1
|
Zolfi E, Khaleghi Mehr F, Emtiazi N, Moradi Y. A review of the carcinogenic potential of human papillomavirus (HPV) in urological cancers. Virol J 2025; 22:53. [PMID: 40022189 PMCID: PMC11871667 DOI: 10.1186/s12985-025-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
Direct skin-to-skin contact during intimate sexual contact with a human papillomavirus (HPV)-positive individual is often the cause of HPV infection. In addition, many studies have been written up to date that look at the role of HPV in the growth of other types of tumors. Not all urological cancers are associated with HPV. However, penile cancer (PC) is often caused by HPV, especially high-risk types. HPV-16 has been the most frequent (68.3%), followed by HPV-6 (8.1%) and HPV-18 (6.9%). An increased risk of getting certain types of urinary cancers like prostate, bladder, testicular, and kidney has also been linked to these infections. Additionally, HPV may play a part in continuous inflammation and cancer progression in different organs and tissues. So, making HPV vaccine programs available to more people of the male sex around the world could significantly lower the number of urinary cancers caused by HPV. The critical effects of HPV on different types of urologic cancers (UCs), such as testicular, prostate, penile, and kidney cancer, and the importance of HPV vaccination have been seen in this study.
Collapse
Affiliation(s)
- Ehsan Zolfi
- Department of Urology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farhood Khaleghi Mehr
- Department of Urology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nikoo Emtiazi
- Department of Pathology Medicine, Rasool Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Moradi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Wei L, Huang K, Han H, Liu RY. Human Papillomavirus Infection in Penile Cancer: Multidimensional Mechanisms and Vaccine Strategies. Int J Mol Sci 2023; 24:16808. [PMID: 38069131 PMCID: PMC10706305 DOI: 10.3390/ijms242316808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Penile cancer (PC) is a rare male malignant tumor, with early lymph node metastasis and poor prognosis. Human papillomavirus (HPV) plays a key role in the carcinogenesis of PC. This review aims to summarize the association between HPV infection and PC in terms of virus-host genome integration patterns (the disrupted regions in the HPV and PC genome), genetic alterations, and epigenetic regulation (methylation and microRNA modification) occurring in HPV and PC DNA, as well as tumor immune microenvironment reprogramming. In addition, the potential of HPV vaccination strategies for PC prevention and treatment is discussed. Understanding of the HPV-related multidimensional mechanisms and the application of HPV vaccines will promote rational and novel management of PC.
Collapse
Affiliation(s)
- Lichao Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.W.); (K.H.)
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kangbo Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.W.); (K.H.)
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hui Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.W.); (K.H.)
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ran-yi Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.W.); (K.H.)
| |
Collapse
|
4
|
Chen C, Zeng J, Lu J. Critical role of epigenetic modification in the pathogenesis of atopic dermatitis. Indian J Dermatol Venereol Leprol 2023; 89:700-709. [PMID: 37067130 DOI: 10.25259/ijdvl_298_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/24/2022] [Indexed: 03/31/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease characterised by recurrent eczema-like lesions and severe pruritus, along with drying and decrustation of skin. Current research relates the pathogenesis of atopic dermatitis mainly to genetic susceptibility, abnormal skin barrier function, immune disorders, Staphylococcus aureus colonisation, microbiological dysfunction and vitamin D insufficiency. Epigenetic modifications are distinct genetic phenotypes resulting from environment-driven changes in chromosome functions in the absence of nuclear DNA sequence variation. Classic epigenetic events include DNA methylation, histone protein modifications and non-coding RNA regulation. Increasing evidence has indicated that epigenetic events are involved in the pathogenesis of atopic dermatitis by their effects on multiple signalling pathways which in turn influence the above factors. This review primarily analyses the function of epigenetic regulation in the pathogenesis of atopic dermatitis. In addition, it tries to make recommendations for personalised epigenetic treatment strategies for atopic dermatitis in the future.
Collapse
Affiliation(s)
- Chunli Chen
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Chen X, Liu Y, Liu H, Wang ZW, Zhu X. Unraveling diverse roles of noncoding RNAs in various human papillomavirus negative cancers. Pharmacol Ther 2022; 238:108188. [PMID: 35421419 DOI: 10.1016/j.pharmthera.2022.108188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
Human papillomavirus (HPV)-negative tumors distinguish from cancers associated with HPV infection. Due to its high rate of lymph node metastasis and difficulty in inchoate discover and diagnosis, the treatment efficacy of HPV-negative cancers is unsatisfactory. Epidemiological evidence suggests that HPV-negative tumor patients have a poor prognosis, and the mortality is higher than that of cancer patients caused by HPV infection. Evidence has demonstrated that noncoding RNAs (ncRNAs) play a crucial role in regulation of physiological and developmental processes. Therefore, dysregulated ncRNAs are involved in the occurrence of diversified diseases, including cancer. In cumulative studies, ncRNAs are concerned with pathogenetic mechanisms of HPV-negative tumors via regulating gene expression and signal transduction. It is important to decipher the functions of ncRNAs in HPV-negative cancers and identify the potential biomarkers, which will bring new treatment strategies for improving outcome of cancer therapy. In this review, we demonstrated the effects of ncRNAs via regulating the development and progression of HPV- negative tumors by directly or indirectly acting on target molecules, which provide a basis for future tumor targeted therapy by targeting ncRNAs for HPV-negative cancers.
Collapse
Affiliation(s)
- Xin Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hejing Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Constâncio V, Tavares NT, Henrique R, Jerónimo C, Lobo J. MiRNA biomarkers in cancers of the male reproductive system: are we approaching clinical application? Andrology 2022; 11:651-667. [PMID: 35930290 DOI: 10.1111/andr.13258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Specific cancer types face specific clinical management challenges. Owing to their stability, robustness and fast, easy, and cost-effective detection, microRNAs (miRNAs) are attractive candidate biomarkers to the clinic. OBJECTIVES Based on a comprehensive review of the relevant literature in the field, we explore the potential of miRNAs as biomarkers to answer relevant clinical dilemmas inherent to cancers of the male reproductive tract (prostate (PCa), testis (TGCTs) and penis (PeCa)) and identify some of the challenges/limitations hampering their widely application. RESULTS AND DISCUSSION We conclude that the use of miRNAs as biomarkers is at different stages for these distinct cancer types. While for TGCTs, miRNA-371a-3p is universally accepted to fill in important clinicals gaps and is moving fast towards clinical implementation, for PCa almost no overlap of miRNAs exists between studies, denoting the absence of a consistent miRNA biomarker, and for PeCa the field of miRNAs has just recently started, with only a few studies attempting to explore their clinical usefulness. CONCLUSION Technological advances influencing miRNA detection and quantification will be instrumental to continue to move forward with implementation of miRNAs in the clinic as biomarkers for non-invasive diagnosis, risk stratification, treatment monitoring and follow-up. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Doctoral Programme in Biomedical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| |
Collapse
|
7
|
da Silva J, da Costa CC, de Farias Ramos I, Laus AC, Sussuchi L, Reis RM, Khayat AS, Cavalli LR, Pereira SR. Upregulated miRNAs on the TP53 and RB1 Binding Seedless Regions in High-Risk HPV-Associated Penile Cancer. Front Genet 2022; 13:875939. [PMID: 35812732 PMCID: PMC9263206 DOI: 10.3389/fgene.2022.875939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer development by the human papillomavirus (HPV) infection can occur through the canonical HPV/p53/RB1 pathway mediated by the E2/E6/E7 viral oncoproteins. During the transformation process, HPV inserts its genetic material into host Integration Sites (IS), affecting coding genes and miRNAs. In penile cancer (PeCa) there is limited data on the miRNAs that regulate mRNA targets associated with HPV, such as the TP53 and RB1 genes. Considering the high frequency of HPV infection in PeCa patients in Northeast Brazil, global miRNA expression profiling was performed in high-risk HPV-associated PeCa that presented with TP53 and RB1 mRNA downregulated expression. The miRNA expression profile of 22 PeCa tissue samples and five non-tumor penile tissues showed 507 differentially expressed miRNAs: 494 downregulated and 13 upregulated (let-7a-5p, miR-130a-3p, miR-142-3p, miR-15b-5p miR-16-5p, miR-200c-3p, miR-205-5p, miR-21-5p, miR-223-3p, miR-22-3p, miR-25-3p, miR-31-5p and miR-93-5p), of which 11 were identified to be in HPV16-IS and targeting TP53 and RB1 genes. One hundred and thirty-one and 490 miRNA binding sites were observed for TP53 and RB1, respectively, most of which were in seedless regions. These findings suggest that up-regulation of miRNA expression can directly repress TP53 and RB1 expression by their binding sites in the non-canonical seedless regions.
Collapse
Affiliation(s)
- Jenilson da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
| | - Carla Cutrim da Costa
- Degree in Biological Sciences, Department of Biology, Federal University of Maranhão, São Luís, Brazil
| | - Ingryd de Farias Ramos
- Postgraduate Program in Oncology and Medical Sciences, Federal University of Pará, Belém, Brazil
| | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Luciane Sussuchi
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Brazil
- *Correspondence: Silma Regina Pereira,
| |
Collapse
|
8
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
9
|
Pinho JD, Silva GEB, Teixeira-Júnior AAL, Rocha TMS, Batista LL, de Sousa AM, Calixto JDRR, Burbano RR, de Souza CRT, Khayat AS. Non-Coding RNA in Penile Cancer. Front Oncol 2022; 12:812008. [PMID: 35651809 PMCID: PMC9150447 DOI: 10.3389/fonc.2022.812008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Penile cancer (PC) still presents a health threat for developing countries, in particular Brazil. Despite this, little progress has been made on the study of markers, including molecular ones, that can aid in the correct management of the patient, especially concerning lymphadenectomy. As in other neoplasms, non-coding RNAs (ncRNAs) have been investigated for penile cancer, with emphasis on microRNAs, piRNAs (PIWI-interacting small RNAs), and long non-coding RNAs (LncRNAs). In this context, this review aims to assemble the available knowledge on non-coding RNA linked in PC, contributing to our understanding of the penile carcinogenesis process and addressing their clinical relevance. ncRNAs are part of the novel generation of biomarkers, with high potential for diagnosis and prognosis, orientating the type of treatment. Furthermore, its versatility regarding the use of paraffin samples makes it possible to carry out retrospective studies.
Collapse
Affiliation(s)
- Jaqueline Diniz Pinho
- Zé Doca Center for Higher Studies, State University of Maranhão, Zé Doca, Brazil
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- *Correspondence: Jaqueline Diniz Pinho,
| | - Gyl Eanes Barros Silva
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Antonio Augusto Lima Teixeira-Júnior
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Department of Genetics, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thalita Moura Silva Rocha
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Lecildo Lira Batista
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Coordination of Medicine, Federal University of Amapá, Macapá, Brazil
| | - Amanda Marques de Sousa
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | | | | | | | - André Salim Khayat
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| |
Collapse
|
10
|
Ghafouri-Fard S, Hussen BM, Shaterabadi D, Abak A, Shoorei H, Taheri M, Rakhshan A. The Interaction Between Human Papilloma Viruses Related Cancers and Non-coding RNAs. Pathol Res Pract 2022; 234:153939. [DOI: 10.1016/j.prp.2022.153939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
11
|
Zhong Y, Wei J, Song W, Wang Q, Zhang Z, Liu H, Chen X, Huang X, Zeng K. Identification of novel biomarkers and key pathways of condyloma acuminata. Genomics 2022; 114:110303. [DOI: 10.1016/j.ygeno.2022.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
|
12
|
Muthusami S, Sabanayagam R, Periyasamy L, Muruganantham B, Park WY. A review on the role of epidermal growth factor signaling in the development, progression and treatment of cervical cancer. Int J Biol Macromol 2022; 194:179-187. [PMID: 34848237 DOI: 10.1016/j.ijbiomac.2021.11.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
The sub-committee constituted by the Indian Council of Medical Research (ICMR) for the management of cervical cancer (CC) detailed in the consensus document (2016) reported CC as a significant cause of morbidity and mortality in women. The incidence of an increase in CC and associated mortality in women is a major cause of cancer. To date, human papilloma viral (HPV) infection accounts for more than 99% of CC. However, there are individuals infected with HPV do not develop CC. There is a greater correlation between HPV infection and upregulation of the epidermal growth factor receptor (EGFR) signaling cascade during the initiation, sustenance, and progression of CC. Therefore, EGFR is often targeted to treat CC using tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAB). The current review analyzed the existing clinical/pre-clinical studies and the significance of EGFR abundance using the Kaplan-Meier (KM) survival plot analysis for disease-free survival (DFS) and overall survival (OS). We performed a series of bioinformatics analyses to screen the crucial role of the EGFR gene in CC. Further, different transcription factors that are dysregulated due to EGFR abundance and their relevance were determined using computational tools in this review. Endogenous microRNAs (miRNA) that undergo changes due to alterations in EGFR during CC were identified using computational database and consolidated the information obtained with the published in the area of miRNA and EGFR with special reference to the initiation, sustenance and progression of CC. The current review aims to consolidate contemporary approaches for targeting CC using EGFR and highlight the current role of miRNA and genes that are differently regulated during CC involving EGFR mutations. Potential resistance to the available EGFR therapies such as TKIs and mABs and the need for better therapies are also extensively reviewed for the development of newer therapeutic molecules with better efficacy.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India; Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore 641021, India.
| | | | - Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Woo Yoon Park
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
13
|
Furuya TK, Murta CB, Murillo Carrasco AG, Uno M, Sichero L, Villa LL, Cardilli L, Coelho RF, Guglielmetti GB, Cordeiro MD, Leite KRM, Nahas WC, Chammas R, Pontes J. Disruption of miRNA-mRNA Networks Defines Novel Molecular Signatures for Penile Carcinogenesis. Cancers (Basel) 2021; 13:cancers13194745. [PMID: 34638231 PMCID: PMC8507530 DOI: 10.3390/cancers13194745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Penile cancer (PeC) carcinogenesis is not fully understood, and no biomarkers are reported in clinical practice. We aimed to investigate molecular signatures based on miRNA and mRNA and perform an integrative analysis to identify molecular drivers and pathways for PeC development. Affymetrix miRNA microarray was used to identify differentially expressed miRNAs (DEmiRs) comparing 11 tumoral tissues (TT) paired with non-neoplastic tissues (NNT) with further validation in an independent cohort (n = 13). We also investigated the mRNA expression of 83 genes in the total sample. Experimentally validated targets of DEmiRs, miRNA-mRNA networks, and enriched pathways were evaluated in silico. Eight out of 69 DEmiRs identified by microarray analysis were validated by qRT-PCR (miR-145-5p, miR-432-5p, miR-487b-3p, miR-30a-5p, miR-200a-5p, miR-224-5p, miR-31-3p and miR-31-5p). Furthermore, 37 differentially expressed genes (DEGs) were identified when comparing TT and NNT. We identified four downregulated DEmiRs (miR-30a-5p, miR-432-5p, miR-487b-3p, and miR-145-5p) and six upregulated DEGs (IL1A, MCM2, MMP1, MMP12, SFN and VEGFA) as potential biomarkers in PeC by their capacity of discriminating TT and NNT with accuracy. The integration analysis showed eight dysregulated miRNA-mRNA pairs in penile carcinogenesis. Taken together, our findings contribute to a better understanding of the regulatory roles of miRNAs and altered transcripts levels in penile carcinogenesis.
Collapse
Affiliation(s)
- Tatiane Katsue Furuya
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
- Correspondence: (T.K.F.); (C.B.M.)
| | - Claudio Bovolenta Murta
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
- Correspondence: (T.K.F.); (C.B.M.)
| | - Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Laura Sichero
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Luisa Lina Villa
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Leonardo Cardilli
- Departamento de Patologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil;
| | - Rafael Ferreira Coelho
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Giuliano Betoni Guglielmetti
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Mauricio Dener Cordeiro
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Katia Ramos Moreira Leite
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - William Carlos Nahas
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - José Pontes
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| |
Collapse
|
14
|
Hu Y, Hu E, Su X, Chen X, Tao X, Ren X. Molecular mechanism of microRNA-26a regulation of phosphatase and tensin homolog gene in condyloma acuminatum and penile squamous cell carcinoma. J Int Med Res 2021; 49:3000605211014379. [PMID: 34232796 PMCID: PMC8267046 DOI: 10.1177/03000605211014379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the expression levels and mechanisms of microRNA (miRNA) 26a (miR-26a) and phosphatase and tensin homolog (PTEN) in patients with human papillomavirus (HPV)-induced condyloma acuminatum (CA) and penile squamous cell carcinoma (PSCC). METHODS Thirty-one patients with HPV-positive CA and 28 with HPV-positive PSCC were included in this retrospective, cross-sectional study. PTEN mRNA and miR-26a levels in lesion tissues, blood, and urine were analyzed by quantitative reverse transcription polymerase chain reaction, and PTEN protein was detected by western blot and enzyme-linked immunosorbent assay. Cell proliferation was assessed by MTT assay. The interaction between miR-26a and PTEN was predicted by bioinformatics analysis and confirmed by dual luciferase reporter assay. RESULTS PTEN mRNA and protein levels were significantly lower and miR-26a levels were significantly higher in all samples from patients with PSCC compared with the CA group. Bioinformatics analysis and luciferase reporter assay confirmed PTEN as a target gene of miR-26a. Up-regulation of miR-26a significantly increased the proliferation of Penl1 PSCC cells. CONCLUSIONS PTEN expression is down-regulated and miR-26a levels are up-regulated in PSCC compared with CA. PTEN is a direct target gene of miR-26a. These results suggest that miR-26a might regulate HPV-positive progression from CA to PSCC through modulating PTEN.
Collapse
Affiliation(s)
- Yayu Hu
- Department of Dermatology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Enping Hu
- Department of Urology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiangchuan Su
- Department of Dermatology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiangen Chen
- Department of Dermatology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiulin Tao
- Department of Urology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiaoli Ren
- Department of Dermatology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
15
|
Yilmaz UC, Bagca BG, Karaca E, Durmaz A, Durmaz B, Aykut A, Kayalar H, Avci CB, Susluer SY, Pariltay E, Gunduz C, Cogulu O. Propolis Extract Regulate microRNA Expression in Glioblastoma and Brain Cancer Stem Cells. Anticancer Agents Med Chem 2021; 22:378-389. [PMID: 33949939 DOI: 10.2174/1871520621666210504082528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Grade IV gliomas are classified as glioblastoma (GBM), which is the most malignant brain cancer type. Various genetic and epigenetic mechanisms play a role in the initiation and progression of GBM. MicroRNAs (miRNAs) are small, non-coding RNA molecules that are the main epigenetic regulatory RNA class. They play variable roles in both physiological and pathological conditions, including GBM pathogenesis, by regulating expression levels of the target genes. Brain cancer stem cells (BCSCs) are subpopulations of brain cancer mass that are responsible for poor prognosis, including therapy resistance and relapse. Epigenetic regulation mediated by miRNAs is also a critical component of BCSC self-renewal and differentiation properties. Propolis is a resinous substance that is collected by honey bees from various plant sources. The flavonoids content of propolis varies, depending on the region collected andthe extraction method. Although the effects of propolis that have been collected from different sources on the miRNA expression levels in the glioblastoma cells have been shown, the effects on the BCSCs are not known yet. OBJECTIVE The aim of this study is to evaluate the effects of Aydın, a city in western Turkey, propolis, on miRNA expression levels of BCSCs and GBM cells. METHODS Aydin propolis was dissolved in 60% ethanol, and after evaporation, distilled water was added to prepare the propolis stock solution. The flavonoids content of the Aydin propolis was determined by MS Q-TOF analysis. Commercially obtained U87MG, GBM cell line, and BCSCs were used as in vitro brain cancer models. The cytotoxic and apoptotic effects of Aydın propolis were determined via WST-1 assay and Annexin V test, respectively. The miRNA expression profile was investigated via the real-time qRT-PCR method, and fold changes were calculated by using the 2-∆∆Ct method compared to untreated control cells. The miRNA-mRNA-pathway interactions, including significantly altered miRNAs, were determined using different bioinformatics tools and databases. RESULTS Quercetin 3-methyl ether was determined as the major component of the Aydin propolis. Aydin propolis did not show significant cytotoxic and apoptotic effects on both GBM and BCSCs up to 2mg/ml concentration. Aydin propolis treatment decreased the expression of nine and five miRNAs in the U87MG 2.13 to 5.65 folds and BCSCs 2.02 to 12.29 folds, respectively. Moreover, 10 miRNAs 2.22 to 10.56 folds were upregulated in propolis treated GBM cells compared to the control group, significantly (p<0.05). In the study, the potential roles of two new miRNAs, whose regulations in glioma were not previously defined, were identified. One of these miR-30d-5p, a novel potential oncomiR in GBM was 2.46 folds downregulated in Aydin propolis treated GBM cells. The other one is miR-335-5p which is a potential tumor suppressor miR in GBM, was 5.66 folds upregulated in Aydin propolis treated GBM cells. FOXO pathway and its upstream and downstream regulators and critically neuronal developmental regulators NOTCH and WNT pathways were determined as the most deregulated pathways in Aydin propolis treated cells. CONCLUSION The determination of the anti-cancer effect of Aydın propolis on the miRNA expression of GBM, especially on cancer stem cells, may contribute to the elucidation of brain cancer genetics by supporting further analyses.
Collapse
Affiliation(s)
- Ugur C Yilmaz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Bakiye G Bagca
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Asude Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Burak Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ayca Aykut
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Husniye Kayalar
- Ege University, Faculty of Pharmacy, Department of Pharmacognosy, Izmir, Turkey
| | - Cigir B Avci
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Sunde Y Susluer
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Erhan Pariltay
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Cumhur Gunduz
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Ozgur Cogulu
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
16
|
Panic A, Reis H, Wittka A, Darr C, Hadaschik B, Jendrossek V, Klein D. The Biomarker Potential of Caveolin-1 in Penile Cancer. Front Oncol 2021; 11:606122. [PMID: 33868995 PMCID: PMC8045968 DOI: 10.3389/fonc.2021.606122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 01/11/2023] Open
Abstract
Various types of human cancers were characterized by an altered expression of epithelial or stromal caveolin-1 (CAV1). However, the clinical significance of CAV1 expression in penile cancer remains largely unknown. Here the expression patterns of CAV1 were analyzed in a retrospective cohort (n=43) of penile squamous cell carcinomas (SCC). Upon penile cancer progression, significantly increased CAV1-levels were determined within the malignant epithelium, whereas within the tumor stroma, namely the fibroblastic tumor compartment harboring activated and/or cancer associated fibroblasts, CAV1 levels significantly decline. Concerning the clinicopathological significance of CAV1 expression in penile cancer as well as respective epithelial-stromal CAV1 distributions, high expression within the tumor cells as well as low expression of CAV1 within the stromal compartment were correlated with decreased overall survival of penile cancer patients. Herein, CAV1 expressions and distributions at advanced penile cancer stages were independent of the immunohistochemically proven tumor protein p53 status. In contrast, less differentiated p16-positive tumor epithelia (indicative for human papilloma virus infection) were characterized by significantly decreased CAV1 levels. Conclusively, we provide further and new evidence that the characteristic shift in stromal‐epithelial CAV1 being functionally relevant to tumor progression even occurs in penile SCC.
Collapse
Affiliation(s)
- Andrej Panic
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Henning Reis
- Institute of Pathology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Christopher Darr
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
17
|
Ayoubian H, Heinzelmann J, Hölters S, Khalmurzaev O, Pryalukhin A, Loertzer P, Heinzelbecker J, Lohse S, Geppert C, Loertzer H, Wunderlich H, Bohle RM, Stöckle M, Matveev VB, Hartmann A, Junker K. miRNA Expression Characterizes Histological Subtypes and Metastasis in Penile Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:1480. [PMID: 33807023 PMCID: PMC8004785 DOI: 10.3390/cancers13061480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Although microRNAs are described as promising biomarkers in many tumor types, little is known about their role in PSCC. Thus, we attempted to identify miRNAs involved in tumor development and metastasis in distinct histological subtypes considering the impact of HPV infection. In a first step, microarray analyses were performed on RNA from formalin-fixed, paraffin-embedded tumor (22), and normal (8) tissue samples. Microarray data were validated for selected miRNAs by qRT-PCR on an enlarged cohort, including 27 tumor and 18 normal tissues. We found 876 significantly differentially expressed miRNAs (p ≤ 0.01) between HPV-positive and HPV-negative tumor samples by microarray analysis. Although no significant differences were detected between normal and tumor tissue in the whole cohort, specific expression patterns occurred in distinct histological subtypes, such as HPV-negative usual PSCC (95 differentially expressed miRNAs, p ≤ 0.05) and HPV-positive basaloid/warty subtypes (247 differentially expressed miRNAs, p ≤ 0.05). Selected miRNAs were confirmed by qRT-PCR. Furthermore, microarray data revealed 118 miRNAs (p ≤ 0.01) that were significantly differentially expressed in metastatic versus non-metastatic usual PSCC. The lower expression levels for miR-137 and miR-328-3p in metastatic usual PSCC were validated by qRT-PCR. The results of this study confirmed that specific miRNAs could serve as potential diagnostic and prognostic markers in single PSCC subtypes and are associated with HPV-dependent pathways.
Collapse
Affiliation(s)
- Hiresh Ayoubian
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| | - Joana Heinzelmann
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
- Department of Ophthalmology, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Sebastian Hölters
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| | - Oybek Khalmurzaev
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
| | - Alexey Pryalukhin
- Institute of Pathology, Saarland University Medical Centre, 66421 Homburg, Germany; (A.P.); (R.M.B.)
| | - Philine Loertzer
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
- Westpfalz-Klinikum, Clinic of Urology and Paediatric Urology, 67655 Kaiserslautern, Germany;
| | - Julia Heinzelbecker
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| | - Stefan Lohse
- Institute of Virology, Saarland University, 66421 Homburg, Germany;
| | - Carol Geppert
- Institute of Pathology, University Erlangen-Nuremberg, 91054 Erlangen, Germany; (C.G.); (A.H.)
| | - Hagen Loertzer
- Westpfalz-Klinikum, Clinic of Urology and Paediatric Urology, 67655 Kaiserslautern, Germany;
| | - Heiko Wunderlich
- St. Georg Klinikum, Clinic of Urology and Paediatric Urology, 99817 Eisenach, Germany;
| | - Rainer M. Bohle
- Institute of Pathology, Saarland University Medical Centre, 66421 Homburg, Germany; (A.P.); (R.M.B.)
| | - Michael Stöckle
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| | - Vsevolod Borisovich Matveev
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nuremberg, 91054 Erlangen, Germany; (C.G.); (A.H.)
| | - Kerstin Junker
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| |
Collapse
|
18
|
Lee AY. The Role of MicroRNAs in Epidermal Barrier. Int J Mol Sci 2020; 21:ijms21165781. [PMID: 32806619 PMCID: PMC7460865 DOI: 10.3390/ijms21165781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs), which mostly cause target gene silencing via transcriptional repression and degradation of target mRNAs, regulate a plethora of cellular activities, such as cell growth, differentiation, development, and apoptosis. In the case of skin keratinocytes, the role of miRNA in epidermal barrier integrity has been identified. Based on the impact of key genetic and environmental factors on the integrity and maintenance of skin barrier, the association of miRNAs within epidermal cell differentiation and proliferation, cell-cell adhesion, and skin lipids is reviewed. The critical role of miRNAs in the epidermal barrier extends the use of miRNAs for control of relevant skin diseases such as atopic dermatitis, ichthyoses, and psoriasis via miRNA-based technologies. Most of the relevant miRNAs have been associated with keratinocyte differentiation and proliferation. Few studies have investigated the association of miRNAs with structural proteins of corneocytes and cornified envelopes, cell-cell adhesion, and skin lipids. Further studies investigating the association between regulatory and structural components of epidermal barrier and miRNAs are needed to elucidate the role of miRNAs in epidermal barrier integrity and their clinical implications.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, College of Medicine, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-773, Korea
| |
Collapse
|
19
|
Macedo J, Silva E, Nogueira L, Coelho R, da Silva J, Dos Santos A, Teixeira-Júnior AA, Belfort M, Silva G, Khayat A, de Oliveira E, Dos Santos AP, Cavalli LR, Pereira SR. Genomic profiling reveals the pivotal role of hrHPV driving copy number and gene expression alterations, including mRNA downregulation of TP53 and RB1 in penile cancer. Mol Carcinog 2020; 59:604-617. [PMID: 32212199 DOI: 10.1002/mc.23185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
The incidence of penile cancer (PeCa) is increasing worldwide, however, the highest rates are reported in underdeveloped countries. The molecular mechanisms that underly the onset and progression of these tumors are still unclear. Therefore, our goal was to determine the genome-wide copy number alterations and the involvement of human papiloma virus (HPV) (TP53 and RB1), inflammatory (COX2 and EGFR), and PI3K/AKT pathway (AKT1, AKT2, EGFR, ERBB3, ERBB4, PIK3CA, and PTEN) associated genes in patients with PeCa from a high incidence region in Brazil (Maranhão). HPV genotyping was performed by nest-PCR and genome sequencing, copy number alterations (CNAs) by array comparative genomic hybridization and gene copy number status, gene, and protein expression by quantitative polymerase chain reaction, reverse transcriptase-quantitative polymerase chain reaction, and immunohistochemistry, respectively. HPV genotyping revealed one of the highest frequencies of HPV reported in PeCa, affecting 96.4% of the cases. The most common CNAs observed were located at the HPV integration sites, such as 2p12-p11.2 and 14q32.33, where ADAM 6, KIAA0125, LINC00226, LINC00221, and miR7641-2, are mapped. Increased copy number of ERBB3 and EGFR genes were observed in association with COX2 and EGFR overexpression, reinforcing the role of the inflammatory pathway in PeCa, and suggesting anti-EGFR and anti-COX2 inhibitors as promising therapies for PeCa. Additionally, TP53 and RB1 messenger RNA downregulation was observed, suggesting the occurrence of other mechanisms for repression of these oncoproteins, in addition to the canonical HPV/TP53/RB1 signaling pathway. Our data reinforce the role of epigenetic events in abnormal gene expression in HPV-associated carcinomas and suggest the pivotal role of HPV driving CNAs and controlling gene expression in PeCa.
Collapse
Affiliation(s)
- Juliana Macedo
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Elis Silva
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Ronald Coelho
- Aldenora Bello Cancer Hospital, São Luís, Maranhão, Brazil
| | - Jenilson da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Maranhão, Brazil.,Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Alcione Dos Santos
- Public Health Department, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Marta Belfort
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Gyl Silva
- Biology Undergraduate Course, Department of Pathology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - André Khayat
- Oncology Research Center, Federal University of Pará, Belém, Pará, Brazil
| | - Edivaldo de Oliveira
- Tissue Culture and Cytogenetics Laboratory, Institute of Evandro Chagas, Belém, Pará, Brazil
| | - Ana Paula Dos Santos
- Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Luciane R Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.,Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, United States
| | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
20
|
Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, Moghoofei M, Taghizadieh M, Hajighadimi S, Shafiee A, Sadeghian M, Bokharaei-Salim F, Mirzaei H. The role of miR-146a in viral infection. IUBMB Life 2019; 72:343-360. [PMID: 31889417 DOI: 10.1002/iub.2222] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new therapeutic and preventive strategies for viral disease in the future.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maryam Fatemipour
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Yan D, Ye Y, Zhang J, Zhao J, Yu J, Luo Q. Human Neutrophil Elastase Induces MUC5AC Overexpression in Chronic Rhinosinusitis Through miR-146a. Am J Rhinol Allergy 2019; 34:59-69. [PMID: 31466461 DOI: 10.1177/1945892419871798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The pathogenesis of chronic rhinosinusitis (CRS) is not yet clear. microRNAs are widely involved in a number of physiological and pathological processes, of which microRNA-146a (miR-146a) plays an important role in innate immunity, inflammatory response, and other pathophysiological processes. Mucins (MUCs) are important components of secreted mucus, of which MUC5AC is the major MUC secreted in the normal airway. Objective This study was performed to examine human neutrophil elastase (HNE)-induced MUC5AC overexpression in CRS via miR-146a. Methods miR-146a, HNE, epidermal growth factor receptor (EGFR), and MUC5AC expression in the sinonasal mucosa were determined using quantitative real-time polymerase chain reaction (qRT-PCR). EGFR, phosphorylated EGFR (pEGFR), and MUC5AC expression were determined in primary cultures of human nasal epithelial cells (HNECs). We examined the expression of miR-146a, MUC5AC, EGFR, and pEGFR by transfecting HNECs with miR-146a mimics and negative control (NC). Moreover, dual-luciferase reporter gene assays were used to validate EGFR as an hsa-miR-146a target gene. Results miR-146a was significantly downregulated, and HNE, EGFR, and MUC5AC were upregulated in CRS patients both with and without nasal polyps. In the in vitro cell experiment, MUC5AC was significantly downregulated after use of an EGFR-specific inhibitor (AG1478). Upon addition of miR-146a inhibitor, miR-146a was downregulated, while MUC5AC was upregulated. MUC5AC was suppressed in normal primary HNECs by miR-146a mimic and pEGFR was downregulated. The results of dual-luciferase reporter assays showed that the luciferase activities were markedly inhibited in the pGL3-EGFR-3′ UTR+miR-146a mimic group compared with the pGL3+ miR-146a mimic group, suggesting that EGFR is a target gene for miR-146a. Conclusion In HNE-induced CRS, miR-146a downregulates the expression of MUC5AC by inhibiting the activation of EGFR, and EGFR is a target gene of miR-146a.
Collapse
Affiliation(s)
- Danqing Yan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yu Ye
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jian Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Junmei Zhao
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jieqing Yu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qing Luo
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
22
|
Pignatti E, Vighi E, Magnani E, Kara E, Roncati L, Maiorana A, Santi D, Madeo B, Cioni K, Carani C, Rochira V, Simoni M, Brigante G. Expression and clinicopathological role of miR146a in thyroid follicular carcinoma. Endocrine 2019; 64:575-583. [PMID: 30701447 DOI: 10.1007/s12020-019-01845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Dysregulation of microRNA expression has been involved in the development and progression of follicular thyroid carcinoma (FTC). The aim of this work was to study the expression of miRNA146a in FTC and the association with clinicopathological features of the disease. METHODS Thirty-eight patients affected by FTC were included in the study. Twenty patients carrying follicular thyroid adenoma (FA) were also enroled as the benign counterpart of FTC. Total RNA including miRNA146a was extracted from formalin-fixed paraffin-embedded (FFPE) pairs of affected/unaffected tissue and its expression was assessed by real-time PCR. Two selected target genes, TRAF6 (tumour necrosis factor receptor-associated factor 6) and IRAK1 (Il-1 receptor-associated kinase 1/2), were also analysed. RESULTS miR146a expression in FTC tissue was overall not downregulated in malignant versus unaffected tissue, but its expression was inversely correlated with clinicopathological features of FTCs at diagnosis. A decreased expression of miR146a became apparent in FTC thyroid tissue of widely compared to minimally invasive tumours. However, miR146a expression differences between contralateral unaffected tissue (extra-FTC) and FTC were not observed regardless of clinicopathological features. IRAK1, a known target for miR146a, was upregulated in FTC and the increase was mainly appreciable in Hurtle FTC variant. Unexpectedly, miR146a did not correlate with TRAF6 showing an inverse trend compared to IRAK1 although both genes regulate the activity of nuclear factor- kB (NF-kB). CONCLUSION The results of this study indicate that downregulation of miR146a, inversely correlated with clinicopathological features of FTCs at diagnosis and suggest a possible involvement of miR146a in FTC development. IRAK1 over-expression in FTC may be related to tumour development/progression. In vitro experiments are needed to support this hypothesis.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Vighi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Magnani
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elda Kara
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncati
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Antonino Maiorana
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Bruno Madeo
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Katia Cioni
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Cesare Carani
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Rochira
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy.
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy.
| | - Giulia Brigante
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| |
Collapse
|
23
|
Iacona JR, Lutz CS. miR-146a-5p: Expression, regulation, and functions in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1533. [PMID: 30895717 DOI: 10.1002/wrna.1533] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Cancer as we know it is actually an umbrella term for over 100 very unique malignancies in various tissues throughout the human body. Each type, and even subtype of cancer, has different genetic, epigenetic, and other cellular events responsible for malignant development and metastasis. Recent work has indicated that microRNAs (miRNAs) play a major role in these processes, sometimes by promoting cancer growth and other times by suppressing tumorigenesis. miRNAs are small, noncoding RNAs that negatively regulate expression of specific target genes. This review goes into an in-depth look at the most recent finding regarding the significance of one particular miRNA, miR-146a-5p, and its involvement in cancer. Target gene validation and pathway analysis have provided mechanistic insight into this miRNA's purpose in assorted tissues. Additionally, this review outlines novel findings that suggest miR-146a-5p may be useful as a noninvasive biomarker and as a targeted therapeutic in several cancers. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| |
Collapse
|
24
|
Santos JMO, Peixoto da Silva S, Costa NR, Gil da Costa RM, Medeiros R. The Role of MicroRNAs in the Metastatic Process of High-Risk HPV-Induced Cancers. Cancers (Basel) 2018; 10:cancers10120493. [PMID: 30563114 PMCID: PMC6316057 DOI: 10.3390/cancers10120493] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
High-risk human papillomavirus (HPV)-driven cancers represent a major health concern worldwide. Despite the constant effort to develop and promote vaccination against HPVs, there is still a high percentage of non-vaccinated population. Furthermore, secondary prevention programs are not ubiquitous worldwide and not widely followed. Metastatic disease is the cause of the great majority of cancer-associated deaths, making it essential to determine its underlying mechanisms and to identify actionable anti-metastatic targets. Within certain types of cancer (e.g., head and neck), HPV-positive tumors show different dissemination patterns when compared with their HPV-negative counterparts, implicating HPV-related factors in the metastatic process. Among the many groups of biomolecules dysregulated by HPV, microRNAs have recently emerged as key regulators of carcinogenesis, able to control complex processes like cancer metastization. In this review, we present recent data on the role of microRNAs in the metastization of HPV-related cancers and on their possible clinical relevance as biomarkers of metastatic disease and/or as therapeutic targets.
Collapse
Affiliation(s)
- Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal.
- Research Department of the Portuguese League Against Cancer⁻Regional Nucleus of the North (Liga Portuguesa Contra o Cancro⁻Núcleo Regional do Norte), 4200-177 Porto, Portugal.
| | - Sara Peixoto da Silva
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal.
| | - Natália R Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal.
- Research Department of the Portuguese League Against Cancer⁻Regional Nucleus of the North (Liga Portuguesa Contra o Cancro⁻Núcleo Regional do Norte), 4200-177 Porto, Portugal.
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
25
|
Peta E, Masi G, Barzon L. KDM2B in papillomavirus-related cancer. Oncoscience 2018; 5:159-160. [PMID: 30035176 PMCID: PMC6049318 DOI: 10.18632/oncoscience.434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Elektra Peta
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Giulia Masi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| |
Collapse
|
26
|
Ellwanger JH, Zambra FMB, Guimarães RL, Chies JAB. MicroRNA-Related Polymorphisms in Infectious Diseases-Tiny Changes With a Huge Impact on Viral Infections and Potential Clinical Applications. Front Immunol 2018; 9:1316. [PMID: 29963045 PMCID: PMC6010531 DOI: 10.3389/fimmu.2018.01316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded sequences of non-coding RNA with approximately 22 nucleotides that act posttranscriptionally on gene expression. miRNAs are important gene regulators in physiological contexts, but they also impact the pathogenesis of various diseases. The role of miRNAs in viral infections has been explored by different authors in both population-based as well as in functional studies. However, the effect of miRNA polymorphisms on the susceptibility to viral infections and on the clinical course of these diseases is still an emerging topic. Thus, this review will compile and organize the findings described in studies that evaluated the effects of genetic variations on miRNA genes and on their binding sites, in the context of human viral diseases. In addition to discussing the basic aspects of miRNAs biology, we will cover the studies that investigated miRNA polymorphisms in infections caused by hepatitis B virus, hepatitis C virus, human immunodeficiency virus, Epstein–Barr virus, and human papillomavirus. Finally, emerging topics concerning the importance of miRNA genetic variants will be presented, focusing on the context of viral infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Francis Maria Báo Zambra
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Lima Guimarães
- Departamento de Genética, Universidade Federal do Pernambuco (UFPE), Recife, Brazil.,Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
27
|
Peta E, Sinigaglia A, Masi G, Di Camillo B, Grassi A, Trevisan M, Messa L, Loregian A, Manfrin E, Brunelli M, Martignoni G, Palù G, Barzon L. HPV16 E6 and E7 upregulate the histone lysine demethylase KDM2B through the c-MYC/miR-146a-5p axys. Oncogene 2018; 37:1654-1668. [PMID: 29335520 DOI: 10.1038/s41388-017-0083-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022]
Abstract
Persistent infection by high-risk human papillomaviruses (HPVs) is associated with the development of cervical cancer and a subset of anogenital and head and neck squamous cell carcinomas. Abnormal expression of cellular microRNAs (miRNAs) plays an important role in the development of cancer, including HPV-related tumors. In this study, we demonstrated that miR-146a-5p was down-regulated by E6 and, less efficiently, by E7 of high-risk HPV16 in keratinocytes and the presence of low levels of this miRNA in cervical carcinoma cell lines and in high-risk HPV-positive cervical specimens. Down-regulation of miR-146a-5p was mediated at least in part by the transcription repressor c-MYC, through binding sites in the miR-146a promoter. Overexpression of miR-146a-5p significantly inhibited proliferation and migration of keratinocytes and cervical cancer cells. The histone demethylase KDM2B was validated as a new direct target of miR-146a-5p and two putative binding sites for miR-146a-5p were identified in its 3'UTR sequence. Western blot analysis and immunohistochemistry showed that KDM2B was overexpressed in HPV16 E6/E7-positive keratinocytes, in cervical cancer cell lines, and in a subset of invasive cervical carcinomas and HPV-positive laryngeal squamous cell carcinomas. In these tumors, KDM2B overexpression was associated with c-MYC copy number gain. In vitro, silencing of KDM2B inhibited proliferation of cervical cancer cells. In conclusion, this study identified a novel player, the hystone demethylase KDM2B, in HPV-mediated tumorigenesis. E6 and, less efficiently, E7 of high-risk HPV16 up-regulated KDM2B expression in human keratinocytes through a pathway involving overexpression of c-MYC, which in turn downregulated miR-146a-5p.
Collapse
Affiliation(s)
- Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Giulia Masi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Angela Grassi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Lorenzo Messa
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Erminia Manfrin
- Department of Diagnostics and Public Health, Anatomic Pathology, AOUI Hospital Trust of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, Anatomic Pathology, AOUI Hospital Trust of Verona, Verona, Italy
| | - Guido Martignoni
- Department of Diagnostics and Public Health, Anatomic Pathology, AOUI Hospital Trust of Verona, Verona, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
28
|
Araújo R, Santos JMO, Fernandes M, Dias F, Sousa H, Ribeiro J, Bastos MMSM, Oliveira PA, Carmo D, Casaca F, Silva S, Medeiros R, Gil da Costa RM. Expression profile of microRNA-146a along HPV-induced multistep carcinogenesis: a study in HPV16 transgenic mice. J Cancer Res Clin Oncol 2018; 144:241-248. [PMID: 29181576 DOI: 10.1007/s00432-017-2549-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Persistent human papillomavirus (HPV) infection is associated with the development of certain types of cancer and the dysregulation of microRNAs has been implicated in HPV-associated carcinogenesis. This is the case of microRNA-146a (miR-146a), which is thought to regulate tumor-associated inflammation. We sought to investigate the expression levels of miR-146a during HPV16-mediated carcinogenesis using skin samples from K14-HPV16 transgenic mice which develop the consecutive phases of the carcinogenesis process. METHODS Female transgenic (HPV+/-) and wild-type (HPV-/-) mice were sacrificed at 24-26 weeks-old or 28-30 weeks-old. Chest and ear skin samples from HPV+/- and HPV-/- mice were histologically classified and used for microRNA extraction and quantification by qPCR. RESULTS Chest skin samples from 24 to 26 weeks-old HPV+/- mice presented diffuse epidermal hyperplasia and only 22.5% showed multifocal dysplasia, while at 28-30 weeks-old all (100.0%) HPV+/- animals showed epidermal dysplasia. All HPV+/- ear skin samples showed carcinoma in situ (CIS). MiR-146a expression levels were higher in HPV+/- compared to HPV-/- mice (p = 0.006). There was also an increase in miR-146a expression in dysplastic skin lesions compared with hyperplasic lesions (p = 0.011). Samples showing CIS had a significant decrease in miR-146a expression when compared to samples showing epidermal hyperplasia (p = 0.018) and epidermal dysplasia (p = 0.009). CONCLUSIONS These results suggest that HPV16 induces the overexpression of miR-146a in the initial stages of carcinogenesis (hyperplasia and dysplasia), whereas decreases its expression at later stages (CIS). Taken together, these data implicate and suggest different roles of miR-146a in HPV-mediated carcinogenesis.
Collapse
Affiliation(s)
- Rita Araújo
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences of the University of Porto (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Estrada Interior da Circunvalação, no. 6657, 4200-177, Porto, Portugal
| | - Mara Fernandes
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Estrada Interior da Circunvalação, no. 6657, 4200-177, Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences of the University of Porto (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Margarida M S M Bastos
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering of the University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911, Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Diogo Carmo
- Botelho Moniz Análises Clínicas (BMAC), Rua Sarmento de Beires 153, 4250-449, Porto, Portugal
| | - Fátima Casaca
- Botelho Moniz Análises Clínicas (BMAC), Rua Sarmento de Beires 153, 4250-449, Porto, Portugal
| | - Sandra Silva
- Botelho Moniz Análises Clínicas (BMAC), Rua Sarmento de Beires 153, 4250-449, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
- Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Estrada Interior da Circunvalação, no. 6657, 4200-177, Porto, Portugal.
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Biomedical Research Centre (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering of the University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911, Vila Real, Portugal
| |
Collapse
|
29
|
Dysregulation of cellular microRNAs by human oncogenic viruses - Implications for tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:95-105. [PMID: 29378330 DOI: 10.1016/j.bbagrm.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022]
Abstract
Infection with certain animal and human viruses, often referred to as tumor viruses, induces oncogenic processes in their host. These viruses can induce tumorigenesis through direct and/or indirect mechanisms, and the regulation of microRNAs expression has been shown to play a key role in this process. Some human oncogenic viruses can express their own microRNAs; however, they all can dysregulate the expression of cellular microRNAs, facilitating their respective life cycles. The modulation of cellular microRNAs expression brings consequences to the host cells that may lead to malignant transformation, since microRNAs regulate the expression of genes involved in oncogenic pathways. This review focus on the mechanisms used by each human oncogenic virus to dysregulate the expression of cellular microRNAs, and their impact on tumorigenesis.
Collapse
|
30
|
Chen S, Yu X, Guo D. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses 2018; 10:E40. [PMID: 29337866 PMCID: PMC5795453 DOI: 10.3390/v10010040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.
Collapse
Affiliation(s)
- Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xiao Yu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| | - Deyin Guo
- School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
Kidd LC, Chaing S, Chipollini J, Giuliano AR, Spiess PE, Sharma P. Relationship between human papillomavirus and penile cancer-implications for prevention and treatment. Transl Androl Urol 2017; 6:791-802. [PMID: 29184775 PMCID: PMC5673821 DOI: 10.21037/tau.2017.06.27] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
Penile cancer is a rare disease in the United States, but rates are increasing, causing concern. Several risk factors have been associated with the disease, including human papillomavirus (HPV) infection. Knowledge of HPV pathogenesis has led to the development of a vaccine, which has proven instrumental in reducing the incidence of female HPV-related cancers, but results in men have yet to be elucidated. Fortunately, rates of vaccination are up-trending in both males and females in the past several years. In addition, targeted therapies are the focus of several ongoing research efforts. Some of these therapeutics are currently in use, while several are in trials. With continued patient education and research, both treatment and prevention of HPV-related pre-malignant lesions and penile cancer will likely diminish.
Collapse
Affiliation(s)
- Laura C. Kidd
- Department of Urology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sharon Chaing
- Department of Urology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Juan Chipollini
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anna R. Giuliano
- Center for Infection Research in Cancer (CIRC), Moffitt Cancer Center, Tampa, FL, USA
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Pranav Sharma
- Department of Urology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
32
|
Zhou C, Jiang CQ, Zong Z, Lin JC, Lao LF. miR-146a promotes growth of osteosarcoma cells by targeting ZNRF3/GSK-3β/β-catenin signaling pathway. Oncotarget 2017; 8:74276-74286. [PMID: 29088784 PMCID: PMC5650339 DOI: 10.18632/oncotarget.19395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-146a-5p (miR-146a) functions as a tumor suppressor or oncogene involved in multiple biological processes. But, the underlying molecular mechanisms by which miR-146a contributes to osteosarcoma (OS) remain unclear. The correlation of miR-146a expression with clinicopathologic characteristics and prognosis of OS patients was analyzed by Kaplan-Meier and Cox regression analysis. Cell growth in vitro and in vivo was assessed by MTT, cell colony formation and animal models. The target of miR-146a was identified by bioinformatics software and gene luciferase reporter. As a result, miR-146a expression was substantially elevated in OS tissues and was positively associated with the tumor size (P=0.001) and recurrence (P=0.027) of OS patients. Moreover, knockdown of miR-146a suppressed cell proliferation and colony formation in vitro and in vivo. In addition, zinc and ring finger 3 (ZNRF3) was identified as a direct target of miR-146a in OS cells, and was negatively correlated with miR-146a expression in OS tissues. Overexpression of ZNRF3 inhibited cell growth and rescued the tumor-promoting role of miR-146a via inhibition of GSK-3β/β-catenin signaling pathway. Taken together, miR-146a may function as an oncogene in OS cells by targeting ZNRF3/GSK-3β/β-catenin signaling pathway, and represent a promising biomarker for OS patients.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chang-Qing Jiang
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zong
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Chen Lin
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Feng Lao
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Kuasne H, Barros-Filho MC, Busso-Lopes A, Marchi FA, Pinheiro M, Muñoz JJM, Scapulatempo-Neto C, Faria EF, Guimarães GC, Lopes A, Trindade-Filho JCS, Domingues MAC, Drigo SA, Rogatto SR. Integrative miRNA and mRNA analysis in penile carcinomas reveals markers and pathways with potential clinical impact. Oncotarget 2017; 8:15294-15306. [PMID: 28122331 PMCID: PMC5362487 DOI: 10.18632/oncotarget.14783] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Penile carcinoma (PeCa) is an important public health issue in poor and developing countries, and has only recently been explored in terms of genetic and epigenetic studies. Integrative data analysis is a powerful method for the identification of molecular drivers involved in cancer development and progression. miRNA and mRNA expression profiles followed by integrative analysis were investigated in 23 PeCa and 12 non-neoplastic penile tissues (NPT). Expression levels of eight miRNAs and 10 mRNAs were evaluated in the same set of samples used for microarray and in a validation set of cases (PeCa = 36; NPT = 27). Eighty-one miRNAs and 2,697 mRNAs were identified as differentially expressed in PeCa. Integrative data analysis revealed 255 mRNAs potentially regulated by 68 miRNAs. Using RT-qPCR, eight miRNAs and nine transcripts were confirmed as altered in PeCa. We identified that MMP1, MMP12 and PPARG and hsa-miR-31-5p, hsa-miR-224-5p, and hsa-miR-223-3p were able to distinguish tumors from NPT with high sensitivity and specificity. Higher MMP1 expression was detected as a better predictor of lymph node metastasis than the clinical-pathological data. In addition, PPARG and EGFR were highlighted as potential pathways for targeted therapy in PeCa. The analysis based on HPV positivity (7 of 23 cases) revealed five miRNA and 13 mRNA differentially expressed. Although in a limited number of cases, HPV positive PeCa presented less aggressive phenotype in comparison with negative cases. Overall, an integrative analysis using mRNA and miRNA profiles revealed markers related with tumor development and progression. Furthermore, MMP1 expression level was a predictive marker for lymph node metastasis in patients with PeCa.
Collapse
Affiliation(s)
- Hellen Kuasne
- CIPE-A. C. Camargo Cancer Center, São Paulo, Brazil.,Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | - Eliney F Faria
- Department of Urology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Ademar Lopes
- Department of Urology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - José C S Trindade-Filho
- Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | - Sandra A Drigo
- Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Silvia R Rogatto
- CIPE-A. C. Camargo Cancer Center, São Paulo, Brazil.,Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil.,Department of Clinical Genetics, Vejle Sygehus, Vejle, Denmark.,Institute of Regional Health, University of Southern Denmark, Denmark
| |
Collapse
|