data delineate a drug-based phenotypic imaging approach for in-biopsy visualization and define functional groups of EGFR mutants that can effectively guide EGFR-TKI therapeutic decision-making besides gene mutation analysis.
Collapse
Affiliation(s)
- Qian Lei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Xinglong Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ying Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Shuang Zhao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Na Yang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zhaolin Xiao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chao Song
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Quanwei Yu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Hui Deng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Aiba T, Hijiya N, Akagi T, Tsukamoto Y, Hirashita Y, Kinoshita K, Uchida T, Nakada C, Kurogi S, Ueda Y, Shiroshita H, Shiraishi N, Murakami K, Inomata M, Moriyama M. Overexpression of VSNL1 Enhances Cell Proliferation in Colorectal Carcinogenesis. Pathobiology 2023; 91:121-131. [PMID: 37797604 DOI: 10.1159/000533877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION We have previously reported that overexpression of visinin-like protein 1 (VSNL1) is frequently observed in advanced colorectal adenocarcinomas and correlates with poorer prognosis. In this study, we determined the levels of VSNL1 expression in the earlier stages of colorectal tumors including adenomas and adenocarcinomas, and attempted to clarify the functional significance of VSNL1 overexpression in colorectal carcinogenesis. METHODS Levels of VSNL expression in colorectal tumor tissues were analyzed using immunohistochemistry. The effects of VSNL1 downregulation and overexpression on cell proliferation, resistance to apoptosis, and invasiveness were determined using two VSNL1-overexpressing colorectal cancer cell lines, CW-2 and HCT-116 and VSNL1 inducibly expressing SNU-C5, respectively. Gene expression signatures in VSNL1-downregulated CW-2 and HCT-116 were identified using transcriptome and gene set enrichment analyses. RESULTS VSNL1 expression was restricted to only a few crypt cells in the non-tumorous epithelium, whereas it became enhanced in adenomas and adenocarcinomas with the progression of tumorigenesis. Downregulation of VSNL1 in CW-2 and HCT-116 cells suppressed their proliferation through induction of apoptosis. Conversely, overexpression of VSNL1 in SNU-C5 cells enhanced resistance to anoikis. Transcriptome and gene set enrichment analyses revealed that downregulation of VSNL1 altered the expression level of the apoptosis-related gene set in CW-2 and HCT-116 cells. CONCLUSION VSNL1 plays a role in both the development and progression of colorectal tumors by enhancing cell viability.
Collapse
Affiliation(s)
- Takayuki Aiba
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tomonori Akagi
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yuka Hirashita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Keisuke Kinoshita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
- Department of Advanced Medical Sciences, Faculty of Medicine, Oita University, Oita, Japan
| | - Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
- Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shusaku Kurogi
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshitake Ueda
- Department of Comprehensive Surgery for Community Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Hidefumi Shiroshita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Norio Shiraishi
- Department of Comprehensive Surgery for Community Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
4
|
Machado-Rugolo J, Baldavira C, Prieto T, Olivieri E, Fabro A, Rainho C, Castelli E, Ribolla P, Ab'Saber A, Takagaki T, Nagai M, Capelozzi V. Clinical outcome of Brazilian patients with non-small cell lung cancer in early stage harboring rare mutations in epidermal growth factor receptor. Braz J Med Biol Res 2023; 55:e12409. [PMID: 36629526 PMCID: PMC9828871 DOI: 10.1590/1414-431x2022e12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
The common epidermal growth factor receptor (EGFR) mutations, such as the L858R point mutation in exon 21 and the in-frame deletional mutation in exon 19, have been definitively associated with response to EGFR-tyrosine kinase inhibitors (EGFR-TKI). However, the clinical outcome and response to treatment for many other rarer mutations are still unclear. In this study, we report the results of Brazilian patients in stage IB-IIIA non-small cell lung cancer (NSCLC) following complete resection with minimal residual disease and EGFR mutations treated with adjuvant chemotherapy and/or EGFR-TKIs. The frequency of EGFR mutations was investigated in 70 cases of early stage NSCLC. Mutations in exons 18 and 20, uncommon mutations in exons 19 and 21, as well as in exons 3, 7, 14, 16, 22, 27, and 28, and/or the presence of different mutations in a single tumor (complex mutations) are considered rare. EGFR mutations were detected in 23 tumors (32.9%). Fourteen cases carried rare mutations and were treated with platinum-based chemotherapy and two cases were treated with erlotinib. The clinical outcome is described case by case with references to the literature. Notably, we found two rare EGFR mutations and one of them with an unknown response to chemotherapy and/or EGFR-TKIs. We have provided complementary information concerning the clinical outcome and treatment of patients with early stage NSCLC for several rare EGFR mutations not previously or only rarely reported. Description of cases harboring rare mutations can support the decision-making process in this subset of patients.
Collapse
Affiliation(s)
- J. Machado-Rugolo
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,Centro de Avaliação de Tecnologias em Saúde, Hospital das Clínicas de Botucatu, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - C.M. Baldavira
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T.G. Prieto
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.H.R. Olivieri
- Centro Internacional de Pesquisa/CIPE, AC Camargo Cancer Center, São Paulo, SP, Brasil
| | - A.T. Fabro
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,Departamento de Patologia e Medicina Legal, Laboratório de Medicina Respiratória, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - C.A. Rainho
- Instituto de Biociências, Departamento de Ciências Químicas e Biológicas, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - E.C. Castelli
- Laboratório de Genética Molecular e Bioinformática, Unidade de Pesquisa Experimental, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil,Departamento de Patologia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - P.E.M. Ribolla
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, SP, Brasil,Instituto de Biociências, Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - A.M. Ab'Saber
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T. Takagaki
- Divisão de Pneumologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.A. Nagai
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,Laboratório de Genética Molecular, Centro de Pesquisa Translacional em Oncologia, Instituto do Câncer de São Paulo, São Paulo, SP, Brasil
| | - V.L. Capelozzi
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Borlak J, Länger F, Chatterji B. Serum proteome mapping of EGF transgenic mice reveal mechanistic biomarkers of lung cancer precursor lesions with clinical significance for human adenocarcinomas. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3122-3144. [PMID: 29960043 DOI: 10.1016/j.bbadis.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Atypical adenomatous hyperplasia (AAH) of the lung is a pre-invasive lesion (PL) with high risk of progression to lung cancer (LC). However, the pathways involved are uncertain. We searched for novel mechanistic biomarkers of AAH in an EGF transgenic disease model of lung cancer. Disease regulated proteins were validated by Western immunoblotting and immunohistochemistry (IHC) of control and morphologically altered respiratory epithelium. Translational work involved clinical resection material. Collectively, 68 unique serum proteins were identified by 2DE-MALDI-TOF mass spectrometry and 13 reached statistical significance (p < 0.05). EGF, amphiregulin and the EGFR endosomal sorting protein VPS28 were induced up to 5-fold while IHC confirmed strong induction of these proteins. Furthermore, ApoA1, α-2-macroglobulin, and vitamin-D binding protein were nearly 6- and 2-fold upregulated in AAH; however, ApoA1 was oppositely regulated in LC to evidence disease stage dependent regulation of this tumour suppressor. Conversely, plasminogen and transthyretin were highly significantly repressed by 3- and 20-fold. IHC confirmed induced ApoA1, Fetuin-B and transthyretin expression to influence calcification, inflammation and tumour-infiltrating macrophages. Moreover, serum ApoA4, ApoH and ApoM were 2-, 2- and 6-fold repressed; however tissue ApoM and sphingosine-1-phosphate receptor expression was markedly induced to suggest a critical role of sphingosine-1-phosphate signalling in PL and malignant transformation. Finally, a comparison of three different LC models revealed common and unique serum biomarkers mechanistically linked to EGFR, cMyc and cRaf signalling. Their validation by IHC on clinical resection material established relevance for distinct human lung pathologies. In conclusion, we identified mechanistic biomarker candidates recommended for in-depth clinical evaluation.
Collapse
Affiliation(s)
- Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Florian Länger
- Hannover Medical School, Institute of Pathology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bijon Chatterji
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Hijiya N, Shibata T, Daa T, Hamanaka R, Uchida T, Matsuura K, Tsukamoto Y, Nakada C, Iha H, Inomata M, Moriyama M. Overexpression of cannabinoid receptor 1 in esophageal squamous cell carcinoma is correlated with metastasis to lymph nodes and distant organs, and poor prognosis. Pathol Int 2016; 67:83-90. [PMID: 27976824 DOI: 10.1111/pin.12495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/30/2016] [Indexed: 01/11/2023]
Abstract
In patients with esophageal squamous cell carcinoma (ESCC), the status of metastasis to lymph nodes is strongly associated with prognosis. Consequently, development of a biomarker to detect the presence of metastasis would be clinically valuable. In this study, we found that overexpression of cannabinoid receptor 1 (CB1R) was applicable as a marker for prediction of metastasis in ESCC. CB1R overexpression was detected immunohistochemically in 54 of 88 cases (61.4%). The intensity of CB1R expression was uniform in both intraepithelial and invasive regions in each case, and was significantly correlated with the status of metastasis to lymph nodes (P = 0.046) and distant organs (P = 0.047). Furthermore, multivariate analysis revealed that CB1R overexpression was independently associated with poor prognosis (P = 0.019). Biological analysis of CB1R overexpression using ESCC cell lines revealed that CB1R activation appeared to promote cell proliferation and invasion. On the basis of these findings, we propose that evaluation of CB1R expression status in biopsy specimens of ESCC using immunohistochemistry might be clinically useful for prediction of metastasis to lymph nodes and distant organs.
Collapse
Affiliation(s)
- Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| | - Tomotaka Shibata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| | - Ryoji Hamanaka
- Department of Health Sciences, Oita University of Nursing and Health Sciences, 2944-9, Megusuno, Oita-city, Oita, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| | - Keiko Matsuura
- Department of Biology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| | - Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| | - Hidekatsu Iha
- Department of Microbioloby, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, Japan
| |
Collapse
|
7
|
Pancewicz‐Wojtkiewicz J. Epidermal growth factor receptor and notch signaling in non-small-cell lung cancer. Cancer Med 2016; 5:3572-3578. [PMID: 27770511 PMCID: PMC5224843 DOI: 10.1002/cam4.944] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the most common reason of cancer deaths and about 85% of these are non-small-cell lung cancer. Currently, lung cancer therapy is mainly based on the tumor node metastasis (TNM) disease staging and tumor histological classification. Despite therapeutic innovations, the prognosis for lung cancer patients has not significantly changed in the last years. Therefore, a proper understanding of cell signaling pathways involved in cancer pathogenesis seems to be essential for improvement in cancer therapy field. The knowledge of crosstalk between epidermal growth factor receptor (EGFR) and Notch pathway can lead to enhanced screening for the expression of these genes allowing patients to optimize treatment options and predict potential treatment resistance. This review focuses on recent advances related to the mechanisms of EGFR and Notch signaling in non-small-cell lung cancer and the effectiveness of current Notch- and EGFR-targeted therapies.
Collapse
|
8
|
Wu JY, Shih JY. Effectiveness of tyrosine kinase inhibitors on uncommon E709X epidermal growth factor receptor mutations in non-small-cell lung cancer. Onco Targets Ther 2016; 9:6137-6145. [PMID: 27785061 PMCID: PMC5067004 DOI: 10.2147/ott.s118071] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clinical features of epidermal growth factor receptor (EGFR) mutations: L858R, deletions in exon 19, T790M, insertions in exon 20, G719X, and L861X in non-small-cell lung cancer (NSCLC) are well-known. The clinical significance of other uncommon EGFR mutations, such as E709X, is not well understood. This study aimed to improve the understanding of E709X, and the clinical response to tyrosine kinase inhibitors (TKIs) of NSCLC patients with such an uncommon mutation. METHODS Specimens from 3,146 patients were tested for EGFR mutations. We surveyed the clinical data and the effectiveness of TKI treatment in NSCLC patients with EGFR mutations E709X. RESULTS Of the 3,146 patients, 1,689 (53.7%) had EGFR mutations. This included 726 patients with deletions in exon 19, 733 patients with L858R, and 230 (13.6%) patients with other EGFR mutations. In the 230 patients who had mutations other than single deletion in exon 19 or single L858R in exon 21, 25 (1.5%) patients had the uncommon E709X mutations. Twenty patients had complex E709X mutations and five had single E709X mutation: delE709-T710insD. Of these 25 patients, 18 received either gefitinib or erlotinib treatment. The response rate of TKIs treatment was 50.0%, and the median progression-free survival was 6.2 months. All 5 patients who had delE709-T710insD were non-responders to TKI treatments. CONCLUSION E709X EGFR mutations constituted a small part of the whole group of EGFR mutations. Most patients had complex mutations. The mutation delE709-T710insD was a single mutation and was not associated with good response to TKI treatment.
Collapse
Affiliation(s)
- Jenn-Yu Wu
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Cytoplasmic EGFR Staining and Gene Amplification in Glottic Cancer. Appl Immunohistochem Mol Morphol 2014; 22:674-80. [DOI: 10.1097/pai.0000000000000014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
EGFR exon-level biomarkers of the response to bevacizumab/erlotinib in non-small cell lung cancer. PLoS One 2013; 8:e72966. [PMID: 24039832 PMCID: PMC3769372 DOI: 10.1371/journal.pone.0072966] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/16/2013] [Indexed: 02/02/2023] Open
Abstract
Activating epidermal growth factor receptor (EGFR) mutations are recognized biomarkers for patients with metastatic non-small cell lung cancer (NSCLC) treated with EGFR tyrosine kinase inhibitors (TKIs). EGFR TKIs can also have activity against NSCLC without EGFR mutations, requiring the identification of additional relevant biomarkers. Previous studies on tumor EGFR protein levels and EGFR gene copy number revealed inconsistent results. The aim of the study was to identify novel biomarkers of the response to TKIs in NSCLC by investigating whole genome expression at the exon-level. We used exon arrays and clinical samples from a previous trial (SAKK19/05) to investigate the expression variations at the exon-level of 3 genes potentially playing a key role in modulating treatment response: EGFR, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and vascular endothelial growth factor (VEGFA). We identified the expression of EGFR exon 18 as a new predictive marker for patients with untreated metastatic NSCLC treated with bevacizumab and erlotinib in the first line setting. The overexpression of EGFR exon 18 in tumor was significantly associated with tumor shrinkage, independently of EGFR mutation status. A similar significant association could be found in blood samples. In conclusion, exonic EGFR expression particularly in exon 18 was found to be a relevant predictive biomarker for response to bevacizumab and erlotinib. Based on these results, we propose a new model of EGFR testing in tumor and blood.
Collapse
|
11
|
Wang F, Wang S, Wang Z, Duan J, An T, Zhao J, Bai H, Wang J. Phosphorylated EGFR expression may predict outcome of EGFR-TKIs therapy for the advanced NSCLC patients with wild-type EGFR. J Exp Clin Cancer Res 2012; 31:65. [PMID: 22901364 PMCID: PMC3548765 DOI: 10.1186/1756-9966-31-65] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/02/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND EGFR mutation is a strong predictive factor of EGFR-TKIs therapy. However, at least 10% of patients with EGFR wild-type are responsive to TKIs, suggesting that other determinants of outcome besides EGFR mutation might exist. We hypothesized that activation of phosphorylated EGFR could be a potential predictive biomarker to EGFR-TKIs treatment among patients in wild-type EGFR. METHOD Total of 205 stage IIIb and IV NSCLC patients, tissue samples of whom were available for molecular analysis, were enrolled in this study. The phosphorylation of EGFR at tyrosine 1068 (pTyr1068) and 1173 (pTyr1173) were assessed by immunohistochemistry, and EGFR mutations were detected by denaturing high performance liquid chromatograph (DHPLC). RESULTS Among 205 patients assessable for EGFR mutation and phosphorylation analysis, 92 (44.9%) were EGFR mutant and 165 patients (57.6%) had pTyr1173 expression. Superior progression-free survival (PFS) was seen after EGFR-TKIs therapy in patients with pTyr1068 expression compared to pTyr1068 negative ones (median PFS 7.0 months vs. 1.2 months, P < 0.001). Inversely, patients with pTyr1173 had a shorter PFS (4.8 months VS. 7.7 months, P = 0.016). In subgroup of patients with wild-type EGFR, pTyr1068 expression positive ones had a significantly prolonged PFS (4.2 months vs.1.2 months P < 0.001) compared with those without pTyr1068 expression. Sixteen patients with both wild-type EGFR and pTyr1068 who responded to EGFR-TKIs had median PFS of 15.6 months (95%CI: 7.28-23.9). CONCLUSION pTyr1068 may be a predictive biomarker for screening the population for clinical response to EGFR-TKIs treatment; especially for patients with wild-type EGFR.
Collapse
Affiliation(s)
- Fen Wang
- Department of Thoracic Medical Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100036, China
| | - Shuhang Wang
- Department of Thoracic Medical Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100036, China
| | - Zhijie Wang
- Department of Thoracic Medical Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100036, China
| | - Jianchun Duan
- Department of Thoracic Medical Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100036, China
| | - Tongtong An
- Department of Thoracic Medical Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100036, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100036, China
| | - Hua Bai
- Department of Thoracic Medical Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100036, China
| | - Jie Wang
- Department of Thoracic Medical Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100036, China
| |
Collapse
|
12
|
Abstract
The majority of lung adenocarcinoma patients with epidermal growth factor receptor- (EGFR) mutated or EML4-ALK rearrangement-positive tumors are sensitive to tyrosine kinase inhibitors. Both primary and acquired resistance in a significant number of those patients to these therapies remains a major clinical problem. The specific molecular mechanisms associated with tyrosine kinase inhibitor resistance are not fully understood. Clinicopathological observations suggest that molecular alterations involving so-called 'driver mutations' could be used as markers that aid in the selection of patients most likely to benefit from targeted therapies. In this review, we summarize recent developments involving the specific molecular mechanisms and markers that have been associated with primary and acquired resistance to EGFR-targeted therapy in lung adenocarcinomas. Understanding these mechanisms may provide new treatment avenues and improve current treatment algorithms.
Collapse
|
13
|
Activity of Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Patients with Non-small Cell Lung Cancer Harboring Rare Epidermal Growth Factor Receptor Mutations. J Thorac Oncol 2011; 6:1895-901. [DOI: 10.1097/jto.0b013e318227e8c6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Cheng L, Zhang S, Alexander R, Yao Y, MacLennan GT, Pan CX, Huang J, Wang M, Montironi R, Lopez-Beltran A. The landscape of EGFR pathways and personalized management of non-small-cell lung cancer. Future Oncol 2011; 7:519-41. [PMID: 21463141 DOI: 10.2217/fon.11.25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Two classes of anti-EGF receptor (EGFR) agents, monoclonal anti-EGFR antibodies and small-molecule EGFR tyrosine kinase inhibitors, have been used for the treatment of non-small-cell lung cancer (NSCLC). However, only a subset of patients will benefit from EGFR-targeted therapy. The discovery of biomarkers that select the appropriate patients for the therapy and predict the responses to the therapy is urgently needed. Molecular genetic analyses provide new insights into EGFR pathway alterations and demonstrate promise for predicting the clinical outcome of patients with NSCLC. In this article, we summarize the latest available knowledge on the clinical impact of EGFR mutations, gene copy number, EGFR overexpression, phosphorylation expression and the alteration of the EGFR pathway downstream factors in predicting the response to EGFR-targeted therapy in NSCLC patients. The role of KRAS and BRAF mutations and ALK rearrangement in lung cancer-targeted therapy, are also reviewed.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, 350 West 11th Street, Clarian Pathology Laboratory Room 4010, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
DeFazio-Eli L, Strommen K, Dao-Pick T, Parry G, Goodman L, Winslow J. Quantitative assays for the measurement of HER1-HER2 heterodimerization and phosphorylation in cell lines and breast tumors: applications for diagnostics and targeted drug mechanism of action. Breast Cancer Res 2011; 13:R44. [PMID: 21496232 PMCID: PMC3219207 DOI: 10.1186/bcr2866] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/17/2011] [Accepted: 04/15/2011] [Indexed: 01/10/2023] Open
Abstract
Introduction Ligand-bound and phosphorylated ErbB/HER heterodimers are potent signaling forms of this receptor family, and quantitative measurements of these active receptors may be predictive of patient response to targeted therapies. Using VeraTag™ technology, we developed and characterized quantitative assays measuring epidermal growth factor (EGF)-dependent increases in activated HER receptors in tumor cell line lysates and formalin-fixed, paraffin-embedded (FFPE) tumor sections. We demonstrated the ability of the assays to quantitatively measure changes in activated HER1 and HER2 receptor levels in cell lines following treatment with 2C4, erlotinib, and lapatinib. We utilized these assays to determine the prevalence and distribution of activated HER1, HER2, and HER1-HER2 heterodimers in 43 HER2-positive breast tumors. Methods Assays for activated HER1 and HER2 receptors in FFPE and cell lysate formats were developed using VeraTag™ technology, which requires the proximity of an antibody pair for light-dependent release of a fluorescently labeled tag, followed by capillary electrophoresis-based quantitation. Results Ligand-dependent and independent HER1-HER2 heterodimer levels measured by lysate and FFPE VeraTag™ assays trended with HER1 and HER2 expression levels in tumor cell lines, which was confirmed by co-immunoprecipitation. The formation of EGF-dependent HER1-HER2 heterodimers were inhibited by the HER2-targeted monoclonal antibody 2C4 and stabilized by the HER1 tyrosine kinase inhibitor (TKI) erlotinib. EGF-dependent HER1 and HER2 phosphorylation was inhibited by lapatinib and erlotinib. Further, we observed that dominant receptor signaling patterns may switch between HER1-HER1 and HER1-HER2, depending on drug mechanism of action and relative levels of HER receptors. In FFPE breast tumors that expressed both HER1 and HER2, HER1-HER2 heterodimers were detected in 25 to 50% of tumors, depending on detection method. The levels of activated phospho-HER1-HER2 heterodimers correlated with HER1 or HER2 levels in an analysis of 43 HER2-positive breast tumors. Conclusions VeraTag™ lysate assays can be used as a tool for understanding the mechanism of action of targeted HER-family inhibitors in the preclinical setting, while VeraTag™ FFPE assays of activated HER receptors combined with total HER2 measurements (HERmark®) in tumor samples may provide a more accurate prediction of clinical response to both HER1 and HER2 targeted therapies.
Collapse
Affiliation(s)
- Lisa DeFazio-Eli
- Department of Oncology Research and Development, Monogram Biosciences, Inc., 345 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| | | | | | | | | | | |
Collapse
|
16
|
McMillen E, Ye F, Li G, Wu Y, Yin G, Liu W. Epidermal growth factor receptor (EGFR) mutation and p-EGFR expression in resected non-small cell lung cancer. Exp Lung Res 2011; 36:531-7. [PMID: 20939760 DOI: 10.3109/01902148.2010.482176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lung cancer, specifically non-small cell lung cancer (NSCLC), is a leading cause of mortality worldwide. In China, a dramatic increase in the incidence of NSCLC is expected in the next 20 years (Molina et al. Mayo Clin Proc. 2008;83:584–594). Mutated epidermal growth factor receptor (EGFR) status is a known predictor of response to tyrosine kinase inhibitors (TKIs), and immunohistochemistry may be a less costly way of predicting presence of mutation. In this study, mutation analysis of EGFR in 218 cases of NSCLC was performed. One hundred thirty tissue samples were examined via immunohistochemistry of p-EGFR (Y1045 and Y1068) and correlated with mutation status. Mutations were seen in 29% of patients, and were correlated with female sex, nonsmoking history, and adenocarcinoma histology. Phosphorylation at Y1045 was noted in 52% of cases, but in 71% of cases with EGFR mutation (P = .003). Phosphorylation of Y1068 was seen in 55% of cases but in 73% of cases with EGFR mutation (P = .006). This study correlating EGFR mutation with p-EGFR expression in resected NSCLC is one of the largest to date, although TKI response could not be assessed. The data show that, among Chinese patients, detection of p-1045 and p-1068 expression with immunohistochemistry predicts EGFR mutations. Immunohistochemical analysis of p-EGFR may be useful to predict responses to TKI therapy, although future studies are necessary.
Collapse
Affiliation(s)
- Elizabeth McMillen
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
17
|
The usefulness of mutation-specific antibodies in detecting epidermal growth factor receptor mutations and in predicting response to tyrosine kinase inhibitor therapy in lung adenocarcinoma. Lung Cancer 2010; 73:45-50. [PMID: 21129809 DOI: 10.1016/j.lungcan.2010.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/04/2010] [Accepted: 11/04/2010] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Among the mutations of epidermal growth factor receptor (EGFR), deletions in exon 19 (DEL), and point mutations in exon 21 (L858R) predict the response to EGFR-tyrosine kinase inhibitors (TKIs) in primary lung adenocarcinoma. The ability to detecting such mutations using immunohistochemistry (IHC) would be advantageous. METHODS The molecular-based and IHC-based EGFR mutations were analyzed in 577 lung adenocarcinomas using high resolution melting analysis (HRMA) and 2 mutation-specific antibodies, respectively. RESULTS In the molecular-based analyses, DEL was detected in 135 cases (23%), and L858R was detected in 172 cases (30%). In the IHC-based analyses, a positive reaction was detected in 59 cases (10%) for the DEL-specific antibody, and in 139 cases (24%) for the L858R-specific antibody. With the molecular-based results set as the gold standard, the sensitivity and specificity of the DEL-specific antibody were 42.2% and 99.5%, respectively, while the sensitivity and specificity of the L858R-specific antibody were 75.6% and 97.8%, respectively. The antibody specificities improved when the threshold for the mutation-positive reactions was set as >50% of immunopositive tumor cells. The significant predictors of the clinical response to EGFR-TKI were molecular-based EGFR mutations (p<0.001) and IHC-based EGFR mutations (p=0.001). However, a multivariate analysis revealed that only molecular-based EGFR mutations were significantly correlated with the clinical response (p<0.001). CONCLUSIONS Mutation-specific antibodies demonstrated extremely high specificities, but their sensitivities were not higher than those of molecular-based analyses. However, IHC should be performed before a molecular-based analysis, because it is more cost-effective and can effectively select candidates for EGFR-TKI therapy.
Collapse
|
18
|
Gusterson BA, Hunter KD. Should we be surprised at the paucity of response to EGFR inhibitors? Lancet Oncol 2009; 10:522-7. [PMID: 19410197 DOI: 10.1016/s1470-2045(09)70034-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Data suggest that neither our current understanding of the function and signalling of epidermal growth factor receptor (EGFR), nor measurements of receptor expression are reliably predictive of therapeutic responses to EGFR inhibitors. The time has now come to consider whether such poor correlation between receptor expression and clinical response is caused by poor assays or by more fundamental issues relating to the in-vivo function of EGFR. Revisiting some of the early findings of the biology of EGFR function and understanding the limitations of immunohistochemistry as a quantitative technique might provide some clues. However, we still have a lot to learn about this receptor, its many ligands, and its binding partners in normal physiology and disease.
Collapse
Affiliation(s)
- Barry A Gusterson
- Department of Pathology, Division of Cancer Sciences and Molecular Pathology, Faculty of Medicine, University of Glasgow, Western Infirmary, Glasgow, UK.
| | | |
Collapse
|
19
|
Wong R, Cunningham D. Using predictive biomarkers to select patients with advanced colorectal cancer for treatment with epidermal growth factor receptor antibodies. J Clin Oncol 2008; 26:5668-70. [PMID: 19001346 DOI: 10.1200/jco.2008.19.5024] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Harsha HC, Jimeno A, Molina H, Mihalas AB, Goggins MG, Hruban RH, Schulick RD, Kamath U, Maitra A, Hidalgo M, Pandey A. Activated epidermal growth factor receptor as a novel target in pancreatic cancer therapy. J Proteome Res 2008; 7:4651-8. [PMID: 18821783 DOI: 10.1021/pr800139r] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer is one of the most fatal among all solid malignancies. Targeted therapeutic approaches have the potential to transform cancer therapy as exemplified by the success of several tyrosine kinase inhibitors. Prompted by this, comprehensive profiling of tyrosine kinases and their substrates was carried out using a panel of low passage pancreatic cancer cell lines. One of the pancreatic cancer cell lines, P196, which showed dramatic upregulation of tyrosine kinase activity as compared to non-neoplastic cells, was systematically studied using a quantitative proteomic approach called stable isotope labeling with amino acids in cell culture (SILAC). A careful analysis of activated tyrosine kinase pathways revealed aberrant activation of epidermal growth factor receptor pathway in this cell line. Mouse xenograft based studies using EGFR inhibitor erlotinib confirmed EGFR pathway to be responsible for proliferation in these tumors. By a systematic study across low passage pancreatic cancer cell lines and mice carrying pancreatic cancer xenografts, we have demonstrated activated epidermal growth factor receptor as an attractive candidate for targeted therapy in a subset of pancreatic cancers. Further, we propose immunohistochemical labeling of activated EGFR (pEGFR (1068)) as an efficient screening tool to select patients who are more likely to respond to EGFR inhibitors.
Collapse
Affiliation(s)
- H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van Krieken JHJM, Jung A, Kirchner T, Carneiro F, Seruca R, Bosman FT, Quirke P, Fléjou JF, Plato Hansen T, de Hertogh G, Jares P, Langner C, Hoefler G, Ligtenberg M, Tiniakos D, Tejpar S, Bevilacqua G, Ensari A. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch 2008; 453:417-31. [PMID: 18802721 DOI: 10.1007/s00428-008-0665-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 12/21/2022]
Abstract
Novel therapeutic agents targeting the epidermal growth factor receptor (EGFR) have improved outcomes for patients with colorectal carcinoma. However, these therapies are effective only in a subset of patients. Activating mutations in the KRAS gene are found in 30-40% of colorectal tumors and are associated with poor response to anti-EGFR therapies. Thus, KRAS mutation status can predict which patient may or may not benefit from anti-EGFR therapy. Although many diagnostic tools have been developed for KRAS mutation analysis, validated methods and standardized testing procedures are lacking. This poses a challenge for the optimal use of anti-EGFR therapies in the management of colorectal carcinoma. Here we review the molecular basis of EGFR-targeted therapies and the resistance to treatment conferred by KRAS mutations. We also present guideline recommendations and a proposal for a European quality assurance program to help ensure accuracy and proficiency in KRAS mutation testing across the European Union.
Collapse
Affiliation(s)
- J H J M van Krieken
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, 6500, HB, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|