1
|
Hongo H, Kosaka T, Suzuki Y, Oya M. Discovery of a new candidate drug to overcome cabazitaxel-resistant gene signature in castration-resistant prostate cancer by in silico screening. Prostate Cancer Prostatic Dis 2023; 26:59-66. [PMID: 34593983 PMCID: PMC10023558 DOI: 10.1038/s41391-021-00426-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The taxane cabazitaxel (CBZ) is a promising treatment for docetaxel-resistant castration-resistant prostate cancer (CRPC). However, the survival benefit with CBZ for patients with CRPC is limited. This study used screening tests for candidate drugs targeting CBZ-resistant-related gene expression and identified pimozide as a potential candidate for overcoming CBZ resistance in CRPC. METHODS We established CBZ-resistant cell lines, DU145CR and PC3CR by incubating DU145 cells and PC3 cells with gradually increasing concentrations of CBZ. We performed in silico drug screening for candidate drugs that could reprogram the gene expression signature of a CBZ-resistant prostate cancer cells using a Connectivity Map. The in vivo effect of the drug combination was tested in xenograft mice models. RESULTS We identified pimozide as a promising candidate drug for CBZ-resistant CRPC. Pimozide had a significant antitumor effect on DU145CR cells. Moreover, combination treatment with pimozide and CBZ had a synergic effect for DU145CR cells in vitro and in vivo. Microarray analysis identified AURKB and KIF20A as potential targets of pimozide in CBZ-resistant CRPC. DU145CR had significantly higher AURKB and KIF20A expression compared with a non-CBZ-resistant cell line. Inhibition of AURKB and KIF20A had an antitumor effect in DU145CR xenograft tumors. Higher expression of AURKB and KIF20A was a poor prognostic factor of TGCA prostate cancer cohort. CBZ-resistant prostate cancer tissues in our institution had higher AURKB and KIF20A expression. CONCLUSIONS Pimozide appears to be a promising drug to overcome CBZ resistance in CRPC by targeting AURKB and KIF20A.
Collapse
Grants
- the Ministry of Education, Culture, Sports, Science and Technology of Japan; Grant No. #17K11158 the Takeda Science Foundation Japan Research Foundation for Clinical Pharmacology (JRFCP)
- the Ministry of Education, Culture, Sports, Science and Technology of Japan; Grant No. #21K09436, #20K22822, #17K16813, #15K20109 Keio University School of Medicine; Grant No. 02-002-0014, 02-002-0020 Sakaguchi Mitsunada Memorial Fund
Collapse
Affiliation(s)
- Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoko Suzuki
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
2
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
3
|
Kim CH, Kim DE, Kim DH, Min GH, Park JW, Kim YB, Sung CK, Yim H. Mitotic protein kinase-driven crosstalk of machineries for mitosis and metastasis. Exp Mol Med 2022; 54:414-425. [PMID: 35379935 PMCID: PMC9076678 DOI: 10.1038/s12276-022-00750-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer. Improving understanding of the mechanisms linking cell division and cancer spread (metastasis) could provide novel strategies for treatment. A group of enzymes involved in cell division (mitosis) are also thought to play critical roles in the spread of cancers. Hyungshin Yim at Hanyang University in Ansan, South Korea, and co-workers in Korea and the USA reviewed the roles of several mitotic enzymes that are connected with metastasis as well as tumorigenesis. They discussed how these enzymes modify cytoskeletal proteins and other substrates during cancer progression. Some regulatory control of cell cytoskeletal structures is required for cancer cells to metastasize. Recent research has uncovered crosstalk between mitotic enzymes and metastatic cytoskeletal molecules in various cancers. Targeting mitotic enzymes and the ways they influence cytoskeletal mechanisms could provide valuable therapeutic strategies for suppressing metastasis.
Collapse
Affiliation(s)
- Chang-Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Dae-Hoon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Ga-Hong Min
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Jung-Won Park
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Chang K Sung
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
| |
Collapse
|
4
|
Pérez-Fidalgo JA, Gambardella V, Pineda B, Burgues O, Piñero O, Cervantes A. Aurora kinases in ovarian cancer. ESMO Open 2021; 5:e000718. [PMID: 33087400 PMCID: PMC7580081 DOI: 10.1136/esmoopen-2020-000718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 01/18/2023] Open
Abstract
Aurora kinases (AURK) are key regulators of the mitotic spindle formation. AURK is frequently overexpressed in ovarian cancer and this overexpression has been frequently associated with prognosis in these tumours. Interestingly, AURK have been shown to interact with DNA repair mechanisms and other cell cycle regulators. These functions have brought light to Aurora family as a potential target for anticancer therapy. In the last years, two clinical trials with different AURK inhibitors have shown activity in epithelial and clear-cell ovarian cancer. Although there is a lack of predictive factors of AURK inhibition activity, recent trials have identified some candidates. This review will focus in the functions of the AURK family, its role as prognostic factor in epithelial ovarian cancer and potential clinical implications.
Collapse
Affiliation(s)
- J Alejandro Pérez-Fidalgo
- Department of Medical Oncology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute, INCLIVA, CIBERONC and University of Valencia, Valencia, Spain.
| | - Valentina Gambardella
- Department of Medical Oncology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute, INCLIVA, CIBERONC and University of Valencia, Valencia, Spain
| | - Begoña Pineda
- Department of Physiology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute INCLIVA, CIBERONC and University of Valencia, Valencia, Spain
| | - Octavio Burgues
- Department of Pathology, Hospital Clinico Universitario Valencai, Valencia, Spain
| | - Oscar Piñero
- Department of Gynaecology, Hospital Clinico Universitario of Valencia, Valencia, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute INCLIVA, CIBERONC and University of Valencia, Valencia, Spain
| |
Collapse
|
5
|
Bradbury M, Borràs E, Pérez-Benavente A, Gil-Moreno A, Santamaria A, Sabidó E. Proteomic Studies on the Management of High-Grade Serous Ovarian Cancer Patients: A Mini-Review. Cancers (Basel) 2021; 13:cancers13092067. [PMID: 33922979 PMCID: PMC8123279 DOI: 10.3390/cancers13092067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC) remains the most common and deadly subtype of ovarian cancer. It is characterized by its late diagnosis and frequent relapse despite standardized treatment with cytoreductive surgery and platinum-based chemotherapy. The past decade has seen significant advances in the clinical management and molecular understanding of HGSC following the publication of the Cancer Genome Atlas (TCGA) researchers and the introduction of targeted therapies with anti-angiogenic drugs and poly(ADP-ribose) polymerase inhibitors in specific subgroups of patients. We provide a comprehensive review of HGSC, focusing on the most important molecular advances aimed at providing a better understanding of the disease and its response to treatment. We emphasize the role that proteomic technologies are now playing in these two aspects of the disease, through the identification of proteins and their post-translational modifications in ovarian cancer tumors. Finally, we highlight how the integration of proteomics with genomics, exemplified by the work performed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), can guide the development of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Melissa Bradbury
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain; (M.B.); (E.B.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Biomedical Research Group in Gynecology, Vall d’Hebron Institut de Recerca, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.P.-B.); (A.G.-M.)
- Gynecologic Oncology Unit, Department of Gynecology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Eva Borràs
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain; (M.B.); (E.B.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Assumpció Pérez-Benavente
- Biomedical Research Group in Gynecology, Vall d’Hebron Institut de Recerca, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.P.-B.); (A.G.-M.)
- Gynecologic Oncology Unit, Department of Gynecology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall d’Hebron Institut de Recerca, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.P.-B.); (A.G.-M.)
- Gynecologic Oncology Unit, Department of Gynecology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Anna Santamaria
- Biomedical Research Group in Gynecology, Vall d’Hebron Institut de Recerca, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.P.-B.); (A.G.-M.)
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall Hebron Institut de Recerca, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Correspondence: (A.S.); (E.S.)
| | - Eduard Sabidó
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain; (M.B.); (E.B.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Correspondence: (A.S.); (E.S.)
| |
Collapse
|
6
|
Song H, Zhou Y, Peng A, Liu J, Wu X, Chen W, Liu Z. Aurora-B Promotes Osteosarcoma Cell Growth and Metastasis Through Activation of the NPM1/ERK/NF-κβ/MMPs Axis. Cancer Manag Res 2020; 12:4817-4827. [PMID: 32606971 PMCID: PMC7320907 DOI: 10.2147/cmar.s252847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Osteosarcoma (OS) is the most common primary malignant tumor of the bone in young adolescents and children. We explored the underlying mechanism of Aurora-B in promoting OS cell proliferation and metastasis. Patient and Methods Bioinformatics was employed to predict the substrate of Aurora-B. IHC and Western blot were used to confirm the correlation between Aurora-B and NPM1. ERK/NF-κβ pathway-related proteins were detected by Western blot and immunofluorescence (IF). CCK8, wound healing, transwell, and Tunel assays were used to identify the cell proliferation, migration and apoptosis potential. Spontaneous metastasis xenografts were established to confirm the role of Aurora-B and NPM1. Results Aurora-B promotes NPM1 phosphorylation on Ser125. The phosphorylation of NPM1Ser125 induced by Aurora-B activates the ERK/NF-κβ signaling. Further study revealed that Aurora-B promotes proliferation, migration and inhibits apoptosis via phosphorylating NPM1 in vitro and in vivo. Conclusion Aurora-B promotes OS malignancy via phosphorylating NPM1Ser125 and activating ERK/NF-κβ signaling.
Collapse
Affiliation(s)
- Honghai Song
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Institute of Spinal and Spinal Cord Diseases, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yang Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Aifen Peng
- College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, People's Republic of China
| | - Jiaming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Institute of Spinal and Spinal Cord Diseases, Nanchang University, Nanchang 330031, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Xin Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wenzhao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Zhili Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Institute of Spinal and Spinal Cord Diseases, Nanchang University, Nanchang 330031, People's Republic of China.,Division of Science and Technology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
7
|
Bu H, Li Y, Jin C, Yu H, Wang X, Chen J, Wang Y, Ma Y, Zhang Y, Kong B. Overexpression of PRC1 indicates a poor prognosis in ovarian cancer. Int J Oncol 2020; 56:685-696. [PMID: 31922238 PMCID: PMC7010224 DOI: 10.3892/ijo.2020.4959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Protein regulator of cytokinesis-1 (PRC1) is a microtubule-associated factor involved in cytokinesis. Recent studies have indicated that PRC1 overexpression is involved in tumorigenesis in multiple types of human cancer. However, the expression, biological functions and the prognostic significance of PRC1 in ovarian cancer have not yet been clarified. In this study, it was confirmed that the PRC1 mRNA and protein expression levels were upregulated in high-grade serous ovarian carcinoma (HGSOC) tissues, particularly in patients without breast cancer susceptibility gene (BRCA) pathogenic mutations. PRC1 overexpression contributed to drug resistance, tumor recurrence and a poor prognosis. The findings also indicated that PRC1 knockdown decreased the proliferation, metastasis and multidrug resistance of ovarian cancer cells in vitro. It was also demonstrated that forkhead box protein M1 (FOXM1) regulated the mRNA and protein expression of PRC1. Dual-luciferase reporter assay and rescue assay confirmed that PRC1 was a direct crucial downstream target of FOXM1. On the whole, the findings of this study confirmed that PRC1 was a major prognostic factor of HGSOC and a promising therapeutic biomarker for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Hualei Bu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yingwei Li
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengjuan Jin
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Hongfeng Yu
- Department of Obstetrics and Gynecology, Zhenjiang First People's Hospital, Zhenjiang, Jiangsu 212000, P.R. China
| | - Xiangxiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingying Chen
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yana Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
8
|
Let-7b attenuates cisplatin resistance and tumor growth in gastric cancer by targeting AURKB. Cancer Gene Ther 2018; 25:300-308. [PMID: 30237418 DOI: 10.1038/s41417-018-0048-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/12/2018] [Accepted: 08/25/2018] [Indexed: 12/14/2022]
Abstract
Platinum-based chemotherapy is currently a standard treatment strategy for patients with gastric cancer. Eventhough it has been widely shown that microRNAs (miRNAs) are involved in tumor development, whether miRNAs have a role in chemosensitivity of gastric cancer cells to platinum-based treatment remain largely undefined. In this study, a cisplatin-resistant gastric cancer cell line (SGC7901/DDP) with stable enhanced expression or knockdown of let-7b was generated. MTT and TUNEL assays were carried out to assess whether miR-let-7 is crucial for cell viability and apoptosis, respectively. In vitro luciferase reporter assay was performed to explore target genes of let-7b. Further, a subcutaneously transplanted tumor model in BALB/c nude mice was used to determine the impacts of let-7b on tumor growth in vivo. We observed that the let-7b-expression level of SGC7901/DDP cells was significantly lower than for its parental SGC7901 cells. Transfection of let-7b mimics was found to increase the cytotoxicity of DDP to SGC7901/DDP cells by inducing apoptosis. However, reversed cytotoxicity of DDP was observed in SGC7901/DDP cells with knockdown of let-7b. Luciferase reporter assay indicated that let-7b targeted AURKB in SGC7901/DDP cells. Knockdown of AURKB imitated the effect of let-7b overexpression on the sensitivity of SGC7901/DDP cells to DDP. Further investigation demonstrated that the SGC7901/DDP primary tumor growth was significantly reduced by let-7b mimic transfection. These findings indicate that overexpression of let-7b might provide a potential strategic approach for attenuating DDP resistance in SGC7901/DDP human gastric cancer cells.
Collapse
|
9
|
Davidson B, Bjørnerem M, Holth A, Hellesylt E, Hetland Falkenthal TE, Flørenes VA. Expression, activation and clinical relevance of CHK1 and CHK2 in metastatic high-grade serous carcinoma. Gynecol Oncol 2018; 150:136-142. [DOI: 10.1016/j.ygyno.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 01/01/2023]
|
10
|
Davidson B, Holth A, Wang Z, Hellsylt E, Tropé CG, Hetland Falkenthal TE, Holm R. Expression of 14-3-3 sigma and eta proteins is unrelated to survival in metastatic high-grade serous carcinoma. APMIS 2018; 126:309-313. [PMID: 29464778 DOI: 10.1111/apm.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
The objective of this study was to analyze the expression and clinical role of 14-3-3 family proteins in high-grade serous carcinoma (HGSC). Protein expression of 14-3-3 sigma (14-3-3σ) and 14-3-3 eta (14-3-3η) by immunohistochemistry was studied in 298 HGSC specimens (249 peritoneal, 49 pleural) and was analyzed for association with clinicopathologic parameters, chemoresponse and survival. The 14-3-3σ protein was diffusely (>75% of cells) expressed in 100% of carcinomas in analysis of a pilot series and was therefore not further analyzed. The 14-3-3η protein was expressed to a variable extent in 260/298 (87%) effusions. Higher 14-3-3η protein expression was significantly related to higher CA 125 levels at diagnosis (p = 0.004), but was unrelated to other clinicopathologic parameters, chemoresponse or survival. Analysis of the association between 14-3-3η and previously studied proteins regulating mitosis showed positive association with class III β-tubulin expression (p = 0.025). The present study documents frequent expression of 14-3-3σ and 14-3-3η in HGSC effusions, but does not support a role for these proteins as prognostic markers or predictors of chemotherapy response in metastatic HGSC.
Collapse
Affiliation(s)
- Ben Davidson
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Zhihui Wang
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Ellen Hellsylt
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Claes G Tropé
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ruth Holm
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
11
|
Abstract
Ovarian cancer, consisting mainly of ovarian carcinoma, is the most lethal gynecologic malignancy. Improvements in outcome for patients with advanced-stage disease are limited by intrinsic and acquired chemoresistance and by tumor heterogeneity at different anatomic sites and along disease progression. Molecules and cellular pathways mediating chemoresistance appear to be different for the different histological types of ovarian carcinoma, with most recent research focusing on serous and clear cell carcinoma. This review discusses recent data implicating various biomarkers in chemoresistance in this cancer, with focus on studies in which clinical specimens have been central.
Collapse
Affiliation(s)
- Ben Davidson
- a Department of Pathology , Oslo University Hospital, Norwegian Radium Hospital , Oslo , Norway.,b Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|
12
|
Silva JG, Corrales-Medina FF, Maher OM, Tannir N, Huh WW, Rytting ME, Subbiah V. Clinical next generation sequencing of pediatric-type malignancies in adult patients identifies novel somatic aberrations. Oncoscience 2015; 2:187-92. [PMID: 25859559 PMCID: PMC4381709 DOI: 10.18632/oncoscience.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022] Open
Abstract
Pediatric malignancies in adults, in contrast to the same diseases in children are clinically more aggressive, resistant to chemotherapeutics, and carry a higher risk of relapse. Molecular profiling of tumor sample using next generation sequencing (NGS) has recently become clinically available. We report the results of targeted exome sequencing of six adult patients with pediatric-type malignancies : Wilms tumor(n=2), medulloblastoma(n=2), Ewing's sarcoma( n=1) and desmoplastic small round cell tumor (n=1) with a median age of 28.8 years. Detection of druggable somatic aberrations in tumors is feasible. However, identification of actionable target therapies in these rare adult patients with pediatric-type malignancies is challenging. Continuous efforts to establish a rare disease registry are warranted.
Collapse
Affiliation(s)
- Jorge Galvez Silva
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Fernando F Corrales-Medina
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Miami-Miller School of Medicine, Miami, FL
| | - Ossama M Maher
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Nizar Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Winston W Huh
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Michael E Rytting
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Vivek Subbiah
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX ; Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
13
|
He JY, Xi WH, Zhu LB, Long XH, Chen XY, Liu JM, Luo QF, Zhu XP, Liu ZL. Knockdown of Aurora-B alters osteosarcoma cell malignant phenotype via decreasing phosphorylation of VCP and NF-κB signaling. Tumour Biol 2015; 36:3895-902. [PMID: 25874486 DOI: 10.1007/s13277-014-3032-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022] Open
Abstract
The aim of this study is to investigate the effects of inhibiting Aurora-B on osteosarcoma (OS) cell malignant phenotype, phosphorylation of valosin-containing protein (VCP), and the activity of NF-κB signaling in vitro. The expressions of Aurora-B and p-VCP proteins were detected by immunohistochemistry in 24 OS tissues, and the relationship between Aurora-B and p-VCP was investigated. The results showed that there was a positive correlation between Aurora-B and p-VCP proteins. The expression of Aurora-B in human OS cell lines U2-OS and HOS cells was inhibited by specific short hairpin RNA (shRNA) lentivirus (AURKB-shRNA lentivirus, Lv-shAURKB) which targeted Aurora-B. The results showed that the phosphorylation of VCP, the activity of NF-κB signaling pathway and the malignant phenotype of OS cells were all suppressed by knockdown of Aurora-B. It indicated that the inhibition of Aurora-B alters OS cells malignant phenotype by downregulating phosphorylation of VCP and activating of the NF-κB signaling pathway in vitro.
Collapse
Affiliation(s)
- Jian Ying He
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhou LD, Xiong X, Long XH, Liu ZL, Huang SH, Zhang W. RNA interference-mediated knockdown of Aurora-B alters the metastatic behavior of A549 cells via modulation of the phosphoinositide 3-kinase/Akt signaling pathway. Oncol Lett 2014; 8:2063-2068. [PMID: 25295091 PMCID: PMC4186632 DOI: 10.3892/ol.2014.2464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has revealed that an elevated expression level of Aurora-B is associated with metastasis in various types of malignant tumor. However, it is currently unclear whether this molecule is involved in non-small lung cancer (NSCLC) metastasis, and the molecular mechanisms associated with Aurora-B and metastasis remain unknown. In the present study, in order to investigate whether Aurora-B is involved in the development and metastasis of NSCLC, the Aurora-B protein expression in NSCLC tissues was detected by immunohistochemistry and its association with metastasis was analyzed. The results revealed that the expression levels of the Aurora-B protein in tissues obtained from NSCLC patients with lymph node metastasis were significantly higher than those without metastatic disease. Furthermore, the effect of Aurora-B inhibition on A549 cell migration and invasion, as well as the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was evaluated. Aurora-B was inhibited in the A549 cells using short hairpin RNA, and the cell migration and invasion rates were investigated using wound healing and Transwell invasion assays. In addition, the expression of the main proteins in the PI3K/Akt/nuclear factor-κB (NF-κB) signaling pathway, and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. The results demonstrated that cell migration and invasion were decreased as a result of silencing Aurora-B. Furthermore, the activity of the PI3K/Akt/NF-κB signaling pathway and the expression of MMP-2 and -9 protein were suppressed by silencing Aurora-B. The results of the present study indicate that the knockdown of Aurora-B suppresses A549 cell invasion and migration via the inhibition of the PI3K/Akt signaling pathway in vitro and thus, targeting Aurora-B may present a potential treatment strategy for NSCLC.
Collapse
Affiliation(s)
- Long Dian Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi Li Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shan Hu Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Slipicevic A, Holth A, Hellesylt E, Tropé CG, Davidson B, Flørenes VA. Wee1 is a novel independent prognostic marker of poor survival in post-chemotherapy ovarian carcinoma effusions. Gynecol Oncol 2014; 135:118-24. [PMID: 25093290 DOI: 10.1016/j.ygyno.2014.07.102] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Wee1-like kinase (Wee1) is a tyrosine kinase which negatively regulates entry into mitosis at the G2 to M-phase transition and has a role in inhibition of unscheduled DNA replication in S-phase. The present study investigated the clinical role of Wee1 in advanced-stage (FIGO III-IV) ovarian serous carcinoma. METHODS Wee1 protein expression was analyzed in 287 effusions using immunohistochemistry. Expression was analyzed for association with clinicopathologic parameters, including survival. Forty-five effusions were additionally studied using Western blotting. Wee1 was further silenced in SKOV3 and OVCAR8 cells by siRNA knockdown and proliferation was assessed. RESULTS Nuclear expression of Wee1 in tumor cells was observed in 265/287 (92%) and 45/45 (100%) effusions by immunohistochemistry and Western blotting, respectively. Wee1 expression by immunohistochemistry was significantly higher in post-chemotherapy disease recurrence compared to pre-chemotherapy effusions obtained at diagnosis (p=0.002). Wee1 silencing in SKOV3 and OVCAR8 cells reduced proliferation. In univariate survival analysis of the entire cohort, a trend was observed between high (>25% of cells) Wee1 expression and poor overall survival (p=0.083). Survival analysis for 109 patients with post-chemotherapy effusions showed significant association between Wee1 expression and poor overall survival (p=0.004), a finding which retained its independent prognostic role in Cox multivariate analysis (p=0.003). CONCLUSIONS Wee1 is frequently expressed in ovarian serous carcinoma effusions, and its expression is significantly higher following exposure to chemotherapy. The present study is the first to report that Wee1 is an independent prognostic marker in serous ovarian carcinoma.
Collapse
Affiliation(s)
- Ana Slipicevic
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
| | - Ellen Hellesylt
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
| | - Claes G Tropé
- Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316 Oslo, Norway
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316 Oslo, Norway.
| | - Vivi Ann Flørenes
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
| |
Collapse
|
16
|
Al-Hussaini M, DiPersio JF. Small molecule inhibitors in acute myeloid leukemia: from the bench to the clinic. Expert Rev Hematol 2014; 7:439-64. [PMID: 25025370 PMCID: PMC4283573 DOI: 10.1586/17474086.2014.932687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many patients with acute myeloid leukemia will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in acute myeloid leukemia. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials.
Collapse
Affiliation(s)
- Muneera Al-Hussaini
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis Missouri
| | - John F. DiPersio
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis Missouri
- Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St Louis Missouri
| |
Collapse
|
17
|
BUB1 mRNA is significantly co-expressed with AURKA and AURKB mRNA in advanced-stage ovarian serous carcinoma. Virchows Arch 2014; 464:701-7. [PMID: 24756216 DOI: 10.1007/s00428-014-1577-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 12/20/2022]
Abstract
The objective of this study was to investigate the expression and clinical role of the spindle checkpoint kinase budding uninhibited by benzimidazole 1 (Bub1) in primary and metastatic advanced-stage ovarian serous carcinoma. BUB1 mRNA expression was analyzed in 178 tumors (88 effusions, 38 primary carcinomas, and 52 solid metastases) from 144 patients with advanced-stage disease using quantitative real-time polymerase chain reaction (PCR). Bub1 protein expression by Western blotting was studied in 63 carcinomas (30 effusions and 33 solid lesions). BUB1 mRNA expression at different anatomic sites was studied for association with clinicopathologic parameters, including chemotherapy resistance and survival. BUB1 mRNA was universally expressed in serous carcinomas, irrespective of anatomic site. BUB1 mRNA levels were uniformly low in six ovarian surface epithelium specimens analyzed for comparative purposes. Bub1 protein was expressed in 22/30 effusions and 28/33 solid lesions. BUB1 mRNA expression was significantly higher in chemo-naïve primary carcinomas and solid metastases compared to specimens obtained following neoadjuvant chemotherapy (p < 0.001) and was unrelated to chemotherapy exposure in effusions nor to chemoresponse or survival at any anatomic site. BUB1 mRNA levels in both effusions and solid lesions were strongly related to the mRNA levels of AURKA and AURKB previously studied in this cohort (p < 0.001 for both). Bub1 is widely expressed in primary and metastatic OC, suggesting a biological role in this cancer. BUB1 mRNA levels are lower following chemotherapy exposure in solid lesions, though its presence is unrelated to clinical behavior including response to chemotherapy and survival. BUB1 is co-expressed with AURKA and AURKB suggesting biological relationship between these spindle cell components.
Collapse
|