1
|
Bedore S, van der Eerden J, Boghani F, Patel SJ, Yassin S, Aguilar K, Lokeshwar VB. Protein-Based Predictive Biomarkers to Personalize Neoadjuvant Therapy for Bladder Cancer-A Systematic Review of the Current Status. Int J Mol Sci 2024; 25:9899. [PMID: 39337385 PMCID: PMC11432686 DOI: 10.3390/ijms25189899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The clinical outcome of patients with muscle-invasive bladder cancer (MIBC) is poor despite the approval of neoadjuvant chemotherapy or immunotherapy to improve overall survival after cystectomy. MIBC subtypes, immune, transcriptome, metabolomic signatures, and mutation burden have the potential to predict treatment response but none have been incorporated into clinical practice, as tumor heterogeneity and lineage plasticity influence their efficacy. Using the PRISMA statement, we conducted a systematic review of the literature, involving 135 studies published within the last five years, to identify studies reporting on the prognostic value of protein-based biomarkers for response to neoadjuvant therapy in patients with MIBC. The studies were grouped based on biomarkers related to molecular subtypes, cancer stem cell, actin-cytoskeleton, epithelial-mesenchymal transition, apoptosis, and tumor-infiltrating immune cells. These studies show the potential of protein-based biomarkers, especially in the spatial context, to reduce the influence of tumor heterogeneity on a biomarker's prognostic capability. Nevertheless, currently, there is little consensus on the methodology, reagents, and the scoring systems to allow reliable assessment of the biomarkers of interest. Furthermore, the small sample size of several studies necessitates the validation of potential prognostic biomarkers in larger multicenter cohorts before their use for individualizing neoadjuvant therapy regimens for patients with MIBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (S.B.); (J.v.d.E.); (S.J.P.); (S.Y.); (K.A.)
| |
Collapse
|
2
|
Li Mow Chee F, Beernaert B, Griffith BGC, Loftus AEP, Kumar Y, Wills JC, Lee M, Valli J, Wheeler AP, Armstrong JD, Parsons M, Leigh IM, Proby CM, von Kriegsheim A, Bickmore WA, Frame MC, Byron A. Mena regulates nesprin-2 to control actin-nuclear lamina associations, trans-nuclear membrane signalling and gene expression. Nat Commun 2023; 14:1602. [PMID: 36959177 PMCID: PMC10036544 DOI: 10.1038/s41467-023-37021-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.
Collapse
Affiliation(s)
- Frederic Li Mow Chee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Bruno Beernaert
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, OX3 7DQ, UK
| | - Billie G C Griffith
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alexander E P Loftus
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Yatendra Kumar
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jimi C Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Jessica Valli
- Edinburgh Super Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ann P Wheeler
- Advanced Imaging Resource, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - J Douglas Armstrong
- Simons Initiative for the Developing Brain, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Irene M Leigh
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Margaret C Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Guo Z, Liu X, Shao H. E2F4-induced AGAP2-AS1 up-regulation accelerates the progression of colorectal cancer via miR-182-5p/CFL1 axis. Dig Liver Dis 2022; 54:878-889. [PMID: 34838479 DOI: 10.1016/j.dld.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of numerous diseases including cancers. LncRNA AGAP2 Antisense RNA 1 (AGAP2-AS1) has been found to participate in the tumorigenesis of several kinds of human cancers. Nonetheless, its potential function in colorectal cancer (CRC) was still poorly investigated. METHODS The expression level of RNAs or proteins was assessed by RT-qPCR or western blot analysis. Functional experiments were performed to analyze the role of AGAP2-AS1 in CRC in vitro and in vivo. Mechanism investigations were fulfilled to determine the potential mechanism of the molecules. RESULTS AGAP2-AS1 expression was significantly elevated in CRC cells and could be transcriptionally activated by E2F Transcription Factor 4 (E2F4). Down-regulated AGAP2-AS1 could weaken CRC cell growth, migration, invasion, and epithelial-mesenchymal transition (EMT). MicroRNA-182-5p (miR-182-5p) was the target downstream molecule of AGAP2-AS1. Furthermore, Cofilin 1 (CFL1) was proved as the target of miR-182-5p. Mechanically, AGAP2-AS1 could boost the CFL1 expression via competitively binding to miR-182-5p in CRC. Importantly, CFL1 restoration could counteract the in vitro and in vivo suppression of depleted AGAP2-AS1 on CRC progression. CONCLUSION E2F4-stimulated AGAP2-AS1 aggravated CRC development through regulating miR-182-5p/CFL1 axis, implying that AGAP2-AS1 might become a potent new target for future therapies for CRC.
Collapse
Affiliation(s)
- Zhen Guo
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Xuezhong Liu
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Hongjin Shao
- Anorectal Department, Liaocheng People's Hospital, NO.67 Dongchang West Road, Dongchangfu District, Liaocheng, Shandong 252000, China.
| |
Collapse
|
4
|
Jiang X, Qin Y, Kun L, Zhou Y. The Significant Role of the Microfilament System in Tumors. Front Oncol 2021; 11:620390. [PMID: 33816252 PMCID: PMC8010179 DOI: 10.3389/fonc.2021.620390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. Among them, monomer actin is a spherical molecule composed of a polypeptide chain, also known as spherical actin. The function of actin polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. The dynamic reorganization of the actin cytoskeleton has immense influence on the progression and metastasis of cancer as well. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future.
Collapse
Affiliation(s)
- Xin Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Liu Kun
- Department of Neurosurgery, Brain Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
5
|
Melchionna R, Trono P, Tocci A, Nisticò P. Actin Cytoskeleton and Regulation of TGFβ Signaling: Exploring Their Links. Biomolecules 2021; 11:biom11020336. [PMID: 33672325 PMCID: PMC7926735 DOI: 10.3390/biom11020336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human tissues, to maintain their architecture and function, respond to injuries by activating intricate biochemical and physical mechanisms that regulates intercellular communication crucial in maintaining tissue homeostasis. Coordination of the communication occurs through the activity of different actin cytoskeletal regulators, physically connected to extracellular matrix through integrins, generating a platform of biochemical and biomechanical signaling that is deregulated in cancer. Among the major pathways, a controller of cellular functions is the cytokine transforming growth factor β (TGFβ), which remains a complex and central signaling network still to be interpreted and explained in cancer progression. Here, we discuss the link between actin dynamics and TGFβ signaling with the aim of exploring their aberrant interaction in cancer.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, via Chianesi 53, 00144 Rome, Italy; (R.M.); (P.T.); (A.T.)
| | - Paola Trono
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, via Chianesi 53, 00144 Rome, Italy; (R.M.); (P.T.); (A.T.)
- Institute of Biochemistry and Cell Biology, National Research Council, via Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, via Chianesi 53, 00144 Rome, Italy; (R.M.); (P.T.); (A.T.)
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, via Chianesi 53, 00144 Rome, Italy; (R.M.); (P.T.); (A.T.)
- Correspondence: ; Tel.: +39-0652662539
| |
Collapse
|
6
|
Sousa-Squiavinato ACM, Vasconcelos RI, Gehren AS, Fernandes PV, de Oliveira IM, Boroni M, Morgado-Díaz JA. Cofilin-1, LIMK1 and SSH1 are differentially expressed in locally advanced colorectal cancer and according to consensus molecular subtypes. Cancer Cell Int 2021; 21:69. [PMID: 33482809 PMCID: PMC7821653 DOI: 10.1186/s12935-021-01770-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background Colorectal cancer (CRC) is among the deadliest cancers, wherein early dissemination of tumor cells, and consequently, metastasis formation, are the main causes of mortality and poor prognosis. Cofilin-1 (CFL-1) and its modulators, LIMK1/SSH1, play key roles in mediating the invasiveness by driving actin cytoskeleton reorganization in various cancer types. However, their clinical significance and prognostic value in CRC has not been fully explored. Here, we evaluated the clinical contribution of these actin regulators according to TNM and consensus molecular subtypes (CMSs) classification. Methods CFL-1, LIMK1 and SSH1 mRNA/protein levels were assessed by real-time PCR and immunohistochemical analyses using normal adjacent and tumor tissues obtained from a clinical cohort of CRC patients. The expression levels of these proteins were associated with clinicopathological features by using the chi square test. In addition, using RNA-Seq data of CRC patients from The Cancer Genome Atlas (TCGA) database, we determine how these actin regulators are expressed and distributed according to TNM and CMSs classification. Based on gene expression profiling, Kaplan–Meier survival analysis was used to evaluated overall survival. Results Bioinformatic analysis revealed that LIMK1 expression was upregulated in all tumor stages. Patients with high levels of LIMK1 demonstrated significantly lower overall survival rates and exhibited greater lymph node metastatic potential in a clinical cohort. In contrast, CFL-1 and SSH1 have expression downregulated in all tumor stages. However, immunohistochemical analyses showed that patients with high protein levels of CFL-1 and SSH1 exhibited greater lymph node metastatic potential and greater depth of local invasion. In addition, using the CMSs classification to evaluate different biological phenotypes of CRC, we observed that LIMK1 and SSH1 genes are upregulated in immune (CMS1) and mesenchymal (CMS4) subtypes. However, patients with high levels of LIMK1 also demonstrated significantly lower overall survival rates in canonical (CMS2), and metabolic (CMS3) subtypes. Conclusions We demonstrated that CFL-1 and its modulators, LIMK1/SSH1, are differentially expressed and associated with lymph node metastasis in CRC. Finally, this expression profile may be useful to predict patients with aggressive signatures, particularly, the immune and mesenchymal subtypes of CRC.
Collapse
Affiliation(s)
- Annie Cristhine Moraes Sousa-Squiavinato
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, 3th Floor, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Renata Ivo Vasconcelos
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, 3th Floor, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Adriana Sartorio Gehren
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, 3th Floor, Rio de Janeiro, RJ, 20231-050, Brazil
| | | | | | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Jose Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, 3th Floor, Rio de Janeiro, RJ, 20231-050, Brazil.
| |
Collapse
|
7
|
Involvement of Actin and Actin-Binding Proteins in Carcinogenesis. Cells 2020; 9:cells9102245. [PMID: 33036298 PMCID: PMC7600575 DOI: 10.3390/cells9102245] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton plays a crucial role in many cellular processes while its reorganization is important in maintaining cell homeostasis. However, in the case of cancer cells, actin and ABPs (actin-binding proteins) are involved in all stages of carcinogenesis. Literature has reported that ABPs such as SATB1 (special AT-rich binding protein 1), WASP (Wiskott-Aldrich syndrome protein), nesprin, and villin take part in the initial step of carcinogenesis by regulating oncogene expression. Additionally, changes in actin localization promote cell proliferation by inhibiting apoptosis (SATB1). In turn, migration and invasion of cancer cells are based on the formation of actin-rich protrusions (Arp2/3 complex, filamin A, fascin, α-actinin, and cofilin). Importantly, more and more scientists suggest that microfilaments together with the associated proteins mediate tumor vascularization. Hence, the presented article aims to summarize literature reports in the context of the potential role of actin and ABPs in all steps of carcinogenesis.
Collapse
|
8
|
Sun S, Liu F, Xian S, Cai D. miR-325-3p Overexpression Inhibits Proliferation and Metastasis of Bladder Cancer Cells by Regulating MT3. Med Sci Monit 2020; 26:e920331. [PMID: 32512576 PMCID: PMC7297032 DOI: 10.12659/msm.920331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND miRNAs have been widely used in cancer treatment. Our study was designed to explore the effects of miR-325-3p in bladder cancer cells. MATERIAL AND METHODS Levels ofd miR-325-3p and MT3 in bladder cancer tissues and cells were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). miR-325-3p mimics were transfected into bladder cancer T24 cells, and cell migration and invasion rates and cell proliferation were assessed by transwell assay and Cell Counting Kit-8 (CCK-8). The target mRNA for miR-325-3p was predicted by Targetscan7.2 and confirmed by dual-luciferase reporter assay. More experiments were performed to confirm the effects of miR-325-3p and MT3 in T24 cells. Additionally, the levels of TIMP-2, MMP9, and E-cadherin were assessed by Western blotting to identify the effects of miR-325-3p and MT3 on epithelial-mesenchymal transition (EMT). RESULTS miR-325-3p expression was reduced and MT3 was increased in bladder cancer tissues and bladder cancer cells. miR-325-3p mimics suppressed cell proliferation ability and invasion and migration rates of T24 cells. Moreover, miR-325-3p was confirmed to target MT3. Further experiments showed that the effects of increased cell proliferation, invasion, migration, and EMT promoted by MT3 overexpression were abolished by miR-325-3p mimics, proving that miR-325-3p is a tumor suppressor through targeting MT3 in bladder cancer cells. CONCLUSIONS Downregulation of miR-325-3p in bladder cancer regulates cell proliferation, migration, invasion, and EMT by targeting MT3. Furthermore, miR-325-3p is a potential therapeutic target in treating bladder cancer.
Collapse
Affiliation(s)
- Shaopeng Sun
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Feng Liu
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Shaozhong Xian
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Dawei Cai
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
9
|
Bristot IJ, Kehl Dias C, Chapola H, Parsons RB, Klamt F. Metabolic rewiring in melanoma drug-resistant cells. Crit Rev Oncol Hematol 2020; 153:102995. [PMID: 32569852 DOI: 10.1016/j.critrevonc.2020.102995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Several evidences indicate that melanoma, one of the deadliest types of cancer, presents the ability to transiently shift its phenotype under treatment or microenvironmental pressure to an invasive and treatment-resistant phenotype, which is characterized by cells with slow division cycle (also called slow-cycling cells) and high-OXPHOS metabolism. Many cellular marks have been proposed to track this phenotype, such as the expression levels of the master regulator of melanocyte differentiation (MITF) and the epigenetic factor JARID1B. It seems that the slow-cycling phenotype does not necessarily present a single gene expression signature. However, many lines of evidence lead to a common metabolic rewiring process in resistant cells that activates mitochondrial metabolism and changes the mitochondrial network morphology. Here, we propose that mitochondria-targeted drugs could increase not only the efficiency of target therapy, bypassing the dynamics between fast-cycling and slow-cycling, but also the sensitivity to immunotherapy by modulation of the melanoma microenvironment.
Collapse
Affiliation(s)
- Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil.
| | - Camila Kehl Dias
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Henrique Chapola
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Fábio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Júnior LA, Cucielo MS, Domeniconi RF, dos Santos LD, Silveira HS, da Silva Nunes I, Martinez M, Martinez FE, Fávaro WJ, Chuffa LGDA. P-MAPA and IL-12 Differentially Regulate Proteins Associated with Ovarian Cancer Progression: A Proteomic Study. ACS OMEGA 2019; 4:21761-21777. [PMID: 31891054 PMCID: PMC6933580 DOI: 10.1021/acsomega.9b02512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/27/2019] [Indexed: 05/04/2023]
Abstract
To investigate the potential role of immunotherapies in the cellular and molecular mechanisms associated with ovarian cancer (OC), we applied a comparative proteomic toll using protein identification combined with mass spectrometry. Herein, the effects of the protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride, known as P-MAPA, and the human recombinant interleukin-12 (hrIL-12) were tested alone or in combination in human SKOV-3 cells. The doses and period were defined based on a previous study, which showed that 25 μg/mL P-MAPA and 1 ng/mL IL-12 are sufficient to reduce cell metabolism after 48 h. Indeed, among 2,881 proteins modulated by the treatments, 532 of them were strictly concordant and common. P-MAPA therapy upregulated proteins involved in tight junction, focal adhesion, ribosome constitution, GTP hydrolysis, semaphorin interactions, and expression of SLIT and ROBO, whereas it downregulated ERBB4 signaling, toll-like receptor signaling, regulation of NOTCH 4, and the ubiquitin proteasome pathway. In addition, IL-12 therapy led to upregulation of leukocyte migration, tight junction, and cell signaling, while cell communication, cell metabolism, and Wnt signaling were significantly downregulated in OC cells. A clear majority of proteins that were overexpressed by the combination of P-MAPA with IL-12 are involved in tight junction, focal adhesion, DNA methylation, metabolism of RNA, and ribosomal function; only a small number of downregulated proteins were involved in cell signaling, energy and mitochondrial processes, cell oxidation and senescence, and Wnt signaling. These findings suggest that P-MAPA and IL-12 efficiently regulated important proteins associated with OC progression; these altered proteins may represent potential targets for OC treatment in addition to its immunoadjuvant effects.
Collapse
Affiliation(s)
- Luiz Antonio
Lupi Júnior
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Maira Smaniotto Cucielo
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Raquel Fantin Domeniconi
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Lucilene Delazari dos Santos
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Henrique Spaulonci Silveira
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | | | - Marcelo Martinez
- Department
of Morphology and Pathology, Federal University
of São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Francisco Eduardo Martinez
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Wagner José Fávaro
- Department
of Structural and Functional Biology, UNICAMP—University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
- E-mail: . Phone: +55 (14) 3880-0027
| |
Collapse
|
11
|
Li H, Whitney J, Bera K, Gilmore H, Thorat MA, Badve S, Madabhushi A. Quantitative nuclear histomorphometric features are predictive of Oncotype DX risk categories in ductal carcinoma in situ: preliminary findings. Breast Cancer Res 2019; 21:114. [PMID: 31623652 PMCID: PMC6798488 DOI: 10.1186/s13058-019-1200-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/13/2019] [Indexed: 01/23/2023] Open
Abstract
Background Oncotype DX (ODx) is a 12-gene assay assessing the recurrence risk (high, intermediate, and low) of ductal carcinoma in situ (pre-invasive breast cancer), which guides clinicians regarding prescription of radiotherapy. However, ODx is expensive, time-consuming, and tissue-destructive. In addition, the actual prognostic meaning for the intermediate ODx risk category remains unclear. Methods In this work, we evaluated the ability of quantitative nuclear histomorphometric features extracted from hematoxylin and eosin-stained slide images of 62 ductal carcinoma in situ (DCIS) patients to distinguish between the corresponding ODx risk categories. The prognostic value of the identified image signature was further evaluated on an independent validation set of 30 DCIS patients in its ability to distinguish those DCIS patients who progressed to invasive carcinoma versus those who did not. Following nuclear segmentation and feature extraction, feature ranking strategies were employed to identify the most discriminating features between individual ODx risk categories. The selected features were then combined with machine learning classifiers to establish models to predict ODx risk categories. The model performance was evaluated using the average area under the receiver operating characteristic curve (AUC) using cross validation. In addition, an unsupervised clustering approach was also implemented to evaluate the ability of nuclear histomorphometric features to discriminate between the ODx risk categories. Results Features relating to spatial distribution, orientation disorder, and texture of nuclei were identified as most discriminating between the high ODx and the intermediate, low ODx risk categories. Additionally, the AUC of the most discriminating set of features for the different classification tasks was as follows: (1) high vs low ODx (0.68), (2) high vs. intermediate ODx (0.67), (3) intermediate vs. low ODx (0.57), (4) high and intermediate vs. low ODx (0.63), (5) high vs. low and intermediate ODx (0.66). Additionally, the unsupervised clustering resulted in intermediate ODx risk category patients being co-clustered with low ODx patients compared to high ODx. Conclusion Our results appear to suggest that nuclear histomorphometric features can distinguish high from low and intermediate ODx risk category patients. Additionally, our findings suggest that histomorphometric features for intermediate ODx were more similar to low ODx compared to high ODx risk category.
Collapse
Affiliation(s)
- Haojia Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Jon Whitney
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Hannah Gilmore
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mangesh A Thorat
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Predictive value of phenotypic signatures of bladder cancer response to cisplatin-based neoadjuvant chemotherapy. Urol Oncol 2019; 37:572.e1-572.e11. [DOI: 10.1016/j.urolonc.2019.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/18/2019] [Accepted: 06/21/2019] [Indexed: 11/19/2022]
|
13
|
Li F, Zhao H, Su M, Xie W, Fang Y, Du Y, Yu Z, Hou L, Tan W. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR. EBioMedicine 2019; 45:208-219. [PMID: 31221586 PMCID: PMC6642227 DOI: 10.1016/j.ebiom.2019.06.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein F (hnRNP-F) has been implicated in multiple cancers, suggesting its role in tumourigenesis, but the potential oncogenic role and mechanism of hnRNP-F in bladder cancer (BC) remain incompletely understood. Methods HnRNP-F was identified by proteomic methods. A correlation of hnRNP-F expression with prognosis was analysed in 103 BC patients. Then, we applied in vitro and in vivo methods to reveal the behaviours of hnRNP-F in BC tumourigenesis. Furthermore, the interaction between hnRNP-F and Snail1 mRNA was examined by RNA immunoprecipitation (RIP), and Snail1 mRNA stability was measured after treatment with actinomycin D. Finally, the binding domain between hnRNP-F and Snail1 mRNA was verified by constructing Snail1 mRNA truncations and mutants. Finding HnRNP-F is significantly upregulated in BC tissue, and its increased expression is associated with a poor prognosis in BC patients. HnRNP-F is necessary for tumour growth, inducing epithelial-mesenchymal transition (EMT) and metastasis in BC. The changes in Snail1 expression were positively correlated with hnRNP-F at both the mRNA and protein levels when hnRNP-F was silenced or enhanced, suggesting that Snail1 is likely a downstream target of hnRNP-F that mediates its effects on enhancing invasion, metastasis and EMT in BC. The overexpression of hnRNP-F caused an increase in the stability of Snail1 mRNA. Our RNA chip analysis revealed that hnRNP-F could combine with Snail1 mRNA, and we further demonstrated that hnRNP-F could directly bind to the 3′ untranslated region (3′ UTR) of Snail1 mRNA to enhance its stability. Interpretation Our findings suggest that hnRNP-F mediates the stabilization of Snail1 mRNA by binding to its 3′ UTR, subsequently regulating EMT.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Hongfan Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Mingqiang Su
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Weiwei Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yunze Fang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuejun Du
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zhe Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Lina Hou
- Department of Healthy Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
14
|
Sousa-Squiavinato ACM, Rocha MR, Barcellos-de-Souza P, de Souza WF, Morgado-Diaz JA. Cofilin-1 signaling mediates epithelial-mesenchymal transition by promoting actin cytoskeleton reorganization and cell-cell adhesion regulation in colorectal cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:418-429. [DOI: 10.1016/j.bbamcr.2018.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 01/02/2023]
|
15
|
Wang F, Wu D, Xu Z, Chen J, Zhang J, Li X, Chen S, He F, Xu J, Su L, Luo D, Zhang S, Wang W. miR-182-5p affects human bladder cancer cell proliferation, migration and invasion through regulating Cofilin 1. Cancer Cell Int 2019; 19:42. [PMID: 30858759 PMCID: PMC6394052 DOI: 10.1186/s12935-019-0758-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background Human bladder cancer is one of the common malignant tumors, and it mainly occurs in men. miR-182-5p, a member of miR-183 family, acts as tumor suppressor or oncogene in various kinds of tumors. In this study, we first investigate that the absence of miR-182-5p in human bladder cancer promotes tumor growth by regulating the expression of Cofilin 1, an actin modulating-protein. Methods Human bladder tumor tissue specimens were collected to detect the expression of miR-182-5p and Cofilin 1 by qRT-PCR. Luciferase activity assay was performed to demonstrate the regulation of Cofilin 1 mRNA 3′UTR by miR-182-5p. Then, cell experiments were performed to analysis the effect of miR-182-5p/Cofilin 1 pathway on tumor cell proliferation, migration, invasion and colony forming efficiency. Finally, xenograft tumor models were established to evaluate the role of miR-182-5p in tumorigenesis abilities in vivo. Results qRT-PCR and Western blotting analysis showed that Cofilin 1 expression was up-regulated in both bladder cancer tissues and cell lines compared with normal. Luciferase activity assay showed that miR-182-5p specifically targets Cofilin 1 mRNA 3′UTR and represses the expression of Cofilin 1. Also, miR-182-5p inhibited bladder tumor cell proliferation, migration, invasion and colony forming efficiency. Furthermore, xenograft tumor model assay showed that miR-182-5p plays a negative role in bladder cancer tumorigenesis abilities in vivo. Conclusion Present results suggest that miR-182-5p could inhibit human bladder tumor growth by repressing Cofilin 1 expression. Our findings may provide a new horizon for exploring therapeutic target of bladder cancer.
Collapse
Affiliation(s)
- Fei Wang
- 1Department of Urology, Hainan General Hospital, Haikou, China
| | - Dinglan Wu
- 2Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province China
| | - Zhanping Xu
- 3Department of Urology, Foshan Hospital of TCM, Foshan, Guangdong Province China
| | - Jianxiang Chen
- Department of Urology, Affiliated Hospital of Xiangnan College, Chenzhou, China
| | - Jiye Zhang
- 5Central Laboratory, Hainan General Hospital, Haikou, China
| | - Xiaojuan Li
- 5Central Laboratory, Hainan General Hospital, Haikou, China
| | - Shiliang Chen
- 6Department of Pathology, Hainan General Hospital, Haikou, China
| | - Fengrong He
- 1Department of Urology, Hainan General Hospital, Haikou, China
| | - Jianbing Xu
- 1Department of Urology, Hainan General Hospital, Haikou, China
| | - Liangju Su
- 1Department of Urology, Hainan General Hospital, Haikou, China
| | - Defan Luo
- 1Department of Urology, Hainan General Hospital, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital Xiangya School of Medicine Central South University (HaiKou Municipal People Hospital), Haikou, Hainan China
| | - Weifu Wang
- 1Department of Urology, Hainan General Hospital, Haikou, China
| |
Collapse
|
16
|
Dicken H, Hensley PJ, Kyprianou N. Prostate tumor neuroendocrine differentiation via EMT: The road less traveled. Asian J Urol 2019; 6:82-90. [PMID: 30775251 PMCID: PMC6363600 DOI: 10.1016/j.ajur.2018.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
The long-standing challenge in the treatment of prostate cancer is to overcome therapeutic resistance during progression to lethal disease. Aberrant transforming-growth factor-β (TGF-β) signaling accelerates prostate tumor progression in a transgenic mouse model via effects on epithelial-mesenchymal transition (EMT), and neuroendocrine differentiation driving tumor progression to castration-resistant prostate cancer (CRPC). Neuroendocrine prostate cancer (NEPC) is highly aggressive exhibiting reactivation of developmental programs associated with EMT induction and stem cell-like characteristics. The androgen receptor (AR) is a critical driver of tumor progression as well as therapeutic response in patients with metastatic CRPC. The signaling interactions between the TGF-β mechanistic network and AR axis impact the EMT phenotypic conversions, and perturbation of epithelial homeostasis via EMT renders a critical venue for epithelial derived tumors to become invasive, acquire the neuroendocrine phenotype, and rapidly metastasize. Combinations of microtubule targeting taxane chemotherapy and androgen/AR targeting therapies have survival benefits in CRPC patients, but therapeutic resistance invariability develops, leading to mortality. Compelling evidence from our group recently demonstrated that chemotherapy (cabazitaxel, second line taxane chemotherapy), or TGF-β receptor signaling targeted therapy, caused reversion of EMT to mesenchymal-epithelial transition and tumor re-differentiation, in in vitro and in vivo prostate cancer models. In this review, we discuss the functional contribution of EMT dynamic changes to the development of the neuroendocrine phenotype-the newly characterized pathological feature of prostate tumors in the context of the tumor microenvironment-navigated cell lineage changes and the role of this neuroendocrine phenotype in metastatic progression and therapeutic resistance.
Collapse
Affiliation(s)
- Haley Dicken
- Department of Urology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Patrick J. Hensley
- Department of Urology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Natasha Kyprianou
- Department of Urology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
17
|
Spugnini EP, Logozzi M, Di Raimo R, Mizzoni D, Fais S. A Role of Tumor-Released Exosomes in Paracrine Dissemination and Metastasis. Int J Mol Sci 2018; 19:E3968. [PMID: 30544664 PMCID: PMC6321583 DOI: 10.3390/ijms19123968] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Metastatic diffusion is thought to be a multi-step phenomenon involving the release of cells from the primary tumor and their diffusion through the body. Currently, several hypotheses have been put forward in order to explain the origin of cancer metastasis, including epithelial⁻mesenchymal transition, mutagenesis of stem cells, and a facilitating role of macrophages, involving, for example, transformation or fusion hybridization with neoplastic cells. In this paradigm, tumor-secreted extracellular vesicles (EVs), such as exosomes, play a pivotal role in cell communications, delivering a plethora of biomolecules including proteins, lipids, and nucleic acids. For their natural role in shuttling molecules, EVs have been newly considered a part of the metastatic cascade. They have a prominent role in preparing the so-called "tumor niches" in target organs. However, recent evidence has pointed out an even more interesting role of tumor EVs, consisting in their ability to induce malignant transformation in resident mesenchymal stem cells. All in all, in this review, we discuss the multiple involvements of EVs in the metastatic cascade, and how we can exploit and manipulate EVs in order to reduce the metastatic spread of malignant tumors.
Collapse
Affiliation(s)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
18
|
Virtanen SS, Ishizu T, Sandholm JA, Löyttyniemi E, Väänänen HK, Tuomela JM, Härkönen PL. Alendronate-induced disruption of actin cytoskeleton and inhibition of migration/invasion are associated with cofilin downregulation in PC-3 prostate cancer cells. Oncotarget 2018; 9:32593-32608. [PMID: 30220968 PMCID: PMC6135693 DOI: 10.18632/oncotarget.25961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/28/2018] [Indexed: 12/31/2022] Open
Abstract
Bisphosphonates are used for prevention of osteoporosis and metastatic bone diseases. Anti-invasive effects on various cancer cells have also been reported, but the mechanisms involved are not well-understood. We investigated the effects of the nitrogen-containing bisphosphonate alendronate (ALN) on the regulation of actin cytoskeleton in PC-3 cells. We analyzed the ALN effect on the organization and the dynamics of actin, and on the cytoskeleton-related regulatory proteins cofilin, p21-associated kinase 2 (PAK2), paxillin and focal adhesion kinase. Immunostainings of cofilin in ALN-treated PC-3 cells and xenografts were performed, and the role of cofilin in ALN-regulated F-actin organization and migration/invasion in PC-3 cells was analyzed using cofilin knockdown and transfection. We demonstrate that disrupted F-actin organization and decreased cell motility in ALN-treated PC-3 cells were associated with decreased levels of total and phosphorylated cofilin. PAK2 levels were also lowered but adhesion-related proteins were not altered. The knockdown of cofilin similarly impaired F-actin organization and decreased invasion of PC-3 cells, whereas in the cells transfected with a cofilin expressing vector, ALN treatment did not decrease cellular cofilin levels and migration as in mock transfected cells. ALN also reduced immunohistochemical staining of cofilin in PC-3 xenografts. Our results suggest that reduction of cofilin has an important role in ALN-induced disruption of the actin cytoskeleton and inhibition of the PC-3 cell motility and invasion. These data also support the idea that the nitrogen-containing bisphosphonates could be efficacious in inhibition of prostate cancer invasion and metastasis, if delivered in a pharmacological formulation accessible to the tumors.
Collapse
Affiliation(s)
- Sanna S Virtanen
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland.,Turku University of Applied Sciences, Health and Well-being, FI-20520 Turku, Finland
| | - Tamiko Ishizu
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland
| | - Jouko A Sandholm
- Cell Imaging Core, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20521 Turku, Finland
| | - Eliisa Löyttyniemi
- University of Turku, Department of Biostatistics, FI-20520 Turku, Finland
| | | | - Johanna M Tuomela
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland
| | - Pirkko L Härkönen
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland
| |
Collapse
|
19
|
Bracalente C, Rinflerch AR, Ibañez IL, García FM, Volonteri V, Galimberti GN, Klamt F, Durán H. Cofilin-1 levels and intracellular localization are associated with melanoma prognosis in a cohort of patients. Oncotarget 2018; 9:24097-24108. [PMID: 29844875 PMCID: PMC5963619 DOI: 10.18632/oncotarget.25303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
Melanoma is an aggressive cancer with highly metastatic ability. We propose cofilin-1, a key protein in the regulation of actin dynamics and migration, as a prognostic marker. We determined cofilin-1 levels in a retrospective cohort of patients with melanomas and benign lesions of melanocytes (nevi) by immunohistochemistry. Higher cofilin-1 levels were found in malignant melanoma (MM) with Breslow Index (BI)>2 vs MM with BI<2, melanoma in situ (MIS) and nevi and also in MM with metastasis vs MM without detected metastasis. Kaplan-Meier survival curves were performed, clustering patients according to either the type of melanocytic lesions or cofilin-1 level. Survival curves demonstrated worse prognosis of patients with high vs low cofilin-1 levels. TCGA database analysis of melanoma also showed low survival in patients with upregulated cofilin-1 mRNA vs patients without alteration in CFL1 mRNA expression. As cofilin-1 has a dual function depending on its intracellular localization, we evaluated nuclear and cytoplasmic levels of cofilin-1 in melanoma and nevi samples by immunofluorescence. MM with high Breslow index and metastatic cells not only presented cytoplasmic cofilin-1, but also showed this protein at the nucleus. An increase in nuclear/cytoplasmic cofilin-1 mean fluorescence ratio was observed in MM with BI>2 vs MM with BI<2, MIS and nevi. In conclusion, an association of cofilin-1 levels with malignant features and an inverse correlation with survival were demonstrated. Moreover, this study suggests that not only the higher levels of cofilin-1, but also its nuclear localization can be proposed as marker of worse outcome of patients with melanoma.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, (B1650KNA) San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, (C1425FQB) CABA, Buenos Aires, Argentina
| | - Adriana R Rinflerch
- Dermatología Experimental, Servicio de Dermatología, Hospital Italiano de Buenos Aires, (C1199ABB) CABA, Buenos Aires, Argentina
| | - Irene L Ibañez
- Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, (B1650KNA) San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, (C1425FQB) CABA, Buenos Aires, Argentina
| | - Francisco M García
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Campus Miguelete, (B1650HMP) San Martín, Buenos Aires, Argentina
| | - Victoria Volonteri
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, (C1199ABB) CABA, Buenos Aires, Argentina
| | - Gastón N Galimberti
- Dermatología Experimental, Servicio de Dermatología, Hospital Italiano de Buenos Aires, (C1199ABB) CABA, Buenos Aires, Argentina
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, (90035 003), Porto Alegre, Brazil
| | - Hebe Durán
- Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, (B1650KNA) San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, (C1425FQB) CABA, Buenos Aires, Argentina.,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Campus Miguelete, (B1650HMP) San Martín, Buenos Aires, Argentina
| |
Collapse
|
20
|
Yu BB, Lin GX, Li L, Qu S, Liang ZG, Chen KH, Zhou L, Lu QT, Sun YC, Zhu XD. Cofilin-2 Acts as a Marker for Predicting Radiotherapy Response and Is a Potential Therapeutic Target in Nasopharyngeal Carcinoma. Med Sci Monit 2018; 24:2317-2329. [PMID: 29664897 PMCID: PMC5921956 DOI: 10.12659/msm.909832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The purpose of this study was to determine whether cofilin-2 could serve as a protein marker for predicting radiotherapy response and as a potential therapeutic target in nasopharyngeal carcinoma (NPC). Material/Methods Cofilin-2 protein levels in serum and tissue samples from patients with NPC were assessed by sandwich ELISA and IHC. In vitro, cofilin-2 levels in CNE-2R cells were significantly higher than those of CNE-2 cells. Meanwhile, CNE-2R cells were silenced for cofilin-2 to obtain a stable cofilin-2-RNAi-LV3 cell line. Then, cell proliferation, radiosensitivity, invasion and migration abilities, cell cycle, and apoptosis were evaluated by Cell Counting Kit 8 assay (CCK-8), flow cytometry (FCM), clone formation assay, and in vitro. Results The secreted levels of the cofilin-2 protein in radioresistant NPC patients were significantly higher than those of radiosensitive cases. After cofilin-2 knockdown in nasopharyngeal carcinoma CNE-2R cells, proliferation was decreased, while apoptosis and radiosensitivity were enhanced; cell cycle distribution was altered, and the transplanted tumors in nude mice grew significantly less. Conclusions Overall, our findings suggest that cofilin-2 acts as a marker for predicting radiotherapy response and is a potential therapeutic target in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Bin-Bin Yu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guo-Xiang Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ling Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China (mainland)
| | - Song Qu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China (mainland)
| | - Zhong-Guo Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Kai-Hua Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Lei Zhou
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qi-Teng Lu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yong-Chu Sun
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China (mainland).,Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
21
|
The Role of Actin Dynamics and Actin-Binding Proteins Expression in Epithelial-to-Mesenchymal Transition and Its Association with Cancer Progression and Evaluation of Possible Therapeutic Targets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4578373. [PMID: 29581975 PMCID: PMC5822767 DOI: 10.1155/2018/4578373] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Metastasis causes death of 90% of cancer patients, so it is the most significant issue associated with cancer disease. Thus, it is no surprise that many researchers are trying to develop drugs targeting or preventing them. The secondary tumour site formation is closely related to phenomena like epithelial-to-mesenchymal and its reverse, mesenchymal-to-epithelial transition. The change of the cells' phenotype to mesenchymal involves the acquisition of migratory potential. Cancer cells movement is possible due to the development of invasive structures like invadopodia, lamellipodia, and filopodia. These changes are dependent on the reorganization of the actin cytoskeleton. In turn, the polymerization and depolymerization of actin are controlled by actin-binding proteins. In many tumour cells, the actin and actin-associated proteins are accumulated in the cell nucleus, suggesting that it may also affect the progression of cancer by regulating gene expression. Once the cancer cell reaches a new habitat it again acquires epithelial features and thus proliferative activity. Targeting of epithelial-to-mesenchymal or/and mesenchymal-to-epithelial transitions through regulation of their main components expression may be a potential solution to the problem of metastasis. This work focuses on the role of these processes in tumour progression and the assessment of therapeutic potential of agents targeting them.
Collapse
|