1
|
Wang Y, Li X, Gao H, Lu Q. Trehalose delays postmenopausal osteoporosis by enhancing AKT/TFEB pathway‑dependent autophagy flow in rats. Exp Ther Med 2023; 26:538. [PMID: 37869632 PMCID: PMC10587861 DOI: 10.3892/etm.2023.12237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/27/2023] [Indexed: 10/24/2023] Open
Abstract
Osteoporosis is a systemic bone metabolic disorder that plagues the health and quality of life of the elderly. Autophagy plays an important role in bone formation while maintaining the homeostasis of the body. Trehalose is a mTOR-independent autophagy inducer, but to the best of our knowledge, there is no rat model of postmenopausal osteoporosis. The present study found that trehalose can delay postmenopausal osteoporosis in rats, which may be achieved by inducing and enhancing AKT/transcription factor EB pathway-dependent autophagy flow. The specific mechanism of its occurrence needs to be further studied. Trehalose-containing drugs are promising for delaying postmenopausal osteoporosis. Hematoxylin and eosin (H&E) staining, western blotting, micro computerized tomography (CT) scanning and Transmission electron microscopy were used to investigate the role of trehalose in postmenopausal osteoporosis rat model at protein, cell and histology aspects. According to the H&E staining results, the bone trabecular histological structure of the trehalose group was superior to that of the model group. The Micro CT scanning indicated the imaging structure of bone trabeculae in the trehalose group was superior to than that in the model group. Western blotting indicated the activation of autophagic flow in trehalose group, the autophagy degree of the trehalose group is greater than that of the model group; Transmission electron microscopy indicated the autophagy degree of the Trehalose group was greater than that of the model group under electron microscopy. Trehalose can delay postmenopausal osteoporosis in rats, which may be achieved by inducing and enhancing Akt/TFEB pathway-dependent autophagy flow.
Collapse
Affiliation(s)
- Yongli Wang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou Basic and Clinical Translation of Orthopedics Key Laboratory, Huzhou, Zhejiang 313300, P.R. China
| | - Xingcun Li
- Public Health Section, Huzhou Central Hospital, Huzhou Basic and Clinical Translation of Orthopedics Key Laboratory, Huzhou, Zhejiang 313300, P.R. China
| | - Hongliang Gao
- Department of Orthopedics, Huzhou Central Hospital, Huzhou Basic and Clinical Translation of Orthopedics Key Laboratory, Huzhou, Zhejiang 313300, P.R. China
| | - Qian Lu
- Department of Orthopedics, Huzhou Central Hospital, Huzhou Basic and Clinical Translation of Orthopedics Key Laboratory, Huzhou, Zhejiang 313300, P.R. China
| |
Collapse
|
2
|
Hu X, Tan C, Zhu G. Clinical Characteristics of Molecularly Defined Renal Cell Carcinomas. Curr Issues Mol Biol 2023; 45:4763-4777. [PMID: 37367052 DOI: 10.3390/cimb45060303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Kidney tumors comprise a broad spectrum of different histopathological entities, with more than 0.4 million newly diagnosed cases each year, mostly in middle-aged and older men. Based on the description of the 2022 World Health Organization (WHO) classification of renal cell carcinoma (RCC), some new categories of tumor types have been added according to their specific molecular typing. However, studies on these types of RCC are still superficial, many types of these RCC currently lack accurate diagnostic standards in the clinic, and treatment protocols are largely consistent with the treatment guidelines for clear cell RCC (ccRCC), which might result in worse treatment outcomes for patients with these types of molecularly defined RCC. In this article, we conduct a narrative review of the literature published in the last 15 years on molecularly defined RCC. The purpose of this review is to summarize the clinical features and the current status of research on the detection and treatment of molecularly defined RCC.
Collapse
Affiliation(s)
- Xinfeng Hu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Congzhu Tan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
3
|
TFEB Rearranged Renal Cell Carcinoma: Pathological and Molecular Characterization of 10 Cases, with Novel Clinical Implications: A Single Center 10-Year Experience. Biomedicines 2023; 11:biomedicines11020245. [PMID: 36830782 PMCID: PMC9952947 DOI: 10.3390/biomedicines11020245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
To report our experience with the cases of TFEB rearranged RCC, with particular attention to the clinicopathological, immunohistochemical and molecular features of these tumors and to their predictive markers of response to therapy. We have retrieved the archives of 9749 renal cell carcinomas in the Institute of Urology, Peking University and found 96 rearranged RCCs between 2013 and 2022. Among these renal tumors, ten cases meet the morphologic, immunohistochemical and FISH characterization for TFEB rearranged RCC. The 10 patients' mean and median age is 34.9 and 34 years, respectively (range 23-55 years old), and the male to female ratio is 1:1.5. Macroscopically, these tumors generally have a round shape and clear boundary. They present with variegated, grayish yellow and grayish brown cut surface. The average maximum diameter of the tumor is 8.5 cm and the median 7.7 (ranged from 3.4 to 16) cm. Microscopically, the tumor is surrounded by a thick local discontinuous pseudocapsule. All tumors exhibit two types of cells: voluminous, clear and eosinophilic cytoplasm cells arranged in solid sheet, tubular growth pattern with local cystic changes, and papillary, pseudopapillary and compact nested structures are also seen in a few cases. Non-neoplastic renal tubules are entrapped in the tumor. A biphasic "rosette-like" pattern, psammomatous calcifications, cytoplasmic vacuolization, multinucleated giant cells and rhabdomyoid phenotype can be observed in some tumors. A few tumors may be accompanied by significant pigmentation or hemorrhage and necrosis. The nucleoli are equivalent to the WHO/ISUP grades 2-4. All tumors are moderately to strongly positive for Melan-A, TFEB, Vimentin and SDHB, and negative for CK7, CAIX, CD117, EMA, SMA, Desmin and Actin. CK20 and CK8/18 are weakly positive. In addition, AE1/AE3, P504s, HMB45 and CD10 are weakly moderately positive. TFE3 is moderately expressed in half of the cases. PAX8 can be negative, weakly positive or moderately-strongly positive. The therapy predictive marker for PD-L1 (SP263) is moderately to strongly positive membranous staining in all cases. All ten tumors demonstrate a medium frequency of split TFEB fluorescent signals ranging from 30 to 50% (mean 38%). In two tumors, the coincidence of the TFEB gene copy number gains are observed (3-5 fluorescent signals per neoplastic nuclei). Follow-up is available for all patients, ranging from 4 to 108 months (mean 44.8 and median 43.4 months). All patients are alive, without tumor recurrences or metastases. We described a group of TFEB rearranged RCC identified retrospectively in a large comprehensive Grade III hospital in China. The incidence rate was about 10.4% of rearranged RCCs and 0.1% of all the RCCs that were received in our lab during the ten-year period. The gross morphology, histological features, and immunohistochemistry of TFEB rearranged RCC overlapped with other types of RCC such as TFE3 rearranged RCC, eosinophilic cystic solid RCC, or epithelioid angiomyolipoma, making the differential diagnosis challenging. The diagnosis was based on TFEB fluorescence in situ hybridization. At present, most of the cases reported in the literature have an indolent clinical behavior, and only a small number of reported cases are aggressive. For this small subset of aggressive cases, it is not clear how to plan treatment strategies, or which predictive markers could be used to assess upfront responses to therapies. Between the possible options, immunotherapy currently seems a promising strategy, worthy of further exploration. In conclusion, we described a group of TFEB rearranged RCC identified in a large, comprehensive Grade III hospital in China, in the last 10 years.
Collapse
|
4
|
TFE3 and TFEB-rearranged renal cell carcinomas: an immunohistochemical panel to differentiate from common renal cell neoplasms. Virchows Arch 2022; 481:877-891. [PMID: 35980471 PMCID: PMC9734233 DOI: 10.1007/s00428-022-03380-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/22/2023]
Abstract
TFE3/TFEB-rearranged renal cell carcinomas are characterized by translocations involving TFE3 and TFEB genes. Despite the initial description of typical morphology, their histological spectrum is wide, mimicking common subtypes of renal cell tumors. Thus, the diagnosis is challenging requiring the demonstration of the gene rearrangement, usually by FISH. However, this technique is limited in most laboratories and immunohistochemical TFE3/TFEB analysis is inconsistent. We sought to identify a useful immunohistochemical panel using the most common available markers to recognize those tumors. We performed an immunohistochemical panel comparing 27 TFE3-rearranged and 10 TFEB-rearranged renal cell carcinomas to the most common renal cell tumors (150 clear cell, 100 papillary, 50 chromophobe renal cell carcinomas, 18 clear cell papillary renal cell tumors, and 50 oncocytomas). When dealing with neoplasms characterized by cells with clear cytoplasm, CA9 is a helpful marker to exclude clear cell renal cell carcinoma. GATA3, AMACR, and CK7 are useful to rule out clear cell papillary renal cell tumor. CK7 is negative in TFE3/TFEB-rearranged renal cell carcinoma and positive in papillary renal cell carcinoma, being therefore useful in this setting. Parvalbumin and CK7/S100A1 respectively are of paramount importance when TFE3/TFEB-rearranged renal cell carcinoma resembles oncocytoma and chromophobe renal cell carcinoma. Moreover, in TFEB-rearranged renal cell carcinoma, cathepsin K and melanogenesis markers are constantly positive, whereas TFE3-rearranged renal cell carcinoma stains for cathepsin K in roughly half of the cases, HMB45 in 8% and Melan-A in 22%. In conclusion, since TFE3/TFEB-rearranged renal cell carcinoma may mimic several histotypes, an immunohistochemical panel to differentiate them from common renal cell tumors should include cathepsin K, CA9, CK7, and parvalbumin.
Collapse
|
5
|
Williamson SR, Cardili L, Whiteley LJ, Sanchez J, Kis O. Sclerosing TSC1 mutated renal cell carcinoma: An unusual pattern mimicking MITF family translocation renal cell carcinoma. Genes Chromosomes Cancer 2020; 59:591-594. [PMID: 32418252 DOI: 10.1002/gcc.22860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
The tuberous sclerosis genes and MTOR are increasingly being found to have important roles in novel subtypes of renal cancer, particularly emerging entities eosinophilic solid and cystic renal cell carcinoma (RCC) and high-grade oncocytic renal tumor (HOT)/RCC with eosinophilic and vacuolated cytoplasm. We report a unique renal neoplasm in a 66-year-old woman that initially mimicked MITF family translocation RCC due to mixed clear and eosinophilic cells, extensive stromal hyalinization, and psammoma bodies, yet which was negative for TFE3 and TFEB fluorescence in situ hybridization and a next generation sequencing (NGS) gene fusion assay. Cytoplasmic stippling triggered consideration of TSC-associated neoplasms, and a targeted NGS assay revealed a variant in exon 21 of TSC1 resulting in c.2626G>T p.(Glu876*) truncating mutation. This report adds to the morphologic spectrum of TSC-related renal neoplasms, including prominent stromal hyalinization as a potentially deceptive pattern. Due to the overlap in cytoplasmic stippling between eosinophilic solid and cystic RCC and HOT/RCC with eosinophilic and vacuolated cytoplasm, it is debatable which category this example would best fit. Further understanding of these entities and other renal neoplasms with alterations in the TSC genes will elucidate whether they should be considered a family of tumors.
Collapse
Affiliation(s)
- Sean R Williamson
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, Michigan, USA.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Leonardo Cardili
- Department of Pathology, Cancer Institute of the State of São Paulo, São Paulo, Brazil
| | - Lisa J Whiteley
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, Michigan, USA
| | - Jessica Sanchez
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, Michigan, USA
| | - Olena Kis
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
6
|
Abstract
TFEB is overexpressed in TFEB-rearranged renal cell carcinomas as well as in renal tumors with amplifications of TFEB at 6p21.1. As recent literature suggests that renal tumors with 6p21.1 amplification behave more aggressively than those with rearrangements of TFEB, we compared relative TFEB gene expression in these tumors. This study included 37 TFEB-altered tumors: 15 6p21.1-amplified and 22 TFEB-rearranged (including 5 cases from The Cancer Genome Atlas data set). TFEB status was verified using a combination of fluorescent in situ hybridization (n=27) or comprehensive molecular profiling (n=13) and digital droplet polymerase chain reaction was used to quantify TFEB mRNA expression in 6p21.1-amplified (n=9) and TFEB-rearranged renal tumors (n=19). These results were correlated with TFEB immunohistochemistry. TFEB-altered tumors had higher TFEB expression when normalized to B2M (mean: 168.9%, n=28), compared with non-TFEB-altered controls (mean: 7%, n=18, P=0.005). Interestingly, TFEB expression in tumors with rearrangements (mean: 224.7%, n=19) was higher compared with 6p21.1-amplified tumors (mean: 51.2%, n=9; P=0.06). Of note, classic biphasic morphology was only seen in TFEB-rearranged tumors and when present correlated with 6.8-fold higher TFEB expression (P=0.00004). Our results suggest that 6p21.1 amplified renal tumors show increased TFEB gene expression but not as much as t(6;11) renal tumors. These findings correlate with the less consistent/diffuse expression of downstream markers of TFEB activation (cathepsin K, melan A, HMB45) seen in the amplified neoplasms. This suggests that the aggressive biological behavior of 6p21.1 amplified renal tumors might be secondary to other genes at the 6p21.1 locus that are co-amplified, such as VEGFA and CCND3, or other genetic alterations.
Collapse
|
7
|
Caliò A, Segala D, Munari E, Brunelli M, Martignoni G. MiT Family Translocation Renal Cell Carcinoma: from the Early Descriptions to the Current Knowledge. Cancers (Basel) 2019; 11:E1110. [PMID: 31382581 PMCID: PMC6721505 DOI: 10.3390/cancers11081110] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
The new category of MiT family translocation renal cell carcinoma has been included into the World Health Organization (WHO) classification in 2016. The MiT family translocation renal cell carcinoma comprises Xp11 translocation renal cell carcinoma harboring TFE3 gene fusions and t(6;11) renal cell carcinoma harboring TFEB gene fusion. At the beginning, they were recognized in childhood; nevertheless, it has been demonstrated that these neoplasms can occur in adults as well. In the nineties, among Xp11 renal cell carcinoma, ASPL, PRCC, and SFPQ (PSF) were the first genes recognized as partners in TFE3 rearrangement. Recently, many other genes have been identified, and a wide spectrum of morphologies has been described. For this reason, the diagnosis may be challenging based on the histology, and the differential diagnosis includes the most common renal cell neoplasms and pure epithelioid PEComa/epithelioid angiomyolipoma of the kidney. During the last decades, many efforts have been made to identify immunohistochemical markers to reach the right diagnosis. To date, staining for PAX8, cathepsin K, and melanogenesis markers are the most useful identifiers. However, the diagnosis requires the demonstration of the chromosomal rearrangement, and fluorescent in situ hybridization (FISH) is considered the gold standard. The outcome of Xp11 translocation renal cell carcinoma is highly variable, with some patients surviving decades with indolent disease and others dying rapidly of progressive disease. Despite most instances of t(6;11) renal cell carcinoma having an indolent clinical course, a few published cases demonstrate aggressive behavior. Recently, renal cell carcinomas with TFEB amplification have been described in connection with t(6;11) renal cell carcinoma. Those tumors appear to be associated with a more aggressive clinical course. For the aggressive cases of MiT family translocation carcinoma, the optimal therapy remains to be determined; however, new target therapies seem to be promising, and the search for predictive markers is mandatory.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona 37134, Italy
| | - Diego Segala
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda 37019, Italy
| | - Enrico Munari
- Department of Pathology, Sacro Cuore Hospital, Negrar 37024, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona 37134, Italy
| | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona 37134, Italy.
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda 37019, Italy.
| |
Collapse
|
8
|
Wyvekens N, Rechsteiner M, Fritz C, Wagner U, Tchinda J, Wenzel C, Kuithan F, Horn LC, Moch H. Histological and molecular characterization of TFEB-rearranged renal cell carcinomas. Virchows Arch 2019; 474:625-631. [PMID: 30706129 DOI: 10.1007/s00428-019-02526-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023]
Abstract
The 2016 WHO Classification of Tumors of the Urinary System recognizes microphthalmia transcription factor (MiT) family translocation carcinomas as a separate entity among renal cell carcinomas. TFE3 and transcription factor EB (TFEB) are members of the MiT family for which chromosomal rearrangements have been associated with renal cell carcinoma formation. TFEB translocation renal cell carcinoma is a rare tumor harboring a t(6;11)(p21;q12) translocation. Recently, renal cell carcinomas with TFEB amplification have been identified. TFEB amplified renal cell carcinomas have to be distinguished from TFEB-translocated renal cancer, because they may demonstrate a more aggressive behavior. Herein, we present a TFEB-translocated and a TFEB-amplified carcinoma cases and describe their distinct histological, immunohistochemical, and molecular characteristics. In addition, we review conventional morphology, immunophenotype, genetic background, and clinical outcome of TFEB-rearranged RCCs in the literature, with a special emphasis on important differential diagnoses and the diagnostic approach.
Collapse
Affiliation(s)
- Nicolas Wyvekens
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Christine Fritz
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Ulrich Wagner
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Joëlle Tchinda
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Carina Wenzel
- Department of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Friederike Kuithan
- Department of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland.
| |
Collapse
|
9
|
Yang M, Liu E, Tang L, Lei Y, Sun X, Hu J, Dong H, Yang SM, Gao M, Tang B. Emerging roles and regulation of MiT/TFE transcriptional factors. Cell Commun Signal 2018; 16:31. [PMID: 29903018 PMCID: PMC6003119 DOI: 10.1186/s12964-018-0242-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
The MiT/TFE transcription factors play a pivotal role in the regulation of autophagy and lysosomal biogenesis. The subcellular localization and activity of MiT/TFE proteins are primarily regulated through phosphorylation. And the phosphorylated protein is retained in the cytoplasm and subsequently translocates to the nucleus upon dephosphorylation, where it stimulates the expression of hundreds of genes, leading to lysosomal biogenesis and autophagy induction. The transcription factor-mediated lysosome-to-nucleus signaling can be directly controlled by several signaling molecules involved in the mTORC1, PKC, and AKT pathways. MiT/TFE family members have attracted much attention owing to their intracellular clearance of pathogenic factors in numerous diseases. Recently, multiple studies have also revealed the MiT/TFE proteins as master regulators of cellular metabolic reprogramming, converging on autophagic and lysosomal function and playing a critical role in cancer, suggesting that novel therapeutic strategies could be based on the modulation of MiT/TFE family member activity. Here, we present an overview of the latest research on MiT/TFE transcriptional factors and their potential mechanisms in cancer.
Collapse
Affiliation(s)
- Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - En Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xuemei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jiaxi Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.,Department of Medicine, University of California San Diego, San Diego, CA, 92093, USA
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Mingfa Gao
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 40037, China.
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| |
Collapse
|
10
|
Caliò A, Brunelli M, Segala D, Pedron S, Tardanico R, Remo A, Gobbo S, Meneghelli E, Doglioni C, Hes O, Zampini C, Argani P, Martignoni G. t(6;11) renal cell carcinoma: a study of seven cases including two with aggressive behavior, and utility of CD68 (PG-M1) in the differential diagnosis with pure epithelioid PEComa/epithelioid angiomyolipoma. Mod Pathol 2018; 31:474-487. [PMID: 29052596 DOI: 10.1038/modpathol.2017.144] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
Abstract
Renal cell carcinomas with t(6;11) chromosome translocation involving the TFEB gene are indolent neoplasms which often occur in young patients. In this study, we report seven cases of renal cell carcinoma with TFEB rearrangement, two of whom had histologically proven metastasis. Patients (4F, 3M) ranged in age from 19 to 55 years (mean 37). One patient developed paratracheal and pleural metastases 24 months after surgery and died of disease after 46 months; another one recurred with neoplastic nodules in the perinephric fat and pelvic soft tissue. Histologically, either cytological or architectural appearance was peculiar in each case whereas one tumor displayed the typical biphasic morphology. By immunohistochemistry, all tumors labelled for cathepsin K, Melan-A and CD68 (KP1 clone). HMB45 and PAX8 staining were detected in six of seven tumors. All tumors were negative for CD68 (PG-M1 clone), CKAE1-AE3, CK7, CAIX, and AMACR. Seven pure epithelioid PEComa/epithelioid angiomyolipomas, used as control, were positive for cathepsin K, melanocytic markers, and CD68 (PG-M1 and KP1) and negative for PAX8. Fluorescence in situ hybridization results showed the presence of TFEB gene translocation in all t(6;11) renal cell carcinomas with a high frequency of split TFEB fluorescent signals (mean 74%). In the primary and metastatic samples of the two aggressive tumors, increased gene copy number was observed (3-5 fluorescent signals per neoplastic nuclei) with a concomitant increased number of CEP6. Review of the literature revealed older age and larger tumor size as correlating with aggressive behavior in these neoplasms. In conclusion, we present the clinical, morphological and molecular features of seven t(6;11) renal cell carcinomas, two with histologically demonstrated metastasis. We report the high frequency of split signals by FISH in tumors with t(6;11) chromosomal rearrangement and the occurrence of TFEB gene copy number gains in the aggressive cases, analyzing either the primary or metastatic tumor. Finally, we demonstrate the usefulness of CD68 (PG-M1) immunohistochemical staining in distinguishing t(6;11) renal cell carcinoma from pure epithelioid PEComa/epithelioid angiomyolipoma.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Diego Segala
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Serena Pedron
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Andrea Remo
- Department of Pathology, Hospital 'Mater Salutis', Legnago, Italy
| | - Stefano Gobbo
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Emanuela Meneghelli
- Department of Life and Reproduction Sciences, Clinical Biochemistry Laboratory, University of Verona, Verona, Italy
| | | | - Ondrej Hes
- Department of Pathology, Charles University Hospital Plzen, Plzen, Czech Republic
| | - Claudia Zampini
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Pedram Argani
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, USA
| | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy.,Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| |
Collapse
|
11
|
Zhan HQ, Li ST, Shu Y, Liu MM, Qin R, Li YL, Gan L. Alpha gene upregulates TFEB expression in renal cell carcinoma with t(6;11) translocation, which promotes cell canceration. Int J Oncol 2018; 52:933-944. [DOI: 10.3892/ijo.2018.4239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- He-qin Zhan
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shu-ting Li
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Shu
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Meng-meng Liu
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Rong Qin
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan-li Li
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lin Gan
- Institute of Clinical Virology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
12
|
Detection of 6 TFEB-amplified renal cell carcinomas and 25 renal cell carcinomas with MITF translocations: systematic morphologic analysis of 85 cases evaluated by clinical TFE3 and TFEB FISH assays. Mod Pathol 2018; 31:179-197. [PMID: 28840857 DOI: 10.1038/modpathol.2017.99] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 01/14/2023]
Abstract
Renal cell carcinomas with MITF aberrations demonstrate a wide morphologic spectrum, highlighting the need to consider these entities within the differential diagnosis of renal tumors encountered in clinical practice. Herein, we describe our experience with application of clinical fluorescence in situ hybridization (FISH) assays for detection of TFE3 and TFEB gene aberrations from 85 consecutive renal cell carcinoma cases submitted to our genitourinary FISH service. Results from 170 FISH assays performed on these tumors were correlated with available clinicopathologic findings. Ninety-eight percent of renal tumors submitted for FISH evaluation were from adult patients. Thirty-one (37%) tumors were confirmed to demonstrate MITF aberrations (21 TFE3 translocation, 4 TFEB translocation, and 6 TFEB amplification cases). Overall, renal cell carcinomas with MITF aberrations demonstrated morphologic features overlapping with clear cell, papillary, or clear cell papillary renal cell carcinomas. Renal cell carcinomas with MITF aberrations were significantly more likely to demonstrate dual (eosinophilic and clear) cytoplasmic tones (P=0.030), biphasic TFEB translocation renal cell carcinoma-like morphology (P=0.002), psammomatous calcifications (P=0.002), and nuclear pseudoinclusions (P=0.001) than renal cell carcinomas without MITF aberrations. Notably, 7/9 (78%) renal cell carcinomas exhibiting subnuclear clearing and linear nuclear array (6 of which showed high World Health Organization/International Society of Urological Pathology nucleolar grade) demonstrated TFE3 translocation, an association that was statistically significant when compared with renal cell carcinomas without MITF aberrations (P=0.009). In this cohort comprising consecutive cases, TFEB-amplified renal cell carcinomas were more commonly identified than renal cell carcinomas with TFEB translocations, and four (67%) of these previously unreported TFEB-amplified renal cell carcinomas demonstrated oncocytic and papillary features with a high World Health Organization/International Society of Urological Pathology nucleolar grade. In summary, TFE3 and TFEB FISH evaluation aids in identification and accurate classification of renal cell carcinomas with MITF aberrations, including TFEB-amplified renal cell carcinoma, which may demonstrate aggressive behavior.
Collapse
|
13
|
Inamura K. Translocation Renal Cell Carcinoma: An Update on Clinicopathological and Molecular Features. Cancers (Basel) 2017; 9:cancers9090111. [PMID: 28850056 PMCID: PMC5615326 DOI: 10.3390/cancers9090111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022] Open
Abstract
Microphthalmia-associated transcription (MiT) family translocation renal cell carcinoma (tRCC) comprises Xp11 tRCC and t(6;11) RCC. Due to the presence of fusion genes, Xp11 tRCC and t(6;11) RCC are also known as TFE3- and TFEB-rearranged RCC, respectively. TFE3 and TFEB belong to the MiT family, which regulates melanocyte and osteoclast differentiation, and TFE3- and TFEB-rearranged RCC show characteristic clinicopathological and immunohistochemical features. Recent studies identified the fusion partner-dependent clinicopathological and immunohistochemical features in TFE3-rearranged RCC. Furthermore, RCC with chromosome 6p amplification, including TFEB, was identified as a unique subtype of RCC, along with ALK-rearranged RCC. This review summarizes these recent advancements in our tRCC-related knowledge.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|